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Abstract

The Search for 0νββ Decay in 130Te with CUORE-0

by

Jonathan Loren Ouellet

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yury Kolomensky, Chair

This thesis describes the design, operation and results of an experimental search for neutri-
noless double beta decay (0νββ) of 130Te using the CUORE-0 detector.

The discovery of 0νββ would have profound implications for particle physics and our un-
derstanding of the Universe. Its discovery would demonstrate the violation of lepton number
and imply that neutrinos are Majorana fermions and therefore their own anti-particles. Com-
bined with other experimental results, the discovery of 0νββ could also have implications for
understanding the absolute neutrino mass scale as well as the presently unknown neutrino
mass hierarchy.

The CUORE experiment is a ton-scale search for 0νββ in 130Te expected to begin oper-
ation in late 2015. The first stage of this experiment is a smaller 39-kg active-mass detector
called CUORE-0. This detector contains 11 kg of 130Te and operates in the Laboratori
Nazionali del Gran Sasso lab in Italy from 2013 – 2015.

The results presented here are based on a natTeO2 exposure of 35.2 kg·yr, or 9.8 kg·yr
exposure of 130Te collected between 2013 – 2015. We see no evidence of 0νββ and place an
upper limit on the 0νββ decay rate of Γ0νββ < 0.25× 10−24 yr−1 (90% C.L.), corresponding
to a lower limit on the half-life of T 0ν

1/2 > 2.8× 1024 yr (90% C.L.).

We combine the present result with the results of previous searches in 130Te. Combining
it with the 1.2 kg·yr 130Te exposure from the Three Towers Test run we place a half-life limit
of T 0ν

1/2 > 3.3× 1024 yr (90% C.L.). And combining these results with the 19.75 kg·yr 130Te

exposure from Cuoricino, we place the strongest limit on the 0νββ half-life of 130Te to date,
at T 0ν

1/2 > 4.5 × 1024 yr (90% C.L.). Using the present nuclear matrix element calculations

for 130Te, this result corresponds to a 90% upper limit range on the effective Majorana mass
of mββ < 250− 710 meV.



i

To my family



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Baryon Asymmetry and the Sakharov Conditions . . . . . . . . . . . . . . . 2
1.2 Neutrinos and Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Neutrinoless Double Beta Decay . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Double Beta Decay 9
2.1 Neutrinos in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 2νββ and 0νββ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Phase Space and Nuclear Matrix Elements . . . . . . . . . . . . . . . . . . . 21
2.4 Alternate 0νββ Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Experimental Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Present Experimental Searches for 0νββ . . . . . . . . . . . . . . . . . . . . 28

3 The CUORE and CUORE-0 Experiments 31
3.1 A Bolometric Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Predecessor To CUORE: Cuoricino . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 CUORE Construction and Assembly Line . . . . . . . . . . . . . . . . . . . 42
3.4 The CUORE Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 The CUORE-0 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 CUORE-0 Data Collection and Processing 49
4.1 CUORE-0 Detector Setup and Data Taking . . . . . . . . . . . . . . . . . . 49
4.2 First-Level Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 CUORE-0 Second-Level Data Processing . . . . . . . . . . . . . . . . . . . . 67

5 CUORE-0 Noise Analysis And Decorrelation 81
5.1 The Full Noise Covariance Matrix and Subsets . . . . . . . . . . . . . . . . . 81



iii

5.2 Correlated Noise and Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Low-Frequency Correlated Noise In CUORE-0 . . . . . . . . . . . . . . . . . 88
5.4 Towards A Decorrelating Filter . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 The Decorrelation Procedure in the Diana v02.30 Production . . . . . . . . 98
5.6 Decorrelating Filter Performance . . . . . . . . . . . . . . . . . . . . . . . . 101

6 CUORE-0 Analysis and 0νββ Fit 107
6.1 Final Physics Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Efficiency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 208Tl Line Shape From Calibration . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Projecting the Detector Response . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 0νββ ROI Fit Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6 Systematics Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Final CUORE-0 0νββ Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.8 Differences with Official CUORE-0 Result . . . . . . . . . . . . . . . . . . . 136

7 CUORE and Beyond 140
7.1 Outlook for CUORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2 Beyond CUORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 145

A CUORE-0 Dataset Data 155

B Generalized Amplitude Evaluation 165
B.1 Derivation of the Generalized Optimum Filter . . . . . . . . . . . . . . . . . 165
B.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.3 Waveform Filtering in CUORE-0 . . . . . . . . . . . . . . . . . . . . . . . . 174

C Bayesian Nuisance Parameters 176

D The Coldest Cubic Meter in the Universe 179
D.1 Low Temperature Regions in Nature . . . . . . . . . . . . . . . . . . . . . . 179
D.2 The CUORE Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
D.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D.4 Caveats, Qualifications, Ifs and Buts.. . . . . . . . . . . . . . . . . . . . . . . 182
D.5 More on the CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



iv

List of Figures

1.1 Baryon number-violating processes . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Predicted solar neutrino spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Measured ν̄e survival probability in KamLAND . . . . . . . . . . . . . . . . . . 6
1.4 Fermion mass scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Possible Neutrino Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The A = 130 isobar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Schematic of a 2νββ and 0νββ spectrum . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Majorana mass generation via the butterfly diagram . . . . . . . . . . . . . . . 19
2.5 Double beta decay Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Sum over intermediate states in a ββ decay . . . . . . . . . . . . . . . . . . . . 23
2.7 Q-values and nuclear figures of merit . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Non-Standard 0νββ Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Plot of mββ vs mLightest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Schematic of LNGS lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Spectra for 2νββ and 0νββ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Idealized bolometer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 NTD resistance curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 CUORE NTDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 CUORE bolometers and tower assembly . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Drawing of the CUORE detector . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Schematic NTD bias circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Schematic of the bolometer readout chain . . . . . . . . . . . . . . . . . . . . . 40
3.10 The Cuoricino tower and result . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Energy spectrum from CCVR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12 CUORE Assembly Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 Drawing of the CUORE cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14 The CUORE-0 cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Pulser amplitude as a function of bias . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 CUORE-0 event pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



v

4.3 Example of bad interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Average pulse and noise for channel 18 on dataset 2073 . . . . . . . . . . . . . . 58
4.5 Baseline trends for stabilization algorithm . . . . . . . . . . . . . . . . . . . . . 60
4.6 Calibration of channel 18 in dataset 2070 . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Distribution of residual coincidence jitter . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Spatial correlations in coincidence . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 Schematic of data salting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10 Shifting channel calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.11 Comparison of old and new optimum filters . . . . . . . . . . . . . . . . . . . . 72
4.12 A channel recovered with WoH Stabilization . . . . . . . . . . . . . . . . . . . . 73
4.13 Selection of shifted and unshifted channels . . . . . . . . . . . . . . . . . . . . . 75
4.14 Comparing the performance of two energy estimators . . . . . . . . . . . . . . . 76
4.15 Optimized distribution of energy estimators . . . . . . . . . . . . . . . . . . . . 77
4.16 Comparison of possible FWHM distributions . . . . . . . . . . . . . . . . . . . . 78
4.17 Robustness of the aggressive approach . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 The full correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Frequency-frequency covariance matrices . . . . . . . . . . . . . . . . . . . . . . 84
5.3 High frequency spikes in the NPS . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Channel-channel covariance matrix between 6-8 Hz . . . . . . . . . . . . . . . . 87
5.5 Effect of channel crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 20 s sampled pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.7 Low-frequency ANPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8 Phase evolution of the correlated noise . . . . . . . . . . . . . . . . . . . . . . . 91
5.9 Channel-channel correlation matrix for dataset 2073 . . . . . . . . . . . . . . . . 92
5.10 Channel-channel correlation matrix for dataset 2085 . . . . . . . . . . . . . . . . 93
5.11 Possible feedback configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.12 Example of OF filter behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.13 Effect of differentiation on filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.14 Comparison of optimum filter vs decorrelating filter . . . . . . . . . . . . . . . . 102
5.15 Decorrelated NPS: theoretical vs measured . . . . . . . . . . . . . . . . . . . . . 103
5.16 Number of pulses used in the decorrelation filter . . . . . . . . . . . . . . . . . . 104

6.1 Final CUORE-0 spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 CUORE-0 vs Cuoricino spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Calibration 208Tl fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4 Distributions of parameters from 208Tl fit . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Line shape projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Background peak residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.7 Unblinded CUORE-0 spectrum in the ROI . . . . . . . . . . . . . . . . . . . . . 125
6.8 ROI fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.9 60Co sum rate as a function of time . . . . . . . . . . . . . . . . . . . . . . . . . 128



vi

6.10 Profile likelihood curve for CUORE-0 . . . . . . . . . . . . . . . . . . . . . . . . 129
6.11 Simulated Distribution of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.12 Distribution of non-parametric statistics . . . . . . . . . . . . . . . . . . . . . . 132
6.13 Results of systematics toy Monte Carlos . . . . . . . . . . . . . . . . . . . . . . 134
6.14 Final combined likelihood curves . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.15 Final mββ exclusion plot including CUORE-0 . . . . . . . . . . . . . . . . . . . 138

7.1 Light yield vs heat signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Transition curve for a Ir/Au TES . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.1 CUORE-0 channel map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2 FWHM statistics by channel and dataset . . . . . . . . . . . . . . . . . . . . . . 158
A.3 Background γ rates by channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.4 Background 190Pt rates by channel . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.5 Background α rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.6 60Co single γ rate vs time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.7 CUORE-0 spectrum around the 210Po peak . . . . . . . . . . . . . . . . . . . . . 162
A.8 210Po rate vs time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.9 Earthquake during CUORE-0 run . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.1 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.2 Frequency-frequency covariance matrices . . . . . . . . . . . . . . . . . . . . . . 171
B.3 Waveform filter power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.1 Example of bias cause by a nuisance parameter . . . . . . . . . . . . . . . . . . 176

D.1 Boomerang nebula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

List of Tables

2.1 Best-fit mixing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Measured 2νββ half-lives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 γ peaks from thorium daughters used by the calibration algorithm. . . . . . . . 63
4.2 CUORE-0 exposure numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Energy estimators in the Moderately Conservative approach . . . . . . . . . . . 75
4.4 Energy estimators in the Aggressive approach . . . . . . . . . . . . . . . . . . . 77



vii

4.5 Comparing the energy estimator combinations . . . . . . . . . . . . . . . . . . . 79

5.1 Tower equivalent circuit time constant . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Signal efficiency summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Free parameters in the 2615 keV line shape fit . . . . . . . . . . . . . . . . . . . 114
6.3 30 keV X-ray parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4 Parameters for the X-ray escape line model . . . . . . . . . . . . . . . . . . . . 116
6.5 Effective vs Summed FWHM at 2615 keV values for CUORE-0 . . . . . . . . . 120
6.6 ROI fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.7 Summary of systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 135
6.8 Comparison of mββ 90% limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1 Phases, Working Points and Datasets . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 Values of physical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.3 Energy estimator breakdown for CUORE-0 . . . . . . . . . . . . . . . . . . . . . 157
A.4 Summary of limits on Γ0νββ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.1 Stages of the CUORE cryostat and their volumes . . . . . . . . . . . . . . . . . 181
D.2 Large volume cryogenic experiments . . . . . . . . . . . . . . . . . . . . . . . . 182



viii

Acknowledgments

I would like to thank my advisor, Yury Kolomensky, whose guidance and suggestions
have been extremely valuable. I am especially grateful for the long and insightful debates
(occasionally over glasses of wine) and for support to follow my own pursuits and the en-
couragement to see them through.

I would also like to acknowledge Stuart Freedman, whose sudden passing was a tragic
loss to our group and to the scientific community. I only had a brief opportunity to work
with Stuart, but his lessons left a lasting impression. His many scientific accomplishments
leave us the highest standard to which we must aspire.

I would like to thank the other members of my committee, Gabriel Orebi Gann and Eric
Norman, who provided very useful guidance and feedback in the writing of this thesis.

The experiment upon which this dissertation is based is the result of years of work by
the members of the CUORE collaboration and builds upon decades of experience. I have
been very fortunate to have been able to learn from this wealth of expertise and to be a part
of such an ambitious enterprise.

I would like to acknowledge Marisa Pedretti and Lucia Canonica for their tireless efforts
and leadership during the construction and operation of the CUORE-0 detector. I would
like to acknowledge all of the on-site shifters who keep the CUORE-0 detector running.

I would like to acknowledge the members of the CUORE-0 analysis group that I have
had the opportunity to work closely with over the past years and whose work contributed
to this thesis: Ke Han, Tom Banks, Tommy O’Donnell, Matteo Biassoni, Jeremy Cushman,
Luca Gironi, Kyungeun Lim, Maria Martinez, Reina Maruyama, Gabriele Piperno, Stefano
Pozzi, Silvia Capelli, Claudia Tomei, Marco Vignati and Brian Zhu.

I would like to thank the current and former Berkeley and LBL postdocs and staff,
Raul Hennings-Yeoman, Yuan Mei, Vivek Singh, Jake Feintzeig, Richard Kadel and Brian
Fujikawa for many useful conversations, collaborations, and support. Particularly, I would
like to thank Tom Banks and Tommy O’Donnell for their invaluable feedback during the
writing of this document. I would like to acknowledge my fellow graduate students at
Berkeley, Alexey Drobizhev and Sachi Wagaarachchi with whom I have worked very closely
while setting up and operating the Berkeley dilution refrigerator.

I would like to thank Paolo Gorla and Carlo Bucci, from whom I have learned much
about the dark art of dilution refrigerators as well as Tom Wise with whom I worked closely
in Italy.

I would like to acknowledge Don Orlando and the 111 lab. All told, I spent 3.5 years
in the 111 lab and never stopped learning new things. I would like to acknowledge the
multitude of people and resources in the Berkeley Physics Department and LBL, including
the Weak Interactions group, Anne Takazawa and Donna Sakima.

Finally, I would like to thank my family and friends for their love and support over the
years.



1

Chapter 1

Introduction

Contrary to popular belief, the moon is not made out of cheese. It is, however, made out of
matter. This is a non-trivial statement because it could have just as easily been made out
of anti-matter. So why is matter preferred?

Since its formulation in the late 1960s, the Standard Model (SM) of particle physics has
been extremely successful in explaining nearly all of the phenomena that we observe on a
microscopic scale. Its five decades of success was capped with the 2012 discovery of the
Higgs Boson at the Large Hadron Collider (LHC) [1, 2]. The Standard Model of Cosmology
(referred to as ΛCDM) is to the Universe on large scales what the SM is to the Universe
on small scales. Combined together, the SM and ΛCDM have been able to explain much
of the Universe on scales both small and large, with each one relying on the other. Even
from an experimental perspective, measurements on the largest scales have placed limits on
processes at the smallest scales, and vice versa. But for all of these successes, there are still
many unanswered questions that neither theory has yet been able to adequately address.
And though there are many unanswered questions, we will focus on one:

Why is there something instead of nothing?

As far as we can tell, everything that we see in the Universe is composed primarily of
matter — all of the galaxies, the stars, the Earth, and even the Moon. But the SM tells
us that it equally could have been composed of anti-matter and the Universe would look
identical. So it is natural to ask, why matter? Why not anti-matter? But the problem is
even worse than this. Our current picture of the Universe (SM+ΛCDM) tells us that all the
matter and energy we observe in the Universe were created fractions of a second after the
Big Bang. However, our present understanding dictates that matter and anti-matter should
have been created in equal abundances. As the Universe cooled, eventually the anti-matter
and matter would have paired off and annihilated, leaving nothing to create the galaxies and
stars. Clearly, this is not what happened. Somehow, matter was preferred over anti-matter.
After all the anti-matter paired off and annihilated, there was a remainder of matter; and
this remainder produced all of the structure that we see in the Universe. This is known as
the Baryon Asymmetry Problem.
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This thesis does not take on this question in whole. Rather, we focus on a small part
of one possible way to answer this question. In this chapter, we make this question more
concrete, and describe the components that any solution to this question will require. We
then describe the role neutrinos could play in resolving the Baryon Asymmetry Problem,
and the evolution of our understanding of these ghostly particles over the past 50 years.

1.1 Baryon Asymmetry and the Sakharov Conditions

The Baryon Asymmetry Problem is characterized by the baryon asymmetry parameter

ηB ≡
nB − nB̄

nγ
(1.1)

where nB is the number density of baryons (e.g. number of protons per cubic meter), nB̄ is
the number density of anti-baryons (e.g. number of anti-protons per cubic meter) and nγ is
the number density of photons. As far as we can tell, anti-matter in the Universe is extremely
sparse; it only exists in significant quantities as the by product of other high-energy processes
between matter. The baryon asymmetry has been measured through cosmological observa-
tions and Big Bang Nucleosynthesis modeling to be ηB ≈ nB/nγ = (6.047 ± 0.074) × 10−10

[3].
Näıvely, we can interpret this number in the following way: in the early universe, for

every 1,000,000,000 anti-protons, there were roughly 1,000,000,001 protons. Eventually, all
the anti-protons paired off with the protons and annihilated, leaving a remainder of 1 proton
per 2 billion photons. So the question is not, “Why is there so much more matter than
anti-matter?”, the question is actually “Why does the Universe have this tiny preference for
matter?”

We do not actually expect that all matter and anti-matter would have paired off and
annihilated. The Universe was expanding rapidly, and the distance between neighboring
particles was growing rapidly; so we expect that some relic amount of matter and anti-
matter would have frozen out and survived the annihilation phase. But this only accounts
for a baryon density of nB/nγ ∼ 10−20 [4], or roughly enough for one galaxy in the observable
Universe — not the 10 billion that we see.

One possibility is that it is only our local Universe that is an upward fluctuation in matter
density. Perhaps some other portion of the Universe is dominated by anti-matter in such a
way that the average baryon asymmetry is much smaller than it is in our local neighborhood.
While we cannot fully rule this out, we have reasonably solid evidence that this is not the
case. By looking for the annihilation that would inevitably occur at the boundaries between
matter and anti-matter dominated regions we can place bounds on this possibility within
our observable Universe [5, 6].

More commonly, we believe that the Universe began in a state with no baryon asymmetry
— anti-matter and matter on equal footing — and evolved a baryon asymmetry through a
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Figure 1.1: A schematic of a generic process which produces 2 baryons, BB, (left) and the
CP conjugate process that produces 2 anti-baryons, B̄B̄, (right). The Sakharov conditions
say that in order to produce an excess of baryons, such processes must exist and the process
on the left must outpace the process on the right.

process known as Baryogenesis. There are many models for how Baryogenesis could occur,
but any model must satisfy three conditions known as the Sakharov conditions [7]:

1. Any model must have a mechanism that violates baryon number symmetry.

2. That mechanism must also violate C-symmetry and CP-symmetry.

3. The mechanism must be active while the Universe was not in thermal equilibrium.

The first of these three conditions is easily understood: if we want to produce an excess of
baryons over anti-baryons, we must have a way of creating baryons without also creating anti-
baryons. But the presence of such a mechanism would also imply that the analogous process
for creating anti-baryons without baryons is also possible (assuming CPT is conserved). The
second condition (that C and CP-symmetry be violated) just implies that the process must
happen faster for baryons than anti-baryons, otherwise the two processes will cancel each
other out. The third condition is slightly less obvious, but boils down to the fact that
in thermal equilibrium, the process for creating baryons comes into equilibrium with the
process destroying them, so that the net ratio of baryons to anti-baryons cannot change;
we thus need to break thermal equilibrium in order to slow the rate of destroying baryons
compared to the rate of creating them. Together, these three conditions specify a minimum
set of requirements in order to produce an excess of baryons over anti-baryons in an evolving
Universe.

Within the SM all three Sakharov conditions are actually met, and so a baryon asymmetry
could have been generated in the early Universe without the need for any new physics beyond
the SM physics. However, it turns out not to be enough. Specifically, the SM only has enough
CP-violation to account for a baryon asymmetry of |ηB| . 10−26 [8]. This is ∼6 orders of
magnitude smaller than the relic baryon density we expect to freeze out, nB/nγ ∼ 10−20. To



4

solve the Baryon Asymmetry Problem, we need physics beyond the SM.

Leptogenesis

There are many proposals which extend the SM to introduce a mechanism for Baryogenesis
[9–13] (just to cite a few). A problem is that many of them introduce new physics at very high
energies — so high as to be beyond the realm of experimental reach. So while these models
of Baryogenesis can nicely explain the baryon asymmetry problem, testing their veracity is
difficult.

One theory that has gained popularity recently is Baryogenesis via Leptogenesis [13]. In
this approach, the baryon asymmetry is not generated directly by producing baryons (e.g.
protons) over anti-baryons (e.g. anti-protons), but rather by producing an asymmetry in the
leptons (e.g. electrons and neutrinos) and converting that into an asymmetry in the baryons.

While so far we have only discussed the matter asymmetry of the Universe in terms of
the baryon asymmetry (e.g. the preference of protons over anti-protons), we also expect that
there is an analogous lepton asymmetry (e.g. a preference for electrons over positrons). We
typically focus on the baryons because we have cosmological constraints that allow us to say
something about their asymmetry. The lepton asymmetry, on the other hand, is dominated
by the Cosmic Neutrino Background (CνB) which has never been directly detected and could
carry a very wide range of lepton asymmetry values1. Given that we see it in the baryons,
it is natural to expect that the leptons carry a non-zero asymmetry as well, and thus it is
tempting to link their origins to a common process in the early Universe.

In order for Leptogenesis to occur, the analogous Sakharov conditions must be satisfied.
We need a process which violates lepton number symmetry. We need this process to violate
C-symmetry and CP-symmetry. And we need a departure from thermal equilibrium. Neu-
trinos have long been thought to play a role in models of Leptogenesis, but the relatively
recent discovery of neutrino mass has brought many of these questions within the reach of
experiment. We shift our discussion to neutrinos and the role they could play in answering
these questions.

1.2 Neutrinos and Neutrino Mass

When the SM was originally formulated, neutrinos were thought to be massless. They came
in three flavors, νe, νµ, and ντ , with their associated anti-particles, ν̄e, ν̄µ, and ν̄τ , and they
were always associated with their corresponding charged leptons, e, µ, or τ .

This picture began to break down in the late 1960s with the Homestake Experiment run
by Raymond Davis Jr. The experiment was located in the Homestake Mine in South Dakota
and was a large tank of perchloroethylene (dry-cleaning fluid). The experiment detected

1Averaged over the whole Universe, we expect ∼ 1/4 protons per cubic meter; for neutrinos we expect
something more like ∼ 3× 108 per cubic meter.
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Figure 1.2: Predicted spectrum of solar neutrinos and their sources. (Figure from John
Bahcall’s website, http://www.sns.ias.edu/~jnb/.)

electron neutrinos, νe, — primarily from the sun — via the reaction

37Cl + νe → 37Ar + e−

By collecting the buildup of 37Ar in the tank at the end of every month, they could measure
the solar electron neutrino flux and compare this number to the flux expected from solar
modeling calculations being done by John Bahcall. Their measured flux was consistently
low by a factor of ∼3 [14]. This became known as the “Solar Neutrino Problem”.

At first, the discrepancy was blamed on experimental systematics or miscalculations in
the solar modeling. However, other solar measurements based on solar acoustics supported
the solar models, and when other neutrino experiments began to see similar discrepancies
in the flux of solar νe [15–21], it became increasingly clear that the problem lay with our
understanding of neutrinos. By 2002, the Sudbury Neutrino Observatory (SNO) had been
able to measure the total neutrino flux (not just the electron neutrino flux). They showed
that while the electron neutrino flux was low by a factor of ∼ 3, the flux of νµ and ντ made
up for the deficit [22, 23]. This solved the Solar Neutrino Problem by showing that the
missing νe were “oscillating” into νµ and ντ between the sun and the detector! By the end of
2002, the KamLAND experiment published its results on nuclear reactor ν̄e disappearance
[24, 25], which, when combined with the solar neutrino results, indicated a unique solution
to the Solar Neutrino Problem: neutrinos have mass. Since then, many experiments have
confirmed and refined this understanding and built a very robust picture of massive neutrinos
(see [26] for a review).

http://www.sns.ias.edu/~jnb/
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Figure 1.3: The ν̄e survival probability measured in the KamLAND detector. (Figure from
[25].)

Neutrino Mass and Leptogenesis

The discovery of neutrino oscillations opens up two very fundamental questions about neu-
trinos. The first is in regards to their mass scale and its origin. The second question regards
the extent of their oscillations and ties neutrinos back into the discussion about the Baryon
Asymmetry Problem.

It is natural to ask why the neutrinos were massless in the SM to begin with. There are
several answers to this question, but the simplest is that neutrinos are a factor of about a
million to a trillion times lighter than the other particles in the SM. Thus in almost every
experiment they appear massless2. Even today we know that the neutrinos have mass, but
we have not yet been able to accurately measure that mass.

This massive discrepancy between the charged fermions and the neutrinos in the SM is
made clear in Fig. 1.4 and its cause is still an open question in particle physics. There are
many theoretical models which seek to explain the mass scale of the neutrinos via a variety
of different mechanisms. Indeed, the small mass of the neutrinos may very well be a window
into some new physics.

So far, we have discovered neutrino oscillations in the context of conversion between
flavors in neutrinos and anti-neutrinos separately

να ↔ νβ ν̄α ↔ ν̄β
2For reference, measuring the mass of a neutrino, mν . 0.1 eV, relative to the mass of the next lightest

particle, the electron, me = 511 keV, is analogous to measuring the mass of person by measuring the change
in weight of the Empire State Building as they walk in the door.
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Figure 1.4: The masses of the fermions in the SM. While the charged fermions have masses
on the order of MeV to 100 GeV, the neutrinos are some 6 to 12 orders of magnitude
lighter. Why this is the case is one of the open questions of particle physics. (Image from
H. Murayama, http://hitoshi.berkeley.edu/.)

where α, β represent the various neutrino flavors, (e, µ, τ). However, this discovery opens up
the prospect for oscillations of the form

να ↔ ν̄β

This type of oscillation is not allowed for any other particle in the SM (referring to the
fermions), and this can be easily understood since every other particle in the SM carries
an electric charge. An oscillation of the form e− → e+ would violate charge conservation.
However, neutrinos carry no electric charge, and thus a conversion from a neutrino to an
anti-neutrino (or vice versa) is not a priori forbidden. This would make neutrinos unique
among the SM particles as they could convert into their own anti-particles.

This prospect is of interest to the discussion of Leptogenesis because this type of oscilla-
tion manifestly violates lepton number — i.e. it carries a lepton into an anti-lepton or vice
versa. If this type of oscillation is possible — and discovered — it would prove that lepton
number is not a conserved quantity in nature. This would provide a possible mechanism for
Leptogenesis in the early Universe and could help explain the baryon asymmetry.

Neutrinos can even provide the CP-violation necessary for Leptogenesis. If the oscillation
probability for the (lepton number-conserving) process να → νβ differs from its CP-conjugate
process να → νβ, this would violate CP-symmetry. Further, if lepton number-violating oscil-
lations are also possible, there could be additional sources of CP-violation in the oscillations
between neutrinos and anti-neutrinos.

What makes these questions so presently interesting — and relevant to the discussion of
the baryon asymmetry — is that the discovery of neutrino mass has shown us that many
of them may be within experimental reach. This gives us a path to probe questions about
physics beyond the SM and about the processes that occurred in the very early Universe by
carefully studying the properties of the weakest and lightest known particles.

http://hitoshi.berkeley.edu/
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1.3 Neutrinoless Double Beta Decay

In this introduction we have briefly introduced a major open question in particle physics
today: the origin of the Baryon Asymmetry of the Universe. We then outlined some of
the questions that can be experimentally probed that might help address this issue: lepton
number conservation, absolute neutrino mass scale, and CP-violation. This thesis focuses on
an experiment that addresses the question of lepton number violation — specifically whether
or not the conversion between ν ↔ ν̄ is possible.

The CUORE experiment searches for a process called Neutrinoless Double Beta Decay.
This is a hypothesized nuclear decay mode that violates lepton number and would indicate
that the conversion from ν ↔ ν̄ is indeed possible. Whereas oscillation experiments look
for neutrinos of one flavor produced in one location to oscillate to another flavor when they
reach a detector in a different location, in neutrinoless double beta decay searches we can
think of the oscillation ν ↔ ν̄ as occurring inside a single decaying nucleus. So rather
than producing and detecting neutrinos, neutrinoless double beta decay experiments simply
observe a collection of decaying atoms and search for the signature of the lepton number-
violating decay.

This decay, if possible, is one of the slowest known processes. Given the present exper-
imental limits, in order to see a single atom undergo this decay one would expect to wait
longer than 10 trillion trillion years — or a million billion times the age of the Universe.
Thus all experiments that search for it share several common themes. They are large, in
order to simultaneously observe as many atoms as possible. They are clean, in order to get
rid of any other sources of radioactive decay. And they are underground, in order to shield
from the cosmic rays that could swamp the detector.
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Chapter 2

Double Beta Decay

In the previous chapter we outlined some of the successes and shortcomings of the SM and
motivated why we are interested in studying neutrino physics. In this chapter, we focus on
the process of neutrinoless double beta (0νββ) Decay. We begin by grounding some of the
neutrino physics from the previous chapter in a mathematical framework. We lay out an
extension to the SM that predicts 0νββ decay, and connect this model to the experimentally
measurable decay rate. This model will serve as the baseline model for the whole of this
thesis. But to emphasize that the baseline model is just one of many possible, we briefly
outline several alternative mechanisms by which 0νββ decay could occur. Finally, we briefly
outline the present experimental status of the search for 0νββ decay.

2.1 Neutrinos in the Standard Model

The SM Lagrangian contains three massless left-handed neutrinos, νe, νµ, ντ and three
associated charged particles e, µ, τ . We define neutrinos such that νe are produced with
e, νµ with µ, and ντ with τ . We expect that we should never see a νµ produced with a τ .
This is made concrete by saying that each neutrino, να, along with its charged partner, `α,
obey a U(1) symmetry which leaves LSM unchanged. For a set of arbitrary angles, θα, the
transformation (

να
`Lα

)
→ eiθα

(
να
`Lα

)
`Rα → eiθα`Rα

has no effect on the theory. Here, the Greek indices run over e, µ, τ and indicate that each
flavor can transform independently. The conserved charge associated with this symmetry is
called lepton flavor. In other words, in every interaction, the SM predicts that the number
of each flavor lepton is separately conserved, Ne, Nµ and Nτ . So, if an electron is produced
in a reaction, then a ν̄e is produced to zero the resulting change in lepton flavor number.

This picture was shattered by the discovery of neutrino oscillations, which definitively
demonstrated the conversion of neutrinos among the flavor states να ↔ νβ and that lepton
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flavor is not, in fact, conserved. The picture that emerged was that of three neutrino flavor
eigenstates that are a superposition of at least three neutrino mass eigenstates.

Neutrino Mixing

In a simplified two flavor mixing model we can write the neutrino flavor eigenstates, να and
νβ, as a linear combination of neutrino mass eigenstates, ν1 and ν2, with masses m1 and m2:(

να
νβ

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
ν1

ν2

)
(2.1)

This means that neutrinos, which are produced in the flavor eigenstates that we defined,
actually propagate in a different set of states. This means that the linear combination of
mass states cos(θ)ν1 + sin(θ)ν2 can couple to the charged lepton `α but not to `β.

Because the neutrinos are not produced in an exact energy eigenstate, their wavefunction
evolves, and the relative phases between the mass states change with time. In the neutrino
rest frame, the time evolution of the state is given by

|ψ(t)〉 = cos(θ)eim1t |ν1〉+ sin(θ)eim2t |ν2〉

We can define the “survival probability” as the probability that a neutrino produced in one
location in a flavor eigenstate will interact in another location in the same flavor eigenstate.
For an α neutrino of energy E, having traveled a distance L, the survival probability is given
by

Pαα = 1− sin2(2θ) sin2

(
∆m2L

4E

)
(2.2)

where ∆m2 ≡ m2
2 − m2

1. By measuring this survival probability as a function of L/E,
experiments are able to determine the mass squared splittings ∆m2 and mixing angles.

Expanding to a generic mixing model with N mass eigenstates, we write the relation
between the three flavor eigenstates, να, and N mass eigenstates, νi, as

|να〉 =
N∑
i=1

Uαi |νi〉 (2.3)

where U is a 3×N unitary matrix. Presently, most data are consistent with N = 3, however,
there are some tentative indications for N > 3 [19, 27–33].

In an N = 3 model the mixing matrix U , called the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix, can be parameterized in the standard way:

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13


×

eiα1/2 0 0
0 eiα2/2 0
0 0 1

 (2.4)
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Here we use the shorthand sij and cij for sin(θij) and cos(θij) respectively. This model is
parameterized by three angles θ12, θ23 and θ13, three CP-violating phases δCP, α1 and α2 and
three neutrino masses, m1, m2 and m3. All of these parameters are, in principle, measurable
quantities1. The best-fit parameters from a global fit to all currently running oscillation
experiments are listed in Table 2.1. Since the survival probabilities are only sensitive to
mass-squared differences, not the masses themselves, the neutrino mass scale is currently
unknown. We know the sign of ∆m2

12 from solar measurements, but the sign of ∆m2
13 is

presently unknown. There are two possibilities for the spectrum of neutrino masses: the
normal hierarchy, m1 < m2 < m3, and the inverted hierarchy, m3 < m1 < m2, as shown in
Fig. 2.1.

The remaining parameters: the absolute neutrino mass scale, the neutrino mass hierarchy,
and the CP violating phases are all currently the focus of intense interest. However, there is
another another question that is opened by the discovery of neutrino mixing.

From the point of view of fundamental symmetries, the discovery of neutrino oscilla-
tions reduced the U(1)e×U(1)µ×U(1)τ flavor symmetries of the SM to a single overall U(1)
symmetry that we call Lepton number, L:(

νeL
eL

)
→ eiθ

(
νeL
eL

)
eR → eiθeR(

νµL
µL

)
→ eiθ

(
νµL
µL

)
µR → eiθµR(

ντL
τL

)
→ eiθ

(
ντL
τL

)
τR → eiθτR

(2.5)

Notice that in Eqn. 2.1, we have multiple transformation angles θα, whereas here all particles
transform together. This symmetry implies that even with neutrino oscillations, the total
number of leptons is conserved. In other words, Ne, Nµ and Nτ may change individually,
but Ne +Nµ +Nτ should remain unchanged. This lepton number symmetry is similar to the
baryon number symmetry in the quark sector. Establishing if these are indeed fundamental
symmetries of nature is one key to understanding the origin of the Baryon Asymmetry of
the Universe.

Fermion Masses in the Standard Model

Knowing that neutrinos are not massless, we must find a way to accommodate this in the SM.
We begin with the standard Higgs mechanism. All massive particles in the SM acquire their
mass through an interaction with the Higgs field during Electroweak Symmetry Breaking

1The CP-violating Majorana phases are, at least in theory, measurable quantities. Oscillation ex-
periments that search for να ↔ ν̄β would be sensitive to α1 and α2 through the oscillation asymmetry
(P (να → ν̄β) − P (ν̄α → νβ))/(P (να → ν̄β) + P (ν̄α → νβ)) [34]. But these signals are typically suppressed
by several orders of magnitude relative to typical backgrounds. More realistic approaches are sensitive to
α1 − α2 for a narrow range of parameter spaces [35].
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Figure 2.1: Two possible mass orderings for the neutrino masses. The “Normal Hierarchy”
on the left or the “Inverted Hierarchy” on the right. The unknown size of the splitting
between the lightest mass state and zero represents the unknown absolute mass scale of the
neutrino. (Figure from [36].)

Table 2.1: Best-fit and 3σ intervals for neutrino mixing parameters from a global fit to
oscillation data [37]. Table taken from [26]. Values are evaluated for normal hierarchy, while
numbers in parentheses are evaluated for inverted hierarchy. The value ∆m2 is the splitting
between m3 and the average of m1 and m2 and is given by ∆m2 ≡ m2

3 − (m2
2 +m2

1)/2.

Parameter Best Fit (±1σ) 3σ Interval

∆m2
12 [10−5 eV2] 7.54+0.26

−0.22 (6.99− 8.18)

|∆m2| [10−3 eV2] 2.43± 0.06 (2.38± 0.06) 2.23− 2.61(2.19− 2.56)

sin2 θ12 0.32± 0.017 0.259− 0.359

sin2 θ23 0.437+0.033
−0.023(0.455+0.039

−0.031) 0.374− 0.628(0.380− 0.641)

sin2 θ13 0.0234+0.0020
−0.0019(0.0240+0.0019

−0.0022) 0.0176− 0.0295(0.0178− 0.0298)

δ/π (2σ range) 1.39+0.38
−0.27(1.310.29

−0.33) (0.00− 0.16)⊕ (0.86− 2.00)
((0.00− 0.02)⊕ (0.70− 2.00))

(EWSB). For example, the charged leptons acquire their mass via a Yukawa term in the
Lagrangian:

LY = λαΦT L̄α`αR + h.c. (2.6)
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where Φ ≡
(
φ+

φ0

)
is the complex scalar Higgs doublet. Lα ≡

(
ναL
`αL

)
is the left-handed

doublet of the charged lepton, `, and its corresponding neutrino, ναL. When the Higgs field

gains a non-zero expectation value, 〈Φ〉 =

(
0
v

)
, this term becomes

Lmass,` = m`
¯̀
L`R + h.c. (2.7)

where m` ≡ λ`v. This type of mass term is referred to as a Dirac-type mass, because it
couples a left-handed particle field, `L, to a right-handed field, `R. A term of this type exists
for all the charged fermions.

Within the SM, the neutrinos are massless because they do not have a right-handed
component field, νR. They are all, by definition, left-handed fields and thus cannot have a
Dirac-type mass. Thus, the neutrino oscillation experiments present us with a conundrum,
“How do we extend the Standard Model to accommodate neutrino mass?”

The problem is more complicated than just introducing neutrino mass into the SM. As
we saw before, not only do neutrinos have mass, but they are significantly lighter than all
the other fermions in the SM. So besides just giving the neutrinos mass we also seek to
explain why they are so light. One possibility is that they just are. However, this is not a
very satisfactory answer, and so we search for another.

Type I Seesaw Mechanism

The most straightforward approach is to add right-handed components for the neutrinos,
NRi, and add new terms to the SM Lagrangian. These right-handed neutrino fields are not
already present in the SM because they have zero charge under all of the SM interactions,
thus cannot be directly seen in any possible experiment. These neutrinos are said to be
“sterile”. Using these new right-handed neutrino fields, NRi, we can now write two new
mass terms into the Lagrangian. For three generations of left-handed neutrinos and N
generations of right-handed neutrinos, we write

Lmass,ν = −λDαiL̄TαΦ̃NRi −
1

2
MR

ij N̄RiN
c
Rj + h.c. (2.8)

This first term is analogous to the other fermion mass terms in Eqn. 2.6; where λDiα are
Yukawa coupling constants and α = e, µ, τ , and i, j run over the N hypothetical right-
handed neutrino states. After EWSB, the first term leads to a standard Dirac type mass
term as in Eqn. 2.7. The second term in the above equation is a Majorana type mass term.
Rather than coupling a left-handed field to a right-handed field, a Majorana type mass term
couples a right-handed field, NR, to its left-handed charge conjugate field, N c

R ≡ CN̄T
R —

connecting a particle to its own anti-particle. This is only allowed for NR because these
particle fields are completely uncharged in the SM, and so the Majorana mass term carries
no SM charges.
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After EWSB, the Lagrangian becomes

Lmass,ν = −ν̄αLMD
αiNRi − 1

2
N̄RiM

R
ijN

c
Rj + h.c.

= −1
2

(
ν̄cL N̄R

)( 0 MD

MD
T MR

)(
νL
N c
R

)
+ h.c.

(2.9)

Here we have defined (MD)αi ≡ λαiv as a 3 × N matrix of Dirac masses and rewritten
the equation in matrix form. The zero in this mass matrix may seem strange, but is a
direct result of the fact that the left-handed neutrino carries a weak charge whereas NR is
uncharged. There are various extensions to the SM and higher dimension operators that will
generate non-zero values but, for simplicity, we ignore them here.

We now make a very particular assumption: we assume that MD � MR. This choice is
somewhat ad hoc, but we justify this by citing the origin of these mass terms. The Dirac mass
term, MD, was generated during EWSB by the usual Higgs mechanism, so it’s reasonable
to assume that this term is typical of the Higgs mass scale. But the MR terms came before
EWSB — they were already present as mass terms in Eqn. 2.8. We therefore assume that
this term is generated independently of the Higgs mechanism, and so we might think that it
is representative of a mass scale significantly larger than the EWSB scale.

We now rewrite this equation in terms of a diagonalized mass matrix:

Lmass,ν = −1
2

(
ν̄cL N̄R

)
U

[(
MDMR

−1MD
T 0

0 MR

)
+O (M4

D/M
3
R)

]
U †
(
νL
N c
R

)
+h.c.

≈ −1
2

(
ν̄cL
′ N̄ ′

R

)(mν 0
0 MN

)(
ν′
L

N c
R
′

)
+ h.c.

(2.10)
The mass matrix at the center of this equation describes a set of 3 light Majorana neutrino
mass eigenstates, ν′

L with masses mν and N heavy Majorana neutrino mass eigenstates, N ′
R,

with masses MN , where

mν ≡MDMR
−1MD

T MN ≡MR (2.11)

This introduces a set of light neutrinos whose masses are suppressed by MD/MR � 1 and
a set of heavy neutrinos with mass scale MR. This is an extremely powerful observation.
The two terms that we introduced to the SM Lagrangian not only generate a mass term
for the neutrinos, but also explain why the neutrino masses are so small! The Higgs mass
components are naturally the same scale as the other fermions but the neutrino masses
are suppressed by some larger energy scale theory. This is referred to as a Type I seesaw
mechanism.

Looking at the right half of equation 2.10, we can identify the mass eigenstates:(
ν′
L

N c
R
′

)
= U †

(
νL
N c
R

)
(2.12)
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Here, U is the full (3 + N) × (3 + N) unitary matrix that rotates between the flavor basis
and the mass basis. The portion of U that rotates between νL and ν′

L is exactly the 3 × 3
matrix that we previously called the PMNS matrix.

An important aspect of this theory is that the Lagrangian that we introduced in Eqn. 2.8
does not conserve any U(1) symmetry. Specifically, the lepton number symmetry that we
wrote in Eqn. 2.5 is violated if MR 6= 0. Conversely, if we let MR = 0 then the symmetry
is restored. We could have introduced only the Dirac mass terms, which are sufficient to
explain neutrino oscillations alone. But once we do this, we have no physical reason to
exclude an MR term. In this sense, the theory which generates Majorana masses for the
neutrinos and violates lepton number is considered more “natural” than manually setting
MR to zero to conserve lepton number.

An alternate way to look at this is that the NR neutrinos are almost completely decoupled
from the SM, and we can generate a Majorana mass MR term for them at a very high energy
scale. If indeed MR = 0 then that means that it is either tuned to be exactly zero, or
that lepton number symmetry is also a symmetry of that higher-energy theory. But we
have reason to suspect that lepton number is not a fundamental symmetry of nature — the
Baryon Asymmetry — and thus it seems unnatural for us to insist that MR = 0.

The model described here is one of the simplest of many methods by which we can
introduce Majorana neutrinos. However, most models follow a similar recipe and many of
the conclusions are general. Many models can both introduce Majorana mass and explain the
smallness of the neutrino masses. A Majorana neutrino mass, by any mechanism, violates
lepton number; in a very basic sense it allows the conversion of a neutrino into an anti-
neutrino, which manifestly violates lepton number by two units. In the next section we
introduce a specific mechanism by which we can probe a Majorana neutrino mass and we
connect it back to a measurement of the Majorana neutrino mass term, mν .

2.2 2νββ and 0νββ

Double beta decay is a second-order weak decay where a nucleus, (Z,A), undergoes two beta
decays to its isobar (Z+2, A) in a single step, emitting two electrons in the process. In theory,
this process can happen via two different channels: the SM-allowed lepton number conserving
two neutrino double beta decay channel, or the lepton-number violating neutrinoless double
beta decay channel.

The two-neutrino double beta decay (2νββ) channel conserves lepton number by also
producing two electron anti-neutrinos in the decay

(Z,A)→ (Z + 2, A) + 2e− + 2ν̄e

This process was first proposed in 1935 by Maria Goeppert-Mayer [38]. Within the SM all
nuclei can undergo 2νββ so long as the decay is kinematically allowed. However, because it is
a second-order weak process it is usually heavily suppressed relative to the first-order single
beta decay to (Z + 1, A) which significantly outpaces any 2νββ signal. Because of this, the
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process has only been measured in a handful of nuclei. Typically, these nuclei are even-even
nuclei where the odd-odd (Z + 1, A) nucleus has a larger mass and the single beta decay
along the isobar is thus kinematically forbidden. An example for the A = 130 isobar is shown
in Fig. 2.2. In this isobar, the nucleus 130Te is unstable and eventually decays to 130Xe, but
cannot decay through the heavier nucleus, 130I, and so must decay directly via a ββ decay.
The nuclei 48Ca and 96Zr present an alternative single beta decay suppression mechanism. In
these isotopes, the single beta decay is kinematically allowed, but is a sixth-order forbidden
decay due to a large change in angular momentum.

Because of the heavy suppression, the half-lives for these decays are in the range 1019–
1024 yr and are actually the slowest processes ever measured — indeed, the 2νββ half-lives of
128Te and 136Xe are the longest half-lives ever measured2. The measured half-lives of various
isotopes are listed in Table 2.2.

Table 2.2: Measured 2νββ half-lives for various isotopes. The 130Te 2νββ half-life number
comes from a 2011 paper, but is expected to be updated shortly after this thesis.

Isotope T 2νββ
1/2 (yr) Method Citation

48Ca 4.4+0.6
−0.5 × 1019 Direct [40]

76Ge (1.5± 0.1)× 1021 Direct [40]
82Se (9.2± 0.7)× 1019 Direct [40]
96Zr (2.3± 0.2)× 1019 Direct [40]

100Mo (7.1± 0.4)× 1018 Direct [40]
116Cd (2.8± 0.2)× 1019 Direct [40]
128Te (1.9± 0.4)× 1024 Geochem [40]
130Te 6.8+1.2

−1.1 × 1020 Direct [41]
136Xe (2.165± 0.016± 0.059)× 1021 Direct [42]
150Nd (8.2± 0.9)× 1018 Direct [40]
238U (2.0± 0.6)× 1021 Radiochem [40]

Since the neutrinos rarely interact within the detector, their energy is practically never
detected. So from an experimental standpoint, the measurable quantity in a double beta
decay is typically the total kinetic energy of the electrons produced in the decay. This
produces a broad energy spectrum that extends from 0 keV (when the neutrinos carry away
all the energy) up to the endpoint energy (when the neutrinos are produced practically at
rest). The spectrum of total electron kinetic energies, ETot, can be analytically derived using
the Rosen-Primakoff approximation [43]:

dN

dETot

∝ ETot(Q− ETot)
5(1 + 2ETot +

4E2
Tot

3
+
E3

Tot

3
+
E4

Tot

30
) (2.13)

where ETot is in units of MeV. This spectrum is shown in Fig. 2.3.
2The present limits on proton decay imply that should protons decay, they would have a significantly

longer half-life. But, at present, only limits exist.
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Figure 2.2: The A = 130 isobar. The 0νββ candidate isotope is 130Te, which is kinematically
forbidden from decaying to 130I, but will slowly decay to 130Xe. The nucleus 130Ba could
similarly undergo a β+β+ decay. Such a decay has never been observed. Figure taken from
the Table of Radioactive Isotopes [39].
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Figure 2.3: Schematic of 2νββ and 0νββ decay spectra. The height of the 0νββ spectrum
is exaggerated for clarity. The 2νββ spectrum uses the Rosen-Primakoff Approximation.

The 0νββ Decay Mode

In 1939, building on the theories proposed by Majorana and Racah [44, 45], Furry pointed
out that if indeed neutrinos are Majorana fermions (i.e. ν = ν̄), then double beta decay could
occur without the production of any neutrinos at all [46]. This is the so called neutrinoless
double beta decay (0νββ) mode:

(Z,A)→ (Z + 2, A) + 2e−

This decay is forbidden in the SM because it violates lepton number by two units. However, if
neutrinos are indeed Majorana fermions then lepton number cannot be a symmetry of nature
anyway. In fact, the search for this decay channel is presently one of the most sensitive
methods to test whether or not lepton number is a conserved quantity of nature, and is
also the only practical known method to answer the question of whether or not neutrinos
are Majorana fermions. Since 0νββ produces no neutrinos to carry away any energy, its
experimental signature is a monoenergetic line at the endpoint of the 2νββ spectrum.

There are many extensions to the SM which predict 0νββ decay via a variety of different
mechanisms. In section 2.1, we added two terms to the SM Lagrangian that generated a
light Majorana mass. Any mechanism which gives the neutrinos a Majorana mass is itself
enough to allow for 0νββ decay (we discuss this further in the next section). However, some
models predict the possibility of 0νββ decay without the need to insert a Majorana mass
for the neutrinos (e.g. scalar triplet mechanism in Fig. 2.8). This seems to contradict the
statement that 0νββ decay can only occur if neutrinos are Majorana fermions, however, the
statement actually goes the other way: the occurrence of 0νββ implies that neutrinos are
Majorana fermions.
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Figure 2.4: The butterfly diagram for generation of a Majorana neutrino mass via whatever
mechanism is responsible for 0νββ. This implies that the discovery of 0νββ implies a non-
zero Majorana mass for the neutrino — though, it need not be the dominant mass.

Schechter and Valle pointed out that the discovery of 0νββ by any mechanism would
imply that neutrinos can acquire a non-zero Majorana mass [47]. Their observation was that,
even if a model does not explicitly give neutrinos a Majorana mass, one can be generated
via a diagram like that in Fig. 2.4. This simply rearranges the typical 0νββ diagram placing
all the unknown particle physics into a black box. What results is a modification to the
neutrino propagator which converts a ν to barν — which is exactly a Majorana mass term.
This should not be misunderstood as saying that the 0νββ mechanism is the dominant
mechanism by which neutrinos generate mass, but rather that it is a minimal mechanism.

From an experimental standpoint, the quantity that we can actually measure is the 0νββ
decay rate, Γ0νββ. We can generalize all of the model-dependent particle physics into a
generic parameterization of the decay rate. Following [48] we write this as

Γ0νββ = ln(2)G0ν(Q,Z)|M0ν |2|f0ν |2 (2.14)

This parameterization roughly splits the decay rate into a kinematics part in G0ν(Q,Z), a
nuclear physics part |M0ν |2, and all of the microscopic particle physics is contained in the
dimensionless quantity, |f0ν |2. In reality, the three terms are interconnected but can often
be considered separately to a reasonable approximation.

Majorana Neutrino Exchange In Type I Seesaw

The neutrino mass model that we presented in section 2.1 predicts two classes of 0νββ decay:
one mediated by the light Majorana neutrinos (with mass mν), and the other through the
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Figure 2.5: Top Left: Feynman diagram for 2νββ. This is a Standard Model second order
decay and has been observed in a handful of nuclei. Top Right: Diagram for 0νββ mediated
by the exchange of a light Majorana neutrino (ν = ν̄). This decay is not allowed in the SM
and violates lepton number by ∆L = 2. Bottom: Diagram of 0νββ with a heavy Majorana
neutrino. Unlike the diagram with the light neutrino exchange, this mechanism is a “short
range” point like interaction. This decay is also not allows in the SM.

heavy Majorana neutrinos (with mass Mν). These two channels are shown in the Feynman
diagrams in Fig. 2.5. We follow [49] and write the decay rate as

Γ0νββ = ln(2)G0ν(Q,Z)

∣∣∣∣MLight
0ν

mββ

me

+MHeavy
0ν

mp

Mββ

∣∣∣∣2 (2.15)

where we define

mββ ≡
∑

i ∈Light

U2
eimi

1

Mββ

≡
∑

j ∈Heavy

U2
ej

mj

(2.16)

The two sums average separately over the 3 light neutrino mass states and the N heavy
neutrino mass eigenstates that we found in Eqn. 2.10. Uei and Uej are the components of
the mixing matrix. The two terms correspond to the two extremes that the neutrino masses
are either much less than the momentum transfer in the nucleus, mLight � q ∼ 100 MeV, or
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much larger, mHeavy � q. Thus the form of f0ν stems directly from the two limiting cases of
the transition amplitude. This model can be thought of as a β decay at one vertex, releasing
an Majorana anti-neutrino, ν̄, which is the same as a Majorana neutrino (i.e. ν̄ = ν), which
is then absorbed as such at the second vertex.

It’s common in the literature to consider only the light mass part of this equation. We
follow this approach and take the exchange of light Majorana neutrinos as our baseline
model. In this case, the parameter in which we are interested is referred to as the “Effective
Majorana Mass”, mββ. We can evaluate the sum and write this term as

mββ = |
∑
U2
eimi|

=
∣∣∣cos2 θ12 cos2 θ13e

iα1m1 + sin2 θ12 cos2 θ13e
iα2
√

∆m2
12 +m2

1

+ sin2 θ13e
−2iδ
√
m2

1 + ∆m2
13

∣∣∣ (2.17)

Throughout this thesis we will take this as the standard approach and ultimately place a
limit on mββ, but we stress that the quantity being measured is only the decay rate, Γ0νββ;
the interpretation is model dependent.

The allowed values of mββ based on oscillation data are shown in Fig. 2.9, expressed as a
function of the lightest neutrino mass: m1 in the Normal Hierarchy, and m3 in the Inverted
Hierarchy.

2.3 Phase Space and Nuclear Matrix Elements

The kinematic factor in Eqn. 2.15, G0ν(Q,Z), describes the available phase space for the
decay — i.e. the total number of ways the final-state particles can share the kinetic energy
of the decay. In most models, this factor is only weakly dependent on the specifics of the
decay and can be calculated with reasonably high precision. Generally, this factor scales as
the fifth power of the Q-value of the decay3.

The nuclear physics factors, |M0ν |2, are generally more complicated. This is the transi-
tion matrix element from the initial nuclear state to the final state. We write this as

M0ν ≡
∑
n,n′

〈
ψi

∣∣∣τ †nτ †n′Hnn′(q)
∣∣∣ψf〉 (2.18)

where

Hnn′(q) ≡
[
−hF (q) + hGT (q)σn · σn′ + hT (q) (σn · q̂σn′ · q̂ − σn · σn′)

]
(2.19)

Here, Hnn′(q) is the transition operator that converts two neutrons into two protons. The
sum over n, n′ is over all possible nucleon pairs in the nucleus. Different models of 0νββ decay

3This can be calculated easily by dimensional analysis: the decay produces three products, each of which
is integrated over all possible momenta, d3p; however, 4 of these integrals are fixed to conserve momentum
and energy, leaving 5 integrals over momentum, each of which has a characteristic scale of Q, yielding Q5.
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predict different forms for Hnn′(q), often relying on different simplifying assumptions. For
instance, in the case of light Majorana neutrino exchange, the neutrino can carry momentum
from one nucleon to another, thus creating a neutrino “potential” that must be included in
the evaluation of Hnn′(q); while in the case of heavy Majorana neutrino interaction, the
interaction is point-like and the momentum transfer is negligible in the calculation and the
neutrino potential reduces to a constant.

In this calculation we need to account for the energy levels of the intermediate nu-
cleus. However, we typically use the closure approximation, which replaces our sum over
intermediate state energies with a single effective energy (Ã in Fig. 2.6). This is gener-
ally considered a good approximation due to the high momentum transfer in the decay,
q ∼ ~c/(1 fm) ∼100 MeV, relative to the excitation energy of the nuclear states E ∼ a few
MeV.

The matrix element can be thought of as two separate parts: a part that converts any
two neutrons in the initial state nucleus into any two protons in the final state nucleus times
an amplitude that those two neutrons would decay into those two protons in a 0νββ decay.
We can write this schematically as

M0ν =
∑
n,n′

〈
ψi(ni, n

′
i)
∣∣∣τ †nτ †n′∣∣∣ψf (nf , n′f )〉× 〈nin′i∣∣Hnn′(q)

∣∣nfn′f〉 (2.20)

Where ni (n′i) and nf (n′f ) are the initial and final spin states of the nucleons in the interac-
tion. The first term can be thought of as the overlap of the final nucleus on the initial nucleus
after a specific two neutrons have been converted to two protons. For example, we could
think of it as the overlap of the 130Te nuclear wavefunction with the 130Xe wavefunction,
with the two specific nucleons undergoing the transition, (ni, n

′
i) → (nf , n

′
f ). This term is

independent of the specifics of the decay model and depends only on the nucleus in question.
Since the nuclei in which we are interested for 0νββ are typically large and compli-

cated, the nuclear matrix elements cannot be calculated exactly. While the Hnn′(q) terms
are model dependent, they are typically easy to calculate; conversely, the amplitude terms,
〈ψi|τ †nτ

†
n′|ψf〉, are extremely difficult to calculate and must be approximated. There are a

variety of techniques that make varying approximations to this calculation. The most com-
mon approaches in the literature are the quasiparticle random phase approximation (QRPA),
which sums many possible energy states of the nucleus but only in a limited number of shell
configurations, the interacting shell model (ISM), which sums over all possible shell config-
urations but only over a limited number of state energies, and the interacting boson model
(IBM-II) which pairs nucleons in shells and treats them as interacting bosons. Typically,
these calculations can differ by factors of a few up to ∼10.

Often the nuclear matrix element evaluation is broken into three components which are
treated separately,

M0ν = g2
A

[
M(0ν)

GT −
(
gV
gA

)2

M(0ν)
F +M(0ν)

T

]
= g2

AM(0ν) (2.21)
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Figure 2.6: A ββ decay can be thought of as a virtual decay to all possible states of the
intermediate nucleus followed by a decay to the final state nucleus. These states need to be
summed over in calculating the nuclear matrix element. This figure is for decay of 76Ge to
76Se (taken from [48]) and also shows decays to excited final states.

whereM(0ν)
GT ,M(0ν)

F ,M(0ν)
T are the Gamow-Teller transition term, the Fermi transition term

and the tensor terms, respectively. For transitions where the initial and final states have
JP = 0+, the Gamow-Teller terms tend to dominate, with the Fermi terms suppressed by a
factor of &2 and the tensor terms suppressed by a factor of ∼ 10.

We have explicitly separated out the axial coupling term, g2
A, from the rest of the matrix

element, M(0ν), which has only a weak dependence on gA. Until recently, it was standard
in the literature to use the free neutron axial coupling gA = 1.269 (e.g. [50]). However, [48]
recently pointed out that the coupling could be quenched and this would impact the limits
placed on mββ.

We often couple the phase space factor and the nuclear matrix element together into a
“nuclear figure of merit”,

F 0ν
N ≡ G0ν(Q,Z)|M0ν |2 (2.22)

When building an experiment to search for 0νββ, the size of our expected signal will be
proportional to a particle physics term, |f0ν |2, and a term that will depend on our choice of
isotope, FN .

Calculated values for FN assuming light Majorana neutrino exchange are shown in Fig. 2.7
for a variety of calculation techniques. When choosing a candidate isotope for a 0νββ search,
we would like to maximize FN . However, from a practical standpoint, we also need to take
into account the isotopic abundance of the candidate. An isotope like 48Ca has a very large
Q-value, which makes it a nice candidate, but its tiny isotopic abundance would require a
time consuming and expensive enrichment program to produce enough 48Ca nuclei for an
experiment. In this thesis, we study 130Te, which has a reasonable FN , a reasonable Q-
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Figure 2.7: Left: Decay Q-values vs natural isotopic abundance for various 0νββ candidate
isotopes. Right: Distribution of nuclear figures of merit for various isotopes using a variety of
calculations of |M0ν |2 assuming the baseline light Majorana neutrino exchange model. The
bars represent the minimum and maximum of the range of FN and the markers represents
the central values, they do not represent a “mean” and an “error” in a statistical sense.
Phase space factors from [51], nuclear matrix element values from [48, 52–56].

value and the highest isotopic abundance of all of the candidate isotopes. This allows us to
build our experiment out of natural Te and avoid the need for a time-consuming enrichment
program.

2.4 Alternate 0νββ Models

In this section we present several alternate models that lead to 0νββ decay. The impor-
tant thing to note is that there are many models which predict 0νββ through a variety of
mechanisms. The models presented here are each interesting alternatives in their own way.

Type I Inverse Seesaw

The downside to the Type I Seesaw model is that it requires a spectrum of right-handed
neutrinos with extremely large masses, MN . Of course we do not actually know the scale of
MN , but in order to make the light neutrinos light via the seesaw mechanism, we must make
the heavy neutrinos heavy enough to be experimentally inaccessible, & 1012 GeV.

An alternate approach is to introduce N = 6 right-handed neutrinos, but split them into
two types, νR and NR. Then write the mass matrix of Eqn. 2.9 as

Lmass,ν = −1

2

(
ν̄cL ν̄R N̄R

) 0 M1 0
(M1)T 0 M2

0 (M2)T µ

 νLνcR
N c
R

+ h.c. (2.23)
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where we define the hierarchy µ�M1 �M2. In this case we are left with a Majorana mass
term that looks like

mν = M1M2
−1µ(M2

T )−1M1
T (2.24)

This is called the Type I Inverse Seesaw mechanism. By setting MN ∼TeV, MD ∼GeV and
µ ∼keV, we can generate mν ∼meV without the need to add particles at experimentally
inaccessible energies. Of course, we have added a very particular spectrum of neutrinos for
which we have little justification.

Similar to the Type I Seesaw, this model introduces a set of Dirac masses, M1 and M2

which by themselves could explain neutrino oscillations; but then adds a parameter µ which
violates lepton number and generates Majorana masses. In the Type I Seesaw, we introduced
a very large Majorana mass which we justified by saying that it came from a scale much
larger than the EWSB scale. Here we introduce a set of Dirac masses which are around the
EWSB scale as expected, but then introduced a µ which was assumed to be small. Often
we can justify this by generating µ through a spontaneously broken symmetry.

This theory predicts 0νββ decay through the same Feynman diagrams as the Type I
Seesaw and would leave mββ unchanged. But since our spectrum of heavy neutrinos is now

different, Mββ would be different, as would our calculation of MHeavy
0ν .

Type II Seesaw

Another possible mechanism which leads to 0νββ decay is to introduce a Higgs SU(2) triplet
field. Following [58], we write this field as

∆ =

(
∆−/
√

2 ∆−−

∆0 ∆−/
√

2

)
(2.25)

This field couples directly to the SM fields through the term

L∆ = ihαβL̄
c
ατ2∆Lβ (2.26)

The neutrinos generate a Majorana mass directly by giving ∆0 a vacuum expectation value
(VEV), 〈∆0〉 = vL.

(mν)αβ = hαβvL (2.27)

The other components of this model will cause our newly introduced VEV, vL, to be sup-
pressed relative to the standard Higgs VEV, 〈φ0〉 = v, by some number of powers of v/m∆,
which we assume to be small. (The exact number of powers depends on the model.) And
thus we generate a small neutrino mass by making vL/v small. This is called the Type II
Seesaw.

With this addition, 0νββ decay can now proceed via the diagram in Fig. 2.8, which
is characterized by the vertex factors,

√
2g2vL and hee. In this limit, we can pull out the

particle physics factor of Eqn. 2.14:

f II0ν ∝
heevLmp

m2
∆

=
(mν)eemp

m2
∆

(2.28)
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Figure 2.8: Non-standard decay mechanisms for 0νββ. Top Left: A scalar triplet model with
a doubly charged field, ∆−−, this is the Type II Seesaw mechanism and requires no explicit
Majorana neutrino mass. This model is well constrained by present limits, except in the
case of left-right symmetric models in which case the W− are right-handed, and the decay
is suppressed by M4

W/M
4
WR

.Top Right: 0νββ decay with the emission of a light or massless
Majoron. This decay leads to a modification of the 2νββ decay spectrum rather than an
excess of events around the endpoint. Right: 0νββ via an R-parity violating supersymmetric
model (/RP MSSM), moderated by gluino exchange [57].

What makes this model interesting is that it achieves 0νββ decay without directly invoking
any neutrino in the decay. In this model, our limits on the 0νββ decay rate translate into
lower limits on effective mass m2

∆/(heevL). In its basic form, this model has been all but
ruled out by present experimental limits, but there is ongoing interest in L-R symmetric
models, in which we add a right-handed weak interaction. In this model, f0ν picks up an
extra suppression of M4

W/M
4
WR

[59].
It is common to think of 0νββ experiments as trying to measure the very small neutrino

masses, but they can also be reframed as tests of new physics at very large mass scales.
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0νββ With Majoron Emission

The last 0νββ mechanism we mention is the possibility of decay with emission of one or two
light or massless bosons, χ0, which couple to neutrinos and are called Majorons. This decay
channel is depicted in Fig. 2.8, and is given by

(Z,A)→ (Z + 2, A) + 2e− + χ0 (Single Majoron Emission) (2.29)

(Z,A)→ (Z + 2, A) + 2e− + 2χ0 (Double Majoron Emission) (2.30)

There are many Majoron models with various generating mechanisms. Some models intro-
duce χ0 as a Nambu-Goldstone boson for a spontaneously broken lepton symmetry [60, 61],
others conserve lepton number by assigning χ0 a leptonic charge and still other theories
introduce Majorons as supersymmetric partners to SM particles [62, 63].

From an experimental perspective, the Majoron itself will escape any detector unnoticed
and appear as missing energy — similar to the signal of 2νββ. Because of this, the experi-
mental signature of 0νββ +Majoron emission is no longer a narrow line at the endpoint of
the 2νββ spectrum but instead is a tiny modification to the 2νββ spectrum itself.

2.5 Experimental Sensitivity

The basic approach to a 0νββ experiment is to measure the decay spectrum of the candidate
isotope and search for an excess of events around the endpoint of the 2νββ spectrum (see
Fig. 2.3). We can think of this as a single-bin counting experiment where we count the
number of events that occur in a window of width ∆E around the Q-value. In general we
will also have some background above which we would hope to see our signal.

In the limit where backgrounds come from an external source and the statistics are
gaussian, we can write our 1σ half-life sensitivity as

T 0ν
1/2 = ln(2)

εaINAη

W

√
Mt

b∆E
(2.31)

where ε is the signal detection efficiency, aI is isotopic abundance, M is the total active
mass of the detector, t is the livetime, b is the background rate per unit energy, per unit
detector mass, W is the molar mass of the molecule under study, and η is the number
of nuclei of interest per molecule. The derivation of this equation and a full poissonian
treatment of the sensitivity can be found in [64]. But in essence, Eqn. 2.31 relates the
physical parameters of our experiment into a number of candidate nuclei, N = aINAη

W
M , and

then compares the number of signal events expected in a given time, S = ln(2)εNt/T 0ν
1/2, to

the number of background events expected, B = bMt∆E, and considers the half-life which
would correspond to a 1σ fluctuation in the background.

We will return to this equation later in this thesis, but the relation to keep in mind is

Sensitivity ∝ aI

√
Mt

b∆E
(2.32)
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This relation gives a rough guideline for building a 0νββ detector. We aim for a large mass
in order to study as many candidate nuclei as possible. We need a good energy resolution
and as low a background as possible in order not to drown out the signal. As we will see in
the next chapter, these aspects are the central focus of our experimental effort.

2.6 Present Experimental Searches for 0νββ

The discovery of 0νββ decay would have rippling implications for particle physics at both
low and high energy scales, would give new insight into the fundamental symmetries of the
Universe and could provide compelling evidence for the role of neutrinos in the production
of the baryon asymmetry of the Universe. Because of this potential for such fundamental
importance, many recent experimental efforts have focused on discovering 0νββ decay, but
at present 0νββ decay has not been convincingly observed. Current limits constrain the
half-lives in the isotopes studied to be longer than 1024–1025 yr.

There are currently several large experimental efforts to measure 0νββ decay in several
isotopes, as well as multiple R&D efforts for next-generation experiments. The present
best limits on mββ are shown in Fig. 2.9 and come from Gerda (studying 76Ge), Cuoricino
(studying 130Te), and EXO-200 and KamLAND-Zen (studying 136Xe) [65–68]. Together
these experiments form a powerful search approach, by covering multiple isotopes with a
variety of detector technologies possessing different strengths and systematics uncertainties.

The generation of experiments which are beginning to take data in the next year or two
aim to reach as far down asmββ ∼ 100 meV by 2020 timescale. And there is a rapidly growing
R&D effort for the next generation of detectors which aim to be sensitive to mββ ∼ 10 meV.
This milestone would either discover 0νββ or rule out the inverted hierarchy in the basic
light Majorana neutrino exchange model.

This effort is not only on the experimental side; there is also significant effort to improve
the estimates of the nuclear matrix elements, |M0ν |2. And, as mentioned earlier, there is
current significant theoretical interest in the literature in better understanding the quenching
of the axial coupling, gA. As seen in [69], this can significantly impact our calculation of mββ

from a half-life limit. Often this makes our limit worse than previously thought, but work is
still ongoing in this area.

Other experimental efforts can place other limits on mββ from a different (though model-
dependent) direction. A measurement of the neutrino mass scale would significantly reduce
the space of possible mββ. One possible approach to this is to measure the distortion at
the high energy end of a β-decay spectrum caused by the non-zero neutrino mass. This
technique is sensitive to the effective electron neutrino mass:

m2
νe ≡

∑
i

|Uei|2m2
i Electron Neutrino Mass (2.33)

A measurement of this quantity would help constrain the possible values of mββ — though
in a model-dependent way. Present limits place mνe < 2.05 eV (95% C.L.) [71]. Future
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Figure 2.9: Plot of allowed regions for effective Majorana mass, mββ vs the lightest neutrino
mass, mLightest. The plot includes limits placed before the inclusion of the data presented in
this thesis. The shaded horizontal regions are upper bounds for a range of nuclear matrix
elements. The combined 76Ge limit comes from Gerda + Heidelberg Moscow + IGEX data
[65]. The combined 136Xe data comes from EXO-200 + KamLAND-Zen [66, 67]. The 130Te
limit comes from Cuoricino [68]. The cosmology limit is a true exclusion (mlightest < 0.2 eV
at 95% C.L.) and comes from Planck 2015 [70].
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experiments like KATRIN and Project-8 will seek to improve this by an order of magnitude
or more [72, 73].

Other experimental efforts [74–76], seek to measure both the hierarchy and the CP vio-
lating phase, δ. A definitive measurement of the neutrino mass hierarchy would significantly
reduce the space of possible mββ values in Fig. 2.9.

Still another possibility is the recent advances in precision cosmology, which have been
able to place very impressive constraints on the sum of the neutrino masses,

mTot ≡
∑
i

mi (2.34)

Present limits on this quantity place mTot < 0.63 eV (95% C.L.) [70].
While these experiments all help constrain the possible values of mββ, none of them is

sensitive to the Majorana/Dirac nature of the neutrino. Conversely, a set of searches which
is sensitive to this and is often overlooked in the literature is accelerator-based approaches.
These are commonly overlooked because in the standard light Majorana neutrino exchange
mechanism they have very little sensitivity compared with 0νββ searches. However, some of
the more exotic models which predict 0νββ can be probed at high energy, and indeed many
models have been strongly constrained [77–79].
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Chapter 3

The CUORE and CUORE-0
Experiments

The Cryogenic Underground Observatory for Rare Events (CUORE) experiment is a ton
scale search for 0νββ decay of 130Te. It is currently under construction at the Laboratori
Nazionali del Gran Sasso (LNGS) in Italy and plans to begin taking data in 2015. The first
phase of the experiment, called CUORE-0, ran from March 2013 to February 2015 and forms
the basis for this dissertation.

The basic approach to any 0νββ search is to measure the decay spectrum of the isotope
of interest and look for an excess of events around the Q-Value. There are three qualities
that a 0νββ search must try to optimize. First, since the decay is so rare, an experiment
must observe a very large number of nuclei. Functionally, this means the detector must
have a large mass — the next generation of experiments aim to achieve masses in the one
to several ton range. Second, an experiment must have a very low background rate, since
too high a background rate can bury the 0νββ signal in statistical fluctuations. Finally, an
experiment needs to have very good energy resolution.

In CUORE we have chosen the candidate isotope 130Te because its high natural isotopic
abundance avoids the need for a costly and time-consuming isotopic enrichment. Its high
Q-value also places the region of interest (ROI) above the majority of the naturally occurring
environmental background lines, in a relatively quiet region of the energy spectrum.

As with all 0νββ experiments, CUORE must run underground to get away from the
bombardment of cosmic rays at the surface. CUORE will operate in Hall A of the LNGS
lab. This provides the detector with an overburden of 1400 m of rock (3600 meters of
water equivalent) which reduces the cosmic ray rate by 6 orders of magnitude relative to the
surface. The measured residual muon rate is roughly (3.2± 0.2)× 10−8 µ/cm2/s [80], which
corresponds to roughly one muon per hour in CUORE.

CUORE employs a bolometric energy detection method, and operates at a temperature
of ∼10 mK. This method yields an extremely good energy resolution, which results in a
narrower ROI and therefore fewer background events to contend with. But even in the limit
of no external background an experiment still needs a good energy resolution to separate
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Figure 3.1: Top: Map with the location of LNGS marked with an arrow. Bottom: Schematic
of the LNGS laboratory. The lab is built off of two tunnels that run underneath the highest
mountain in the Apenninian range, Gran Sasso.

the 0νββ signal from the tail of the 2νββ distribution. The payoff of the bolometric method
is made clear in Fig. 3.2, but the main drawback is the the technical difficulty of cooling a
large mass to such a low temperature. We will spend the rest of this chapter describing the
CUORE detector and the bolometric technique.

3.1 A Bolometric Detector

Bolometric detectors are based on the principle of converting the energy of a nuclear decay
into heat and thus a change in temperature of the detector. At its most basic level, a
bolometer is just an energy absorber and a thermometer. A deposition of energy in the
absorber causes an increase in its temperature, which is read out by a thermometer. The
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Figure 3.2: Hypothetical double beta decay spectra in the limit of no background, but finite
detector resolution and assuming a 0νββ branching ratio Γ0νββ/Γ2νββ = 10−6. Left: The
endpoint of the spectrum of a hypothetical 136Xe experiment with 5.9% energy resolution
(FWHM). Right: The endpoint of the spectrum for a CUORE style experiment with 5 keV
energy resolution (FWHM).

size of the change in temperature corresponds to the amount of energy deposited. The excess
heat slowly flows out into a heat bath through a weak thermal link allowing the temperature
to gradually return to where it started (see Fig. 3.3).

Since the amount of energy released by a single nuclear decay is extremely small, ∼ 0.16 pJ,
the change in temperature is correspondingly small. To make this signal measurable, we cool
our bolometers down to an operating temperature of ∼10 mK. This has two effects: first, at
lower temperature the random shot noise fluctuations are much smaller than the size of our
signal. Second, the size of the change in temperature, which is given by ∆T = E/C(T ), can
be made much larger at lower temperature where the heat capacity, C(T ), is significantly
smaller.

The heat capacity of the CUORE crystal roughly follows the Debye law [81],

C(T ) ∝ kB

(
T

ΘD

)3

(3.1)

with a ΘD ≈ 232 K [82]. At the operating temperature of 10 mK, our heat capacity
corresponds to a ∆T ∼ 100 µK for a 1 MeV energy deposit.

In thermal equilibrium (when T = T0 in Fig 3.3), the uncertainty on the temperature
is dominated by thermal fluctuations across the weak thermal link, R. This places a limit
on the precision with which we can measure our energy resolution. This can be calculated
directly from statistical mechanics to be 〈∆E2〉 ∼ kBT

2C(T ). So the thermodynamic limit
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Figure 3.3: Left : An idealized bolometer with heat capacity C, at temperature T , connected
through a weak thermal link R to a heatbath at temperature T0. Right: An idealized
bolometric response to a sudden deposition of energy, E. The temperature slowly falls back
to T0 as the energy escapes through the weak thermal link with time constant RC.

on our energy resolution should go as√
〈∆E2〉 ∝ kBT

(
T

ΘD

)3/2

(3.2)

This strong dependence of resolution on temperature demonstrates why we are so interested
in cooling our detectors to such low temperatures.

The power of the bolometric method is really based on the fact that the phonon excitation
energy, εph, is very small and thus the number of phonons excited by a nuclear decay is ex-
tremely large. For typical CUORE numbers, we have εph ≈ 1 µeV, and C ≈ 1 MeV/100 µK.
This gives us a thermodynamic limit on our energy resolution of ∆E ∼ 10 eV. However, in
practice, our bolometers have other sources of noise, both internal [83] and external, which
limit our energy resolution. We typically achieve resolutions on the order of ∆E ∼ 5 keV
full-width at half-max (FWHM) at 2.5 MeV. This is several orders of magnitude above the
thermodynamic limit, but still competitive with the best detector technologies at this energy.

CUORE Energy Absorber

In CUORE the energy absorber is a TeO2 crystal, which also acts as the source of decays of
interest. By building our detector out of our source we gain two advantages: first, we can
reduce the amount of unnecessary material near our detector, thus reducing our potential
backgrounds; and second we have a very high detection efficiency since the decays in which
we are interested occur already inside our detector. This configuration is referred to as
“source = detector” and is common among 0νββ experiments.

TeO2 is a convenient material for building a large-scale detector for several reasons.
Its thermal contraction properties are similar to those of the copper that composes the
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frame that provides structural support to the detector (TeO2 contraction between room
temperature and operating temperature is ∆l/l ≈ 0.27% while copper is ∆l/l ≈ 0.33% [84]).
The crystals are robust to thermal cycling with a low failure rate. The TeO2 crystal has
a high Debye temperature, and therefore a small heat capacity at low temperature. And,
most importantly, unlike pure Te, TeO2 is far more pleasant to work with and will not make
a handler’s breath smell like rotten garlic.

The crystals in CUORE are 5×5×5 cm3 and weigh an average of 750 g. They are made
with natTe and so each crystal contains ∼208 g of 130Te. The crystals are grown by The
Shanghai Institute Of Ceramics, Chinese Academy of Sciences (SICCAS) [85], following a
strict growing and handling protocol that is described later in this chapter.

Bolometer Instrumentation

We instrument each crystal absorber with a Neutron Transmutation Doped (NTD) germa-
nium sensor. Ordinarily, germanium is a semiconductor whose conductivity goes to zero at
0 K. The process of neutron transmutation doping exposes pure germanium to a neutron
flux. The neutrons capturing on Ge produce Ga, As and Se, doping the semi-conductor ma-
terial to just below the transition to a metal. Beyond this transition, the material behaves
like a metal whose conductivity becomes infinite at 0 K; but just below this transition, the
conductivity drops to zero very sharply as the temperature approaches zero.

At a microscopic level, the doping creates a dispersion of “conduction centers” — the
Ga, As and Se atoms — randomly spread throughout the bulk of the non-conducting ger-
manium. At relatively high temperatures, the energy of the electrons is high enough that
their wavefunction may overlap multiple conduction centers and conduction is mediated by
moving between neighboring conduction centers. In this regime, the doped germanium has
fairly high conductivity.

As the temperature drops, the wavefunctions of the conduction electrons become more lo-
calized. As their energies approach the Fermi energy, the conducting electrons enter a regime
called “variable length hopping”. Here, the electron wavefunction becomes localized enough
to only occupy a single conduction center at a time. In this regime, electrical conduction is
mediated by absorbing or emitting phonons to jump from one conduction center to another
at a different potential energy. This is not unlike the way an electron absorbs or emits a
photon to jump between energy levels in an atom, except here the levels are also separated
spatially throughout the material. In this way a conduction electron “hops” from one site
to another through the material. In this regime, the resistivity follows a steep exponential
temperature dependence [86, 87],

ρ(T ) = ρ0e
√
T0/T (3.3)

This relation is parameterized by ρ0 and T0, which are determined by the doping level.
Typically, we determine these numbers empirically and for CUORE they are ρ0 ∼ 0.1 Ω·cm
and T0 ∼ 4 K.



36

)-1/2 (KT1/
2 2.5 3 3.5 4 4.5

)
Ω

R
es

is
ta

nc
e 

(

210

310

410

Temperature (mK)
50100150200250

Figure 3.4: Resistance Curve for a CUORE-style NTD with ρ0 ≈ 0.22 Ω·cm and T0 = 4.1 K.
(From CUORE batch NTD-40A.) The fit is performed over the temperature range 70-
250 mK. Below 60 mK the R-T curve displays a divergence from the behavior in Eqn. 3.3
which is common for NTD thermistors.

Figure 3.5: Left: Sketch of a CUORE style wrap-around NTD, the dimensions are
L = 3.0 mm, W = 2.9 mm, H = 0.9 mm, P = 0.2 mm. Right: A CUORE style NTD.
Images taken from [88].

The steep dependence of resistivity on temperature in Eqn. 3.3 makes this material into
a very sensitive thermometer. To give a sense of the numbers, a 1 MeV decay in a CUORE
crystal at 10 mK results in a 1% increase in temperature which causes a ∼5–10% decrease in
resistivity. By continually measuring the resistance of an NTD chip, we can very sensitively
detect sudden changes in the temperature of the absorber.

To produce the NTD sensors for CUORE, we took large wafers of ultra-pure germanium
and irradiated them at the MIT Nuclear Reactor Laboratory. Because the neutron capture
cross section is low, the neutrons are able to penetrate the bulk of the Ge wafers and provide a
uniform flux to the full volume. This produces a very homogeneous and reproducible doping
across the entire wafer [89]. After the short-lived isotopes had decayed away — typically a



37

waiting period of ∼6 months — we diced the wafers into 3×3×1 mm3 chips and gold plated
electrodes onto the sides. The electrodes wrap slightly around to the top of the NTD for
vertical bonding (see Fig. 3.5). This wrap-around style allows the NTDs to be bonded in-situ
after being attached to the bolometer. The typical resistance of these NTDs at ∼10 mK is
∼100 MΩ.

We also instrument each crystal absorber with a Joule heater. This is a simple high-
purity Si semiconductor chip with a typical resistance of 300 kΩ. By pulsing these with a
fixed voltage we can impart a known amount of energy into our bolometers and monitor the
gain. We return to this in Chapter 4.

A CUORE Tower

Once the crystals have been instrumented, we assemble them into a tower of 52 crystals in a
2× 2× 13 configuration. The frame of the tower is made from an Electrolytic Tough Pitch
(ETP1) copper called “NOSV” copper that was specially chosen for its low hydrogen content,
low bulk radioactivity and high thermal conductivity. The copper frame also serves as the
heat sink for the bolometers. The crystals are held in the frames with Polytetrafluoroethylene
(PTFE) spacers, which provide a weak thermal link to the heat bath.

The electronic readout is carried by flexible polyethylene naphthalate PCB strips with
high-density copper wire traces, (referred to as PENCu cables). These strips are attached
to two sides of each of the towers and have leaves that fan out on every floor with pads for
wire bonding the NTDs and Joule heater. Each PENCu cable instruments 3-4 floors and a
total of 9 cables are needed for each tower. The PENCu cables continue past the top of the
tower and are plugged in to the NbTi cryostat ribbon cables which carry the signals the rest
of the way to the room temperature electronics on top of the cryostat.

The full CUORE detector will consist of 19 of these towers tightly packed into an array
(see Fig. 3.7). In total, CUORE will have 988 independent bolometers for a total active
mass of 741 kg or 206 kg of 130Te.

Electronic Readout

The CUORE electronics chain (shown in Fig. 3.8) provides both the current bias for the
NTDs and the readout for the bolometer signals. The entire chain sits at room temperature
and consists of the front-end boards which power the NTDs and act as a first-stage amplifier,
the Bessel boards which act as an anti-aliasing filter, and DAQ boards which digitize the
signal.

The front-end boards were specially designed for CUORE [90, 91] and serve two purposes.
First, they are an extremely stable DC current source that provides low-noise DC bias to
the NTDs. The typical value of the current supplied is in the range of IBias ∼100 pA,
which limits the Joule heating across the sensors to the range of 1 pW. The front-end board
also performs the readout of the voltage across the NTD, VNTD(T ) = IBiasRNTD(T ), and
passes the voltage signal through a two-stage amplifier to increase the voltage signal from
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Figure 3.6: Left: Underside of an NTD with glue spot matrix before the crystal is lowered on
top of it. Middle: Example of two CUORE bolometers with NTD (near) and Joule heater
(far) attached. These crystals are sitting in the gluing glove box after having been glued.
Right: CUORE tower assembly in progress. The crystals are arranged in a 2 × 2 floor and
stacked 13 floors tall. The frame is NOSV copper and the crystals are held off with PTFE
spacers.

∼ 100 µV/MeV to ∼1 V/MeV. It also inverts the polarity of the signal so that a positive
voltage change corresponds to higher temperature.

After the amplifiers, the voltage signal passes through a 6 pole anti-aliasing Bessel filter
whose rolloff frequency can be set between 20 and 120 Hz, above the signal band, which
peaks around 1-3 Hz. The Bessel filter also adds a constant offset voltage to bring the signal
voltage into range for the National Instruments NI-PXI-6284 high precision ADC boards.
The DAQ boards digitize the signal in the range -10.5 V to 10.5 V with 18-bit precision.
This yields a voltage precision of 0.08 mV, which is well within the requirement for CUORE.
The digitizers sample the signal at 125–1000 Hz and all channels are read in parallel by the
Apollo software.

3.2 Predecessor To CUORE: Cuoricino

CUORE builds on the experience of Cuoricino, which ran in Hall A of LNGS from 2003-2008.
Cuoricino was a single tower with a similar design to the CUORE style tower, but with a
slightly larger active mass of 40.7 kg. Cuoricino employed a mix of natural abundance TeO2
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Figure 3.7: Drawing of the CUORE detector. The detector is composed of 19 identical
towers, for a total of 988 independent bolometers.

Figure 3.8: Schematic of the bolometer bias and readout circuit. Typical values for CUORE
are RL ∼ 60 GΩ, RNTD ∼ 100 MΩ & VBias ∼ 1 V.
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Figure 3.9: Schematic of the CUORE bolometer electronics chain. From [88].

and enriched TeO2 crystals for a total 130Te mass of ∼11 kg. It was operated as a single tower
(see Fig. 3.10) in a setup essentially identical to CUORE-0, which is described in section 3.5.

Over the 5 year run time it collected 19.75 kg·yr of 130Te exposure and, until the re-
sults presented here, it held the best experimental limit on the 0νββ half-life of 130Te at
T 0νββ

1/2 > 2.8 × 1024 yr (90% C.L.) [68]. The 0νββ ROI and full spectrum are shown in
Fig. 3.10. Moving forward towards CUORE, there are three design aspects of Cuoricino
that we worked to improve upon: the background in the ROI, the energy resolution, and the
detector live time.

The main source of down time for Cuoricino— and many cryogenic experiments — comes
from maintenance to the cryostat that houses and cools it. In the case of Cuoricino, data
collection had to be stopped for ∼3–4 hours every 48 hours to refill the liquid helium bath
which provides the first stage of cooling for the detector. In CUORE we would like to
eliminate this down time by building a new cryogen-free cryostat that is large enough to
house the CUORE detector (described in section 3.4).

The Cuoricino tower held a mix of sizes of crystals including smaller 3×3×6 cm3 crystals.
But among the CUORE-sized, 5× 5× 5 cm3 crystals, it achieved a mean energy resolution
at 2615 keV of 6.3 keV. Moving toward CUORE, we sought to improve the energy resolution
to 5 keV at 2615 keV. Our approach was a combination of improving the reliability of the
thermistor gluing and the robustness of the electrical wiring (described in section 3.3), as
well as gaining a better understanding of the noise and detector line shape (described in
chapter 5 and section 6.3).

Cuoricino achieved a background in the ROI of 0.169± 0.006 cnts/keV/kg/yr, of which
0.110±0.001 cnts/keV/kg/yr came form degraded α decays [92, 93]. These are α decays that
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Figure 3.10: Left: The Cuoricino tower is similar in design to the CUORE-style tower. It
was operated from 2003–2008 in Hall A of LNGS and set the world’s best limit on the 0νββ
half-life of 130Te. Right: The final Cuoricino spectrum in the ROI with the 0νββ decay fits.
Bottom: The full Cuoricino background spectrum with the calibration spectrum overlaid in
red. The calibration spectrum has been normalized to the background 2615 keV rate. The
ROI at 2525 has significant background contribution from degraded α decays.

occur on or near the surface of a material and deposit a random fraction of their energy into a
passive material and the rest of their total energy into an active material. These decays form
the long tails in Fig. 3.10 that reach from E > 3 MeV down through the ROI at 2.5 MeV.
Because of the very short range of α particles, these decays necessarily come from contam-
ination on or near the detectors themselves. The remaining 0.059 ± 0.006 cnts/keV/kg/yr
come from γ-rays which originate in the cryostat materials and Compton scatter in a passive
material before being absorbed by one of the crystals. In CUORE, we sought to reduce
the total background in the ROI by a factor of ∼17 to 0.01 cnts/keV/kg/yr by developing
rigorous surface treatment and material selection and handling procedures, described in the
next section.
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Figure 3.11: Full energy spectrum from 3 crystals in CCVR8. The CCVR runs are per-
formed in the Hall C R&D cryostat, which has a higher γ-ray rate than the Hall A cryostat.
Compared to Fig. 3.10, the 210Po peak at 5.4 MeV is much narrower because in the CCVR
runs it is a bulk contamination from the crystal growth process. 210Po has a half-life of
138 days, so this contamination is expected to be significantly reduced by the time CUORE
starts taking data.

3.3 CUORE Construction and Assembly Line

In moving from Cuoricino to CUORE, we focused much effort on reducing the backgrounds
in the ROI. This was accomplished through a combination of careful material selection to
keep contaminants out of the detector material bulk, surface cleaning to eliminate surface
contamination and parts handling to prevent recontamination after cleaning.

Crystal Growth And Validation

We worked closely with the crystal manufacturer, SICCAS, to develop a strict set of crystal
growth and polishing protocols to keep the bulk and surface contamination to a minimum.
These protocols stretched all the way from ensuring the radiopurity of the metallic Te, to
the growth and shaping process, to the final polishing and shipping protocols.

We grow the raw crystals to roughly 5× 5× 15 cm3, before cutting out and polishing the
middle third. The crystallization process pushes most impurities out the edges where they
are chopped off and discarded. Once produced, the crystals were triple bagged in cleaned
plastic vacuum packaging. In fact, after they are produced, the crystals are kept under
vacuum or nitrogen flux throughout the entire CUORE assembly, and will only briefly come
into contact with air when they are finally mounted in the cryostat.
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The crystals were shipped from Shanghai, China to LNGS, Italy by boat. We kept the
crystals at sea level to avoid the cosmogenic activation incurred by air travel [94]. Upon
arrival in LNGS, we randomly chose four crystals from each shipment to be tested cryogeni-
cally for quality assurance. These tests were called the CUORE Crystal Validation Runs
(CCVR). The spectrum for CCVR-8 is shown in Fig. 3.11. The bulk contamination limits
for the crystals were < 3 × 10−13 g/g for both 238U and 232Th. During the CCVR runs we
placed 90% upper limits on this contamination that were often almost an order of magnitude
better than the requirement [95].

During the CCVR runs, we typically did see one significant contaminant in the bulk of
the crystals, 210Po. Polonium and tellurium are chemically very similar, which makes Po
difficult to separate from the Te powder. However, 210Po decays via a 5.4 MeV α with a
half-life of 138 days. So by the time that CUORE begins data taking, the background from
this isotope will have decayed significantly.

Parts Cleaning

The CUORE towers and all the copper structures near the CUORE detector were built out of
specifically chosen NOSV copper produced by Norddeutche Affinerie. The NOSV copper was
designed to have very high thermal conductivity at low temperatures, low hydrogen content
and also happened to have very low radioactivity. Moving from Cuoricino to CUORE, we
redesigned the frame of the tower to reduce the copper needed by a factor of ∼2.5, reducing
the background from the bulk of the copper by a similar amount. We also benefit from the
smaller surface to volume ratio for the copper radiation shielding reducing the background
from surface contamination.

Except for the .4 months required to machine and clean it, the copper spent all of its
time underground. This was to minimize cosmogenic activation and specifically minimize
the production of 60Co.

Though the bulk contamination of the copper was well within the acceptable limits for
CUORE, the handling and machining of the copper introduced contaminants on the surface
layer. To address this, we developed a rigorous cleaning procedure that was a combination
of tumbling, electropolishing, chemical etching and magnetron plasma etching (TECM). We
verified the efficacy of this process using a dedicated experiment setup called the Three
Towers Test (TTT) [96]. After cleaning, the copper parts are stored in plastic bags that
have been cleaned and flushed with nitrogen. They are transported underground and stored
under nitrogen flux to prevent recontamination from radon.

All other parts that make up the tower — PTFE spacers, copper screws, NTDs, heaters,
etc — as well as all tools used to build the tower, also undergo aggressive cleaning and are
stored under nitrogen flux.
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Tower Assembly Line

The entire detector construction took place in a class 1000 clean room in the CUORE hut
in Hall A. We designed a tower assembly line to build the towers consisting of three steps:
crystal gluing, tower assembly, and tower wiring (see figures 3.6 and 3.12). Each step of the
process was performed in a specially designed glove box that kept the detector parts under
constant nitrogen flux and out of contact with any of the rest of the environment of the clean
room.

We instrument each crystal with one NTD and one Si Joule heater, which are attached
using Araldite two component epoxy. We chose this particular epoxy because of its resilience
to thermal cycling, rapid curing and its low radioactivity. We glue the NTD with a 3 × 3
matrix of glue spots. While the epoxy was curing, we maintained a distance between the
NTD and the crystal of ∼ 50 µm. This gap set after the epoxy dried. This standoff from
the crystal and dot matrix absorb the stresses caused by the differential contractions of the
crystal, NTD and epoxy during the cooldown. We found that a solid film of epoxy would
often lead to too much differential stresses and could result in the NTD popping off or
cracking the crystal. The Joule heater was attached in a similar manner, but with a 5-dot
matrix, since it was slightly smaller.

To keep this process as uniform and reproducible as possible, we designed a robotic
gluing system to move and align the crystals and hold them steady while the epoxy dried.
The gluing platform was designed to hold the gap between the bottom of the NTD and the
surface of the crystal using vacuum suction. This system ensured the tight constraints and
reproducibility required for attaching NTDs to over 1000 CUORE crystals.

We assemble each tower on a specially designed Universal Working Plane (UWP), which
can have one of several different glove boxes mounted for each stage of the tower assembly.
When the tower is not being worked on, it is lowered into a garage below the UWP and
fluxed with nitrogen for storage.

The actual tower assembly was done by hand inside the glove boxes, under constant
nitrogen flux. The glove boxes had gloves attached that could be reached into the space to
assemble the tower without exposing the detector or any parts to the air of the clean room.

Once the tower has been assembled and the PENCu wire strips have been attached, we
mount the wire bonding glove box on the UWP for wiring. The tower is wire bonded in situ
with a vertically mounted wire bonder. Each NTD and Joule heater was wire bonded to the
PENCu cable pads by 25 µm gold wire, with two wires running from each electrode to the
pads for redundancy.

After wire bonding, we loaded each tower into an acrylic storage container and placed
it in the corner of the clean room under nitrogen flux for storage. All told, the CUORE
detector construction took about 18 months to complete.
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Figure 3.12: The CUORE assembly line. Left: The gluing robot attaches the NTDs and
Joule heaters to the crystals under constant N2 flux. Middle: All construction takes place in
specially designed glove boxes under N2 flux. The tower is stored in a garage immediately
below the construction plane. Right: Wire bonding is done in situ with a specially mounted
wire bonder.

3.4 The CUORE Cryostat

The cryostat being built to hold and cool the CUORE detector will be one of the largest and
most powerful dilution refrigerators in the world (see Fig. 3.13). Unlike the cryostat that
housed Cuoricino, the CUORE refrigerator will be cryogen-free — meaning that the first
stage of cooling is provided by pulse tube refrigerators. This provides continuous cooling
without the need to stop data-taking to refill Helium baths like in a cryogen refrigerator.

The stages of the cryostat as well as all thermal shields are made out of NOSV copper
to minimize γ backgrounds from the cryostat itself. The towers will be surrounded by an
internal and an external lead shield. A 6-cm-thick internal lateral lead shield that surrounds
the towers is made from lead recovered from a sunken Roman galleon that had been sitting
on the sea floor for ∼2000 years. This gave any radioactive isotopes of lead in the bulk many
half-lives to decay away. The residual radioactivity of this Roman lead is < 0.004 Bq/kg
[97]. Above the detector, between it and the rest of the cryostat will be a 24 cm plate of
modern low background lead (16± 4 Bq/kg) as well as 6 cm of clean NOSV copper to shield
the towers from γs from above. All of this internal shielding will be cooled to < 4 K. When
in operation, an external modern lead (150±20 Bq/kg) shield will be raised up around the
cryostat. In this configuration the detector will have at least 30 cm of lead shielding in
every direction. All told, the cryostat will cool 1.5 tonnes of material down to an operating
temperature of 10 mK; and it will have a total mass of ∼10 tonnes below 1 K.

The construction of the cryostat is underway and in the first test runs it reached a base
temperature of 5.9 mK with no load. Because of its large volume and very low temperature
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Figure 3.13: Schematic of the CUORE cryostat. The vertical scale is ∼4 m.

it was actually the Coldest Cubic Meter in the Known Universe (see Appendix D or [98]).

3.5 The CUORE-0 Experiment

The first tower built on the CUORE assembly line was called CUORE-0 (see Fig. 3.14). This
tower was constructed using the same procedures and materials as was used for the other
19. In fact, the only thing that made this tower distinct was that it was operated separately
as a single-tower experiment. It was originally conceived as a full-scale commissioning of the
CUORE assembly line and verification of the CUORE background reduction techniques, but
is also a competitive 0νββ search in its own right.
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The detector was first assembled in late 2011 and had to be reassembled several times to
debug problems with the copper parts and the assembly line. After several failed attempts,
we corrected these problems and fully assembled the CUORE-0 detector in early 2012. All
told, it took roughly 6 months to assemble CUORE-0, but building off of this experience we
built all 19 towers for CUORE in about 18 months. So CUORE-0 was extremely useful as
a debugging of the assembly procedure.

The CUORE-0 detector has 39 kg of active mass, or about 10.8 kg of 130Te. Unlike
the CUORE towers, the CUORE-0 tower is surrounded by its own lateral copper shield
(pictured in Fig. 3.14) and is operated in the same cryostat that housed Cuoricino. The
tower is shielded by an inner layer of lead 1.2 cm thick on the sides with a 7.5 cm thick
plate above the tower and a 10 cm thick plate below the tower. Both plates are 15 cm
in diameter. All internal lead is low-background Roman lead (< 4 mBq/kg). The tower
is further shielded by an external 10 cm layer of modern low background (16 ± 4 Bq/kg)
inside a 10 cm layer of modern lead (150± 20 Bq/kg). This entire setup is surrounded by a
10 cm-thick layer of borated polyethylene serving as a neutron shield and a Faraday cage to
shield from electromagnetic noise. The space between the external lead and the cryostat is
lined with acoustic dampers to prevent acoustic pick-up. To prevent radon buildup in this
space we continually flush it with nitrogen during data taking.

We transported the CUORE-0 detector from the CUORE hut to the Cuoricino hut and
stored it in the old Cuoricino cleanroom while preparing the crysotat. While in storage, the
detector was under constant nitrogen flux. We installed the detector in late 2012 and began
taking data in March 2013.

The electronic readout for CUORE-0 is the same as used in Cuoricino. This is similar
to the CUORE electronics, but at a much smaller scale. The only significant differences are
that the rolloff frequency of the Bessel boards was set to 12 Hz and the sampling rate of the
DAQ was set at 125 Hz.
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Figure 3.14: Left: The CUORE-0 tower raised above the storage garage inside the construc-
tion glove box. Middle: The CUORE-0 tower enclosed inside its lateral shields and inside
the acrylic transport/storage container. Right: A schematic of the Cuoricino cryostat that
houses the CUORE-0 detector.
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Chapter 4

CUORE-0 Data Collection and
Processing

4.1 CUORE-0 Detector Setup and Data Taking

Setting the Detector Operating Condition

The first step to operating the CUORE-0 detector is to optimize the detector’s working
conditions. Most obviously, this entails physically aligning (or verticalizing) the detector so
that neither it, nor any of the wires connecting it to the outside are vibrating against the
surrounding shield. This is done by adjusting the air pressure of the vibration dampeners
and is basically a process of guess and check where we adjust the detector position and check
the noise level.

The next step is settings the detector ‘working point’. This entails setting the NTD
bias, gain and offset for each bolometer. The aim here is to set the bias to maximize the
sensitivity of the detector, adjust the gain so as to have a reasonable signal while maintaining
a large enough dynamic range, and finally adjust the offset so that the signal lies within an
acceptable range with respect to the ADC voltage window.

The bolometer itself acts like a closed loop amplifier whose gain depends on the nominal
bias. At small biases, the circuit is linear and the NTD voltage is directly proportional to the
bias. However, at large biases, electrothermal feedback kicks in and joule heating of the NTD
increasingly warms the NTD — thereby decreasing its resistance — and the NTD voltage
falls with increasing bias. At some point between these two extremes, the pulse amplitude
is maximized and this is where we want to operate our bolometers.

The gain as a function of bias is mapped by scanning the available frontend biases and
measuring the gain using the pulser heater and building this into a Load Curve. Figure 4.1
shows the resulting curve for a CUORE-0 channel.

An alternative approach is not to maximize the pulse amplitude, but rather to maximize
the signal to noise ratio (SNR) ratio. This requires measuring not only the pulse height vs
input bias but also the average noise power spectrum at each input bias. From this, we build
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an Optimum Filter spectrum (see section 4.2), and calculate the SNR for each input bias
and choose the maximum. In theory, this process produces a better working point and so
was used as the preferred approach. However, it was much more time consuming because it
has to integrate an average noise power spectrum. Since the noise was often variable, the
resulting SNR vs bias curve was not always smooth enough to find a robust maximum. In
these cases the working point was set where the pulse amplitude was maximized.

Once the NTD bias is set, we select a gain such that a 2615 keV pulse has an amplitude
of ∼1–2 V. Finally, we set an offset voltage, V offset, so that the baseline voltage lies around
−4 to −7 V. This gives the electronics enough dynamic range to fully capture pulses up to a
few 10s of MeV without saturating the DAQ, but also enough room for the baseline to drift
downward without saturating low.
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Figure 4.1: Pulser amplitude dependence on NTD bias current for Channel 28 taken before
dataset 2079. The working bias is chosen to maximize the pulse amplitude.

Apollo Software

The CUORE-0 data was collected using the Apollo software package, which custom de-
signed by the CUORE collaboration for data collection. Apollo handles everything from
electronics setup and monitoring, to reading data from the digitizer and event triggering.

During each run, the software reads the continuous data stream from the DAQ and
writes to a continuous data file which stores all of the waveform data. It also triggers on the



51

waveforms and writes the triggered events to QRaw files using a separate running instance of
the Diana software (described later in this chapter).

A CUORE-0 Event

When triggered, Apollo stores a waveform spanning from one second before to four seconds
after the trigger to the triggered data file. The one second before the pulse is referred to
as the “pretrigger”. We will analyze the pretrigger data to understand the behavior of the
bolometer before the event occurred. In total, the triggered waveform has 626 ADC samples,
collected at 125 Hz. The waveform is stored in the triggered data file with other important
event data such as the channel, trigger time, event number and trigger type. Apollo triggers
and stores three types of events: signal events, heater events and noise events. Examples are
shown in Fig. 4.2.
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Figure 4.2: Left: A CUORE-0 signal event of energy ∼2615 keV (Run 201011, Event Number
4961) with a larger heater pulse of energy ∼3370 keV (Run: 201011, Event Number: 3813).
The baselines have been subtracted. The triangular markers indicate where the triggers
occurred. The one second of data before the trigger is used to characterize the behavior
of the bolometer before the event. The pulser events typically display a faster decay time
compared to the signal events. Right: A typical noise event (Run 200990, Event Number
815).

Signal Events

The Apollo software monitors the data streams and triggers a signal event collection when
the derivative of the signal exceeds a preset threshold. The thresholds were set for each
channel as low as possible without making the trigger rate unacceptably high. The thresholds
ranged from ∼20 keV on the best performing channels to ∼40 keV on the noisiest but could
vary over the course of data taking. Better thresholds and signal efficiency were achieved
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with the new Optimum Trigger which was not used in this analysis but is currently being
implemented for CUORE [99].

When a signal event is triggered, Apollo writes it to the data file along with a set of
‘side pulses’. In CUORE-0 these side pulses were defined as the geometric nearest neighbors,
so in addition to the waveform that was actually triggered, the waveforms from the crystals
immediately surrounding the triggered crystal are also stored. These waveforms are stored
as part of the primary event and are assigned the same event number. We use these side
pulses later in the Coincidence and Decorrelation analyses.

After a signal trigger, Apollo places a 1 second dead window where it will not trigger
any other signal event on that channel within 1 s of the previous signal trigger. However, a
larger dead window will be placed later in the analysis.

Pulser Heater Events

To stabilize the gain of the bolometers against temperatures drifts, we map the gain depen-
dence using a pulser heater which fires every 300 seconds.

The heaters are pulsed with a 100 µs voltage pulse, which causes Joule heating in the chip
and heats the crystal suddenly — similar to a particle event. The voltage is set so that the
heater pulses reconstruct slightly higher than 2615 keV — the highest energy background
γ-ray — typically around 3.2–3.5 MeV. Starting with dataset 2067, we dedicated 10% of the
heater pulses to a lower energy pulse, ∼1.6 MeV, and 10% to a higher energy pulse, ∼7 MeV.
We used these pulses to help understand the linearity of the detector response.

Because the heaters are wired in four parallel groups, an entire column of the tower fires
their heaters together in unison. The four column pulsers are delayed by 10 seconds with
respect to each other, so channels 1–13 fire together first, 10 seconds later 14–26 fire, etc.

Of the 51 crystals with working NTDs, 49 also had functioning heaters; channel 10 lost its
heater during tower construction and 1 lost its heater sometime during the initial cool down.
For these channels other stabilization techniques were developed, as described in section 4.2.

Apollo triggers on heater pulses automatically and places a 100 ms dead window around
the event, so any trigger that occurs within the 100 ms following a pulser trigger is recorded
as a secondary trigger within the pulser event but does not generate its own event and event
number. Functionally, this means that every pulser trigger is stored as its own event and
the derivative trigger that fires because of the pulser is stored as a secondary trigger in the
pulser event. We take advantage of this fact later to measure the efficiency of the derivative
trigger.

Noise Events

In order to understand the noise behavior of the detector, Apollo also collects ‘random’
triggers. These triggers are only random in the sense that the data that they capture is
intended to be random noise, but in fact the triggers are fired at evenly spaced intervals
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of 200 seconds. The noise data is collected from all channels in unison so correlated noise
information can be derived as well.

We can understand our “baseline resolution” — which is defined as the energy resolution
at 0 keV — by measuring the energy resolution of these noise events. Since the triggers are
random, we should be measuring no signal, so the baseline resolution determines how well
we can measure 0 keV.

Runs, Datasets, Working Points and Phases

The CUORE-0 data is collected in runs, which are grouped into datasets, which are then
grouped into working point sets for processing. The datasets are also grouped into data
taking phases, which are used in the analysis to partition that data into smaller pieces. We
also defined two data taking ‘campaigns’, which correspond to data taken before and after a
major maintenance to the cryostat, which resulted in a significant improvement in the noise
performance (see Table A.1).

The majority of the CUORE-0 run time was dedicated to physics runs, which are either
“Calibration” runs used to calibrate the detector or “Background” runs in which we perform
the 0νββ search. The other types of runs are typically short diagnostic runs used either to
set up the detector or measure its performance. Each calibration or background run typically
lasts 1–2 days. Data taking must be stopped every ∼48 hours for ∼3 hours, in order to refill
the cryostat’s helium bath.

A single dataset is comprised of a set of initial calibration runs, a set of background runs,
and a set of closing calibration runs. Datasets that are collected in immediate succession
usually share a set of calibration runs. During some datasets, the background data taking
was interrupted due to some unforeseen circumstance, forcing an early closing of the dataset
without any final calibration runs.

A group of datasets that are similar enough in detector behavior are grouped into a single
collection that is characterized by the detector’s working point. Specifically, in Section 4.2
we will discuss a stabilization algorithm that relies on sets of calibration runs which span
several datasets and map a constant (in time) gain dependence on temperature. The number
of datasets that make up a working point varies depending on how long the behavior of the
detector remained stable; the shortest working point is a single dataset, and the longest is
seven datasets.

The datasets are also grouped into data taking “phases”. These phases are somewhat
arbitrarily defined and were originally tagged in order to correspond with conference presen-
tations. Unfortunately, the boundaries of the working points don’t always line up with the
boundaries of the data taking phases.

Background

The majority of the CUORE-0 run time was devoted to background runs, which comprise
the 0νββ decay search. During background data taking the CUORE-0 hut is generally kept
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empty to avoid environmental noise. The Faraday cage is kept closed and is flushed with
boil-off N2 to displace any radon gas in the room. During occasions when the cage was not
flushed with N2, we saw a small but significant increase in the rate of 214Bi γ lines.

The background data taking usually lasted about 3–4 weeks, but could be terminated
early if working conditions began to change (e.g. accidental warm-ups, equipment malfunc-
tion or fire1).

Calibration

The detector is calibrated using source wires inserted on opposite sides of the detector. These
are thoriated tungsten wires that have a total activity of ∼50 Bq. The strings are inserted
into tubes that run into the outer vacuum chamber (OVC), inside the outer lead shield but
outside the inner lead shield.

The calibration is done using the γ lines from the decay chain of 232Th. Because of the low
counting rate, we require at least ∼ 60 hours of calibration data to collect enough statistics,
so most datasets are flanked by three to four calibration runs on either side. Several datasets
had significantly more opening or closing calibration runs to characterize the behavior of the
detector.

During this time, the conditions in the CUORE-0 hut are kept similar to that of the
background data collection.

Working Point Measurements

We performed test runs between every physics run to monitor the detector working condi-
tion. These runs usually take about 5-10 minutes and characterize the working point of the
bolometers. This measurement involves decreasing the pre-amp gain, zeroing the voltage
offset, and alternating the polarity of the voltage measurement to determine the NTD resis-
tance. The result of this measurement is the NTD resistance, which is used later as part of
the stabilization without heater algorithm (see section 4.2.)

CUORE-0 Data Taking Summary

The CUORE-0 0νββ data collection began in March 2013 and finished in February 2015,
amassing a total of 35.21 kg·yr of exposure. The data collection was performed in four data
taking Phases. The first ran from March – August 2013 and was stopped to warm up the
detector for a two-month long maintenance.

The second data taking Phase began in November 2013 and saw an immediate improve-
ment in detector performance. The noise levels were lower than in Phase I and as a result
the detector up-time could be increased. This Phase ran through May 2014, and was closed
for a data release at Neutrino 2014. Phase III began immediately after and in the same

1No comment.
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working conditions — in fact, Phase II and Phase III share calibration runs. Phase III ran
through October 2014 and was closed for another few weeks of detector maintenance.

Phase IV began in November 2014 and ran through the end of February 2015. Phase
IV was special in that it wasn’t included in the CUORE-0 analysis decision making. All
the cuts and techniques were tuned on the first three Phases and the last Phase was added
separately.

The breakdown of the final CUORE-0 data history plus run statistics can be found in
Appendix A.

4.2 First-Level Data Processing

The first-level data production includes all the steps that take the data from the triggered
files through the data blinding and NTuple production for physics analysis. The CUORE-0
data production is done using the Diana v02.30 software developed for CUORE. Diana is
a modular software that loops through all the triggered events and processes each in turn
through a series of production steps.

In this section, we walk through the first-level production in the order that it is run. At
each stage, we can reference measured quantities whose origin we have already described.
However, in this order, it is easy to lose the forest for the trees. So we briefly outline the
goal of the first-level production.

The first-level production can be very briefly summarized in the following major steps:
amplitude evaluation, gain stabilization, energy calibration, coincidence rejection, and data
blinding. For each event, we measure the amplitude of each event using a waveform filter
that is “optimized” for our signals. We then stabilize each event, by regressing out the gain
dependence on temperature. From here, we convert each event’s amplitude to an energy
using a known calibration spectrum. Since we expect that roughly 88% of 0νββ events
will be contained in a single crystal we reject events that occur simultaneously in different
crystals. These coincidence events are primarily α decays or scattered γ-rays. Finally, we
blind our data in the ROI to prevent any subconscious bias in the second-level analysis.

Several of the steps in this process require other bits of information before they can run.
For example, the optimized waveform filter requires an estimate of the average signal response
and the expected noise, which must be calculated before hand. The gain stabilization requires
an estimate of the temperature before the event, for which we use the 1 second pretrigger
that we collect with each event.

The entire production is complicated by the fact that we actually have three possible
optimized filters and two gain stabilization algorithms. At the end of the first-level data
production, we will have six energy estimators for each event, that we will sort out in the
second-level analysis.

For each event we also calculate several pulse shape parameters that we will later use
for rejecting spurious events (e.g. pile-up events, electronic noise, etc.). We find that all of
these pulse shape parameters are energy dependent, which makes it difficult to place cuts
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on them without introducing an energy dependence to our signal efficiency. To counter this,
we include a pulse shape normalization as part of the first-level production.

Throughout this chapter and the rest of this thesis, we refer to bolometers by their
channel number. The mapping between channel number and position in the tower can be
seen in Fig. A.1.

Setting Bad Intervals

The first-level data production actually begins with the setting of “bad intervals” in the
database. These bad intervals remove periods of time when the detector — or an individual
channel — is misbehaving. These intervals can reject events that occur on individual channels
or the entire detector, depending on the cause of the bad interval. The majority of the bad
intervals set in the data production are due to either noisy intervals with an elevated baseline
RMS or periods of unstable baseline oscillations. Figure 4.3 shows a channel that had a
period of time with elevated baseline noise removed. Bad intervals can be caused by things
like equipment malfunction, DAQ saturation, and of course earthquakes.

Figure 4.3: Baseline RMS vs time for channel 8 in dataset 2109. The interval in grey is
a noisy interval that is excluded. The X-axis spans the length of the background runs in
dataset 2109; several runs had to be excluded for this channel when the noise spontaneously
increased significantly. Leaving these runs in would adversely affect the average noise power
spectrum, decreasing the efficacy of the filter for the entire dataset.

Preprocessing

The preprocess consists of two main steps: measuring the baseline and counting pulses. In
the first step, Diana measures the pretrigger data to determine behavior of the detector
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before the signal event occurred. The module measures the baseline voltage — defined as
the mean voltage before pulse begins. Diana then measures the slope of the pretrigger data
by fitting a line to the first 3/4 s of data. The baseline slope is used later in the pulse shape
analysis. We also measure the “Baseline RMS”, which is actually the RMS of the residuals
about this line of best fit over the first 3/4 s of the waveform. The Baseline RMS is useful
for monitoring the detector performance.

The second important step of the preprocessing is to count the number of pulses in
the event. This process begins by differentiating the pulse and determining the RMS of
the derivative. Next, peaks in the derivative waveform are determined by looking for local
maxima. Anywhere the derivative exceeds five times the RMS is counted as a pulse. The
resulting number of pulses is stored. It is worth emphasizing that only positive pulses are
counted and stored.

Evaluating the Detector Response & Detector Noise

The waveform filtering, described in the following sections, requires prior knowledge of the
detector’s response to a signal event and the noise behavior while no signal is present. These
are approximated by using averages measured over each dataset.

Building The Average Pulse

The average pulse is measured for each channel in each dataset using the 208Tl 2615 keV
events in the calibration runs2. The implicit assumption here is that an individual channel’s
signal response does not vary significantly over the dataset, and this has been shown to be
a safe assumption.

The averaging process involves two steps — pulse alignment and averaging — and thus
requires two passes through the data. During the first pass, Diana measures the peak
position (in time) of each pulse and determines an average peak time. The peak position
is determined by differentiating the pulse and interpolating where the derivative crosses
from positive to negative. During the second pass, Diana aligns all the pulses so that
the maximum occurs at the same time. The pulses are aligned by shifting the samples
in the relevant direction in memory, dropping samples that are shifted out of range, and
approximating new samples shifted into range with a linear extrapolation. Once the pulses
are aligned, they are all linearly averaged together with equal weighting. Typically, an
average pulse will be built out of a few hundred pulses. An example average pulse is shown
in Fig. 4.4.

2It is worth pointing out that using events that lie in the 2615 keV line requires prior knowledge of the
event energy. For this reason, the entire data production process from Preprocess to energy evaluation is
repeated twice: the first time using the pulser heater events as a stand-in for the 2615 keV line, and the
second time with the actual physics events.
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Figure 4.4: Left: Example detector response template, s18(t), for channel 18 in dataset 2073.
The template is built by averaging many 2615 keV pulses from the dataset. Right: In red
is an example noise power spectrum, N18(ω), for channel 18 in dataset 2073. The noise
spectrum is built by averaging the power spectra of many noise pulses from the dataset. The
signal response frequency spectrum is overlaid in blue. The signal has been normalized to
have the same power at low frequency. Note that the noise floor of the signal is much lower
than the true noise floor in red, because the signal response is an average over many pulses.

Building The Average Noise Covariance Matrix

The detector noise behavior is understood by studying the noise waveforms and building an
estimate of the noise power spectrum and noise covariance matrix. This is done in frequency
space, so all noise events are first Fourier-transformed into frequency space using Welch
windowing.

The CUORE-0 channel-channel covariance matrix is defined as

Cij(ω) = 〈ni(ω)n∗j(ω)〉 (4.1)

and describes the covariance between the noise n on channel i at frequency ω and channel
j at frequency ω. (This matrix is actually an array of matrices, one for each frequency bin.
This is covered in greater detail in Chapter 5.) This can be estimated by evaluating the sum
over random noise triggers of the detector,

Cij(ωp, ωq) =
1

Nij

∑
events

ni(ωp)n
∗
j(ωq) (4.2)

Here the sum is over triggered events of the entire tower, not just of a single channel.
The noise power spectra, can be pulled from the on-diagonal elements of this matrix or

calculated explicitly as

Ni(ωp) ≡ Cii(ωp) =
1

Nii

∑
events

|ni(ωp)|2
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An example noise power spectrum is shown in Fig. 4.4. To exclude non-noise events from
this sum, events are preselected through a set of event filters, so different channel pairs will
generally have a different number of events contributing. This means that while the estimate
of the covariance matrix, Cij(ωp), is guaranteed to be Hermitian, it is not guaranteed to be
rank 1.

Waveform Filtering

The data production uses three parallel filtering techniques to during the amplitude eval-
uation. The first uses the same “Optimum Filter” technique that was used in Cuoricino,
which we denote OF, as well as two new filters which have been implemented in Diana.
One is a re-implementation of the old optimum filter and is denoted NewOF, the other is a
generalization of the “Optimum Filter” that accounts for correlations amongst the channels,
called DecorrOF. These filters are explained in detail in Chapter 5.

The filtering process is the same for all filters and takes place in Fourier space, by compar-
ing an event’s spectral shape to the expected spectral shape of the average detector response,
and accounting for the expected noise on the detector. The DecorrOF filter further includes
the neighboring channels in the process, by subtracting the correlated components of the
neighboring channels from the signal before applying the optimum filter.

It’s worth pointing out that the normalization for the old optimum filter and the new
filters are slightly different. The new filters are normalized such that the filtered Fourier
components of the average pulse are on average unity. In effect, this means that the RMS of
the unfiltered noise and the filtered noise can be directly compared. On the other hand, the
standard optimum filter has a normalization such that the measured gain of the average pulse
is unity — and this depends on the amplitude evaluation technique described in the next
section. In practice, these two procedures are only different by O(0.1%), but this means that
the NewOF pulses and the standard optimum filter needed to be calibrated independently.

More details about the filtering process can be found in Section 5.4 and Appendix B.

Amplitude Evaluation

Diana evaluates the pulse amplitude on the filtered waveforms in two steps: first locate
the pulse peak and interpolate to measure the amplitude. This process is identical for all
waveform filters (OF, NewOF, DecorrOF).

The peak identification algorithm searches for the first local maximum within the wave-
form window after the trigger. The algorithm searches cyclically, (i.e. if the first local
maximum appears before the trigger, it will still locate it). Once the peak position has been
located, the interpolation takes the data sample identified as the local maximum and its two
immediate neighboring samples and interpolates a parabola through them. The amplitude is
defined as the global maximum of this parabola, and the time of the peak position is defined
as the time of this maximum.
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This amplitude evaluation algorithm is performed on each of the three filtered waveforms
(Optimum Filter, NewOF, and DecorrOF) and the amplitudes of each is stored. From here
on, there are three different amplitudes that need to be considered at each step.

Summary Of Variables After Amplitude Evaluation

At the end of the amplitude evaluation modules, we will have three separate estimates of the
pulse height — one for the old optimum filter, the new optimum filter, and the decorrelating
filter. We denote these AOF, ANewOF and ADecorrOF, respectively. From this point on in the
analysis, each variable will follow parallel production paths.

Pulse Amplitude Stabilization

Since the gain of the bolometer depends on its operating temperature, we need to stabilize
the gain to counter any time variation in the operating temperature of the detector. In the
final CUORE-0 processing, this is done using two different algorithms running in parallel,
but both are based on the same principle.

We use a constant energy event to trace the dependence of the bolometer gain on the
baseline. Notice that we are NOT measuring the time variation of the gain and interpolating
in time. Each event has a measurement of the baseline, and our stabilization algorithm
derives a gain function that takes this baseline as input. Thus each event can be stabilized
using its own measured baseline. No interpolation in time is involved.
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Figure 4.5: Left: Pulser amplitude dependence on temperature for a sample of heater pulses
for channel 18 from run 201367. Right: 2615 keV pulse amplitude dependence on absolute
baseline for channel 18 on working point 3. The measured baseline and VNTD are related by
VNTD = Voffset−VBaseline, hence the relative negative sign between the amplitude dependence
of these two variables.
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Stabilization With Heater

The first stabilization algorithm uses the constant energy heater pulses as a tracer of the
gain dependence. The heater pulsing technique is described in section 4.1.

Diana measures the gain dependence on temperature by a linear regression to the am-
plitude of the stabilization pulses versus the value of the baseline just before the pulse, which
acts as a proxy for the temperature. For most channels, this gain dependence is close to
linear over the typical range of temperature variation.

Once the amplitude vs baseline dependence of the stabilization heater is determined for
each channel, the amplitudes of all pulses are corrected using the formula:

StabAmplitude = 5000× Amplitude

HeaterAmplitude(Baseline)
(4.3)

This correction maps the stabilization heater pulses to the arbitrarily chosen value of 5000
(arb. units).

Stabilization Without Heater

The stabilization without the pulser heater algorithm is based on the same idea as the
stabilization with heater, however, instead of using the pulser heater to trace the temperature
gain dependence, this algorithm uses the 208Tl events in the calibration runs.

Unlike the stabilization with heater algorithm, the stabilization without heater algorithm
determines a single baseline trend for an entire working point — which may span multiple
datasets. This algorithm requires a careful accounting of the voltage offset and gain — which
are measured in the WorkingPoint runs — to determine the absolute baseline voltage. It
then fits a trend of the pulse amplitude vs absolute baseline voltage. Since the stabilization
spans multiple runs, and thus a much larger spread in the baseline, the amplitude vs baseline
fit is quadratic to account for non-linearity in the temperature gain curve.

The correction equation is the same as the stabilization with heater, except since the
stabilization pulses have a known energy — namely the 2615 208Tl line — they are mapped
to an amplitude of 2615 rather than 5000.

More information about this algorithm can be found in [100].

Summary of Variables After Amplitude Stabilization

At this stage in the processing, there are three amplitude variables and two stabilization algo-
rithms, so we can calculate 6 stabilized variables: SOF, SNewOF, SDecorrOF, SWoH, SNewOFWoH,
& SDecorrOFWoH.

However, there is one subtlety that’s worth pointing out. Since we have 3 amplitude
estimators and 2 stabilization algorithms, we could derive 6 stabilization trends. That is,
we could determine the gain dependence on baseline for each of the estimators in each of
the two ways. However, since the three estimators are only different in noise fluctuations
and overall gain, but not in gain dependence on baseline, we simplify the book-keeping by
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only calculating two stabilization trends — one for each stabilization algorithm on the OF
amplitude estimator. Then the 6 stabilized amplitudes are produced by plugging each of the
three amplitude estimators into each of the two stabilization trends.

Calibration

The next step after stabilizing the pulse amplitudes is to calibrate the stabilized pulse ampli-
tudes to energies using the calibration runs taken at the beginning and end of each dataset.
For each variable on each channel in each dataset, the calibration procedure derives a map-
ping from stabilized amplitude to energy. In this data production, there are 6 energy variables
that need to be calibrated independently, but the procedure is nearly identical for each.

The calibration algorithm can be broken into two parts: peak finding, and fitting a
calibration trend. In the first part, Diana attempts to find seven peaks from the thorium
spectrum; these peaks and their origins are detailed in Table 4.1. The algorithm considers the
four strongest of these peaks to be “primary” peaks and the other three to be “secondary”.
If the peak search does not locate at least three of the four primary peaks, it asks for user
intervention. If it still can not locate at least three of the four primary peaks, the calibration
is considered unsuccessful.

Once enough calibration peaks are located, they are fit with a single Gaussian plus a linear
background. Two of the peaks are actually double peaks and are fit with two Gaussians of
the same width, and fixed distance between.

The mean of these Gaussians, in units of stabilized amplitude, are used to regress the
calibration function. In this production, the calibration trend is determined by regressing
the peak means with a second degree polynomial which passes through the origin:

E = aS + bS2

Here S is the stabilized amplitude (in arbitrary units), and E is the known peak energy. The
uncertainty on the mean from the Gaussian fit to the peak is used as the uncertainty in the
S value in the fit. An example is shown in Fig. 4.6. Typically, successful fits have χ2/d.o.f.
of . 10, while fits that have failed completely have χ2/d.o.f. of & 50 and need to be redone
or excluded.

Summary of Energy Variables

At this point in the analysis, we have produced 6 different energy estimators. We will denote
these as EOF, ENewOF, EDecorrOF, EWoH, ENewOFWoH, & EDecorrOFWoH. Later we will compare
the performance of these variables to choose a final energy estimator for our analysis.

Pulse Shape Analysis

One of the tools we have for rejecting non-signal events is to analyze the pulse shape of
the event. The bolometric response in CUORE-0 is too slow to permit any kind of particle
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Table 4.1: γ peaks from thorium daughters used by the calibration algorithm.

Energy (keV) Source Peak Type
511 e+e− Primary

583.191 208Tl Secondary
911.204 228Ac Primary

964.766, 968.971 228Ac Primary
1588.19, 1592.533 228Ac, 208Tl Double-Escape Secondary

2103.533 208Tl Single-Escape Secondary
2614.511 208Tl Primary
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Figure 4.6: Example of a fitted calibration trend (Channel 18 from Dataset 2070), as well
as the peak residuals in keV. The uncertainties on Energy, are actually uncertainties in the
peak means which have been converted to vertical error bars by dividing by the slope. The
large residual at the 1593 keV double escape peak is typical on all channels and likely due
to the fact that the peak is overlapping with an 228Ac peak at 1588.2 keV. This may lead to
a systematic parabolic calibration bias that we discuss further in Chapter 6.

identification, or bulk vs surface discrimination but we can reject things like noise spikes,
pile-up or events that for some reason may not have their energy measured properly.

We measure 6 pulse shape properties:

• The pulse rise time.

This is the amount of time in ms it takes for the pulse to rise from 10% to 90% of its
total height.
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• The pulse decay time.

This is the amount of time in ms it take for the pulse to fall from 90% to 30% of its
total height.

• The baseline slope.

This is the best fit slope of the first 3/4 s of the pretrigger and is measured in mV/S.

• The peak delay.

This is the time of the measured peak with respect to the beginning of the pulse
waveform measured in ms. Typically the signals peak around 1100–1400 ms after the
start of the window, and events that deviate significantly from that typically have
poorly measured amplitudes.

• TVL and TVR

These two variables are acronyms for ‘Test Variable Left’ and ‘Test Variable Right’
and are basically a χ2 statistic for how much the filtered pulse looks like the filtered
template pulse on the left side and the right side of the peak, respectively.

Typically, the distributions of these variables vary from channel to channel and even
from dataset to dataset. Further complicating the matter, the distributions also have a very
strong energy dependence. As such, cuts on these variables would need to be tuned for each
channel, for each dataset, and carefully as a function of energy. However, instead of doing
this we normalize these variables to create a set of Normalized Pulse Shape Variables that
have distributions which are — at least in principle — independent of energy, channel and
dataset [101].

For each channel all of the runs in a particular dataset are compiled (both Background and
Calibration runs) and for each pulse shape variable the distribution is plotted as a function
of energy for several peaks in the spectrum: 145 keV, 511 keV, 583 keV, 911 keV, 969 keV,
1588 keV, 2104 keV, 2615 keV, 5450 keV. At each energy peak, the median and median
absolute deviation (MAD) is determined and the energy dependence of these median values
are fit with a function that interpolates the median value of the shape parameter between
the peak values. A similar procedure is used to interpolate the MAD as a function of energy.

Once the median and MAD have been interpolated as a function of energy for each pulse
shape variable on each channel in the dataset, all events are assigned their normalized pulse
shape variables. These are calculated using the formula

NormPSA =
PSA−Median(E)

MAD(E)

Which gives the number of median absolute deviations from the median value a particular
event lies — with both the median and the MAD now an interpolated function of energy.
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Geometric Coincidences

Since the bolometric response time is very slow compared to the light travel time from one
crystal to another (or even the traverse time of an α between crystals), a physical event
which deposits energy in more than one crystal simultaneously is expected to have the same
time, up to a measurement uncertainty. Since our 0νββ signal is expected to be primarily
contained in a single crystal, we search for coincidences between multiple crystals and reject
events with a multiplicity greater than one.

Event A is said to be in coincidence with event B if event B is a signal event with energy
over 10 keV (EOF > 10 keV) and both have their measured peak times within a narrow
window ∆T . No geometric cut is placed on the channels. Any two channels can be in
coincidence, even if they are on opposite sides of the tower. This is discussed later in this
section. If event B satisfies all of these requirements, then event A is said to be in coincidence
with event B. It’s worth mentioning, that if event A does not satisfy those requirements,
then B need not be considered to be in coincidence with A.

We use the requirement that EOF > 10 keV, but in practice this requirement is rarely
actually enforced because the low energy threshold is actually dominated by the channel
trigger thresholds.

Correcting For Peak Time Jitter

Two events that are truly in coincidence can nevertheless have a relatively large delay between
their measured times. The primary source of the spread in time comes from the difference
in response of different crystals (e.g. the difference in rise time between two bolometers).
See Fig. 4.7. To account for this, we run a Diana sequence to measure the “jitter” between
detectors.

Diana collects a list of ‘true coincidences’ in the calibration data — i.e. events that occur
in two crystals and have a total energy around 2615 keV and are thus likely to be a Compton
scatter 208Tl event. These pairs are used to determine the constant time offset between each
pair of detectors’ response times — the channels’ jitter. These constant time delays between
detector responses are then accounted for in the coincidence module to achieve a better
estimate of the time between events on different channels. This process significantly reduces
the size of the time window needed to identify a coincidence. When the jitter is not taken
into account, we require a window of ∆T = 200 ms (100 ms on each side), but after the jitter
is removed, the window is reduced to ∆T of 10 ms (5 ms on either side). More information
on this jitter subtraction process can be found in [102].

For each coincidence event Diana stores the multiplicity, which is the total number of
channels found in coincidence with each other, as well as the total energy, which is just
the sum of energies from these channels. It is worth pointing out that for simplicity the
coincidence analysis uses only the EOF energy variable, not any of the new energy estimators.
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Figure 4.7: Left: Average pulses for channels 18 and 20 from dataset 2073. The time delay
between the pulse peaks is a consequence of the different responses of the two bolometers.
The constant time between the peaks is referred to as the “jitter” and increases the spread in
measured time between two events that are a true coincidence. Right: Distribution of time
delays between pairs of events determined to be in coincidence in dataset 2085 calibration
data with total energy around 2615 keV. These events are almost entirely true coincidences.
Without accounting for the peak jitter (blue) the necessary coincidence window size is 200 ms
wide (100 ms on either side); after accounting for the peak jitter (red) it improves to 10 ms
wide (5 ms on either side).

Spatially Correlated Coincidences

One avenue we investigated briefly was placing a spatial cut on the coincidence events. This
is based on the fact that it is highly unlikely a photon would Compton scatter on one side of
the detector, traverse all the crystals, and be absorbed on the other end of the detector. We
speculated that perhaps we could improve the coincidence efficiency by including a spatial
cut, requiring that the two coincident channels must be in close enough proximity to have a
coincidence. This is demonstrated in Fig. 4.8, which shows that the ∼ 98% of multiplicity 2
events occur within one floor of each other.

This may prove to be a powerful technique to reject accidental coincidences in CUORE,
however in CUORE-0 the rate of accidental coincidences in the background data is too low
to warrant a spatial cut. This is because the coincidence jitter subtraction has narrowed
the coincidence window to the point that accidental coincidences are not an issue. Thus a
spatial coincidence cut is not implemented in CUORE-0.

Data Blinding

The data blinding procedure we employ is a form of data salting, where we randomly move
a random fraction of events from the ROI to the 208Tl line and vice-versa. The effect is
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Figure 4.8: Distribution of the distance between floors for multiplicity 2 events with total
energy around 1460 keV (blue) and the predicted spectrum of accidental coincidences with
40K events.

to create a false peak in the region of interest, masking any possible peak from 0νββ or
statistical fluctuations.

The data blinding procedure is applied only to the background runs and only to multi-
plicity one events. The process takes as input a password, which is used to generate a deter-
ministic random seed. From this seed, a random fraction is generated between 1% and 3% —
the same fraction for every run in every dataset. For each event between 2527.518± 10 keV,
a random number is generated — again from a predetermined seed — which will determine
whether the event gets shifted. If shifted, the event has a constant 86.993 keV added to its
energy variables. Similarly, every event between 2614.533± 10 keV has the same probability
of being shifted down 86.993 keV.

The process is deterministic, though the exact process is impossible for a human to
predict. As such, it is reversible by rerunning the same procedure. The true energy is stored
as well but is encrypted using an RSA key pair, with the private key known only to one
person.

4.3 CUORE-0 Second-Level Data Processing

The second-level data analysis begins where the first-level production leaves off. At the
end of the first-level production, we have six energy estimators for each event. As we will
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Figure 4.9: A fraction of events from the 208Tl photo peak are shifted down into the ROI,
while a fraction of events from the ROI are shifted up into the 208Tl photopeak. Since there
are more events in the photopeak, this produces a false peak in the ROI. The fraction of
events shifted was blinded, but was chosen to be large enough that the resulting peak in the
ROI was unphysically large.

show, occasionally some of these energy estimators fail, occasionally all of them fail. The
second-level analysis begins by determining which of these estimators are usable. We phrase
this in terms of setting a second set of “Bad Intervals” — similar to where we started in
the first-level production — because when an energy estimator fails it fails for an entire
channel-dataset pair. We consider like a bad interval of time for an energy variable, and this
means that our exposure depends on our choice of energy variables.

The majority of the second-level analysis concerns selecting a set of energy estimators
from which we will form our final spectrum. Rather than picking one energy estimator for
of all the data, we choose to mix them to take advantage of their relative strengths. The
majority of this section focuses on choosing these energy estimators and testing our selection
procedure. We also describe the method for evaluating the final CUORE-0 exposure —
which becomes entangled in the process of choosing a set of energy estimators.

All of the analysis tuning and decision making were performed on Phases i-iii, and Phase
iv data was added later. For this reason, many of the results in this section deal with and
present only numbers for the first three Phases, and Phase iv is presented separately. All of
the final numbers for the 0νββ are presented in both Chapter 6 and Appendix A.
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Unblinding Procedure

All data selection and analysis occurs on blinded data only. The cuts and fitting technique
were tuned on datasets 2049–2124, at which point the analysis procedure was frozen and the
data were unblinded.

While the analysis was being finalized and the final paper being written, the CUORE-0
detector continued to collect usable data. Before unblinding in February 2015, we decided
that all data collected between October 2014 (the close of dataset 2124) and March 1, 2015
would be added to the final data release. All data collected in these last 5 months would
go through both the first-level data production — including blinding — and through the
usual data selection procedure, but the event cuts and fitting procedure are not changed
after being frozen at the initial unblinding.

Bad Intervals In the Second-Level Analysis

After the initial data production, the data quality is checked and a second set of bad intervals
are set. We exclude intervals of time where the stabilization failed, or intervals where the
calibration drifted between the initial calibration to the final calibration, or intervals where
the filter produced a poor energy resolution. These bad intervals are generally set over an
entire channel-dataset pair for a particular analysis approach; the bad interval indicates that
that particular analysis approach (i.e. energy estimator) failed for that channel on that
dataset.

The important thing to note, and what differentiates the second set of bad intervals from
the first, is that by the end of the first-level data production we have several parallel analysis
tracks. Since the data are treated differently in each track, we have the situation where a
particular interval of time may be bad in one analysis track but good in another. For this
reason, bad intervals in the second level analysis are tabulated in a separate DB table called
bad for second level that includes a bit-flag field specifying for which analysis tracks the
interval is bad for.

In CUORE-0 we have two relevant options for flagging bad intervals in the second-level
analysis: ‘Bad for Standard Stabilization’ and ‘Bad for WoH Stabilization’. These categories
specify that either the standard stabilization routine failed and EOF, ENewOF and EDecorr are
unusable, or that the Without Heater analysis failed and EWoH, ENewOFWoH and EDecorrOFWoH

are unusable. Of course, it was also possible that all 6 variables failed and nothing could be
used.

Shifting Calibrations in the Standard Analysis

In the standard analysis (OF filter + heater stabilization) we saw that in the case of several
channels the baseline dependence of the heater events did not parallel the baseline depen-
dence of the signal events and thus the calibration would drift over the course of a dataset.
This is shown in Fig. 4.10. If the center of the 208Tl peaks (as determined by a Gaussian fit)
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drifted by more that than 1 FWHM (also determined by a Gaussian fit) between the initial
and final calibrations, then the entire dataset was flagged ‘Bad for the Standard Stabilization’
on that channel. We refer to these channels as shifting channels.

At some point during the CUORE-0 data taking this condition for being flagged as
shifted changed from 1 FWHM to 1

2
FWHM, and this change was not backwards propagated.

Needless to say, the inconsistent bad intervals setting was a source of confusion that we hope
to improve in CUORE.

These shifting calibration peaks were a reoccurring problem in the CUORE-0 data, and
accounted for a loss of 2.7 kg·yr of exposure in the standard analysis variables (∼ 7%). As
we will see later, the WoH stabilization routine was very effective in recovering much of this
lost data.

One thing we noticed, was that the even-numbered channels were far more likely to shift
than the odd-numbered channels. We do not have a definitive explanation for this. The only
thing consistently different between even and odd-numbered channels is the chirality of the
gluing platforms that attached the NTDs and heaters, but it is unclear how this might lead
to calibration shifts in some channels but not others.
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Figure 4.10: Channel 48 in dataset 2049. Left: Comparison of the gain dependence on
Total NTD voltage for the 2615 keV events and the pulser heater. The relative difference
between the two trends results in a shift in the calibration. Right: As a result, this channel’s
calibration shifted by far more than 1 FWHM over the course of a single dataset. This
dataset must be removed from the standard analysis for this channel, but as we will see
later, this data can be recovered via the Without Heater analysis.

Failed Without Heater Stabilization

The WoH stabilization algorithm depends on accurately knowing the absolute voltage of the
baseline and thus the working point of the run. Occasionally, the working point measurement
could fail, thus creating a false measurement of the absolute baseline. Alternatively, the
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channel setup may be changed in the middle of the dataset, and the baseline gain dependence
could change entirely. This issue will be corrected in CUORE, but in CUORE-0 these runs
were flagged and are removed from the WoH analysis.

Exposure Evaluation

The background exposure is calculated over all background runs that contribute data to the
final result. Typically, this is all background runs that did not crash and have not been
manually excluded from the data.

The calculation sums the total runtime for each channel in all background runs, and
removes the intervals that have been flagged as bad. All intervals that have been flagged as
bad for the first-level analysis are removed from the exposure.

Later, we will combine our six energy estimators into a single spectrum, and this means
removing second-level bad intervals in accordance with the energy estimator chosen for chan-
nel and dataset. In other words, since the energy estimator may be different for each channel
and dataset, we must be careful to properly remove bad intervals in the second-level analysis.

In addition to the flagged bad intervals that are removed from the exposure calculation,
the one second and last four seconds of every run are subtracted by default.

Table 4.2: CUORE-0 detector exposures. Phases i-iii were used for tuning the final CUORE-
0 analysis. Phase iv was added after unblinding, but no decisions were made using this data.

Exposure (kg·yr)
Phase i 8.1
Phase ii 11.7
Phase iii 9.2
Phase iv 6.2
Final CUORE-0 Exposure 35.2

Calibration Exposure

The calculation of the calibration exposure parallels that of the background exposure, with
one exception. Since the calibration runs are often shared between two adjacent datasets,
the exposure cannot simply be the sum of the exposures for each dataset. And since the
calibration runs may have bad intervals which apply to one dataset but not another, the
exposure cannot simply be the sum of the individual calibration runs. Consequently, the
calibration exposure is only calculated on a per-dataset basis.

Analysis of the Energy Estimators

No one energy estimator performed consistently better than the others in every situation;
each had its respective strengths and weaknesses. Overall, the standard energy estimator
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EOF and ENewOF had the fewest major failures resulting in worse energy resolution. The
EWoH variable failed completely due to a software bug and thus had to be excluded from
the rest of the analysis. A detailed discussion of the decorrelated variables can be found in
Chapter 5.

Performance of the New Optimum Filter

The new optimum filter energy estimator, ENewOF, performed extremely well. The only
major difference between the new and old optimum filters is a slight difference in amplitude
gain of up to ∼0.01%, which varied over each channel-dataset pair. But within a single
dataset, the ratio ENewOF/EOF had a typical spread of ∼0.001%. This is likely due to slight
differences in the way each filter calculates its noise spectrum (see Appendix B), but does
not rise to the level of concern. This analysis shows that the new optimum filter behaves
well enough to replace the old one.
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Figure 4.11: Dataset 2073 Channel 18 Calibration Data. Left: Comparison of the 208Tl
spectra built with the old (blue) vs new (red) optimum filter. Right: Distribution of the
percent difference between amplitudes measured with the new and old optimum filters over
the whole spectrum. This channel had a difference in gain of ∼0.004% with a spread of
∼0.001%.

Recovering Shifting Channels with the WoH Analyses

We developed the WoH stabilization to solve two problems: first, channels 1 and 10 did not
have functioning heaters and thus could not be stabilized with the heater based algorithm,
and second, as we have seen above, the standard stabilization algorithm seemed to fail on
some channels resulting in calibration shifts.

To these ends, the WoH stabilization was extremely successful. It recovered ∼80% of
the livetime on channels 1 & 10, as well as many of the shifting channels. Altogether, this
resulted in an overall recovery of 12% of the total exposure. On top of this, the stabilization
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algorithm improved the resolution on many channels that had shifted slightly, but not enough
to be flagged ‘shifted’.

Despite its many successes, the algorithm did have a few drawbacks. For non-shifting
channels, the energy resolutions produced with the WoH stabilization algorithm were often
not as good as those produced with the standard heater based algorithm. There were also
a handful of cases where the algorithm simply failed, usually due to unstable or changing
working points or software bugs with the new algorithm.
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Figure 4.12: Channel 50 initial and final calibrations in dataset 2073 with the standard
stabilization (left) and the WoH stabilization (right).

Combining Energy Estimators

There were situations for each energy variable where it outperformed the others, but there
were also situations where each energy variable underperformed. These successes and failures
can be directly attributed to different behaviors of the detector i.e. large thermal drifts,
correlated noise, etc. Instead of restricting our analysis to a single energy estimator, we
chose to mix and match them and thereby take advantage of their respective strengths.

An energy estimator was chosen for each dataset and channel, and the final CUORE-0
spectrum was built by summing these. We decided on three possible combinations that
increasingly optimized the analysis while becoming increasingly reliant on the new analysis
variables.

• Ultra-Conservative Approach: The ultra-conservative approach used none of the
new analysis techniques. This is essentially the same approach that was used for Cuori-
cino. This approach uses the standard energy estimator, EOF. This “tried and true”
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approach has the disadvantage of having significantly lower exposure and potentially
worse energy resolution.

• Moderately Conservative Approach: This approach uses the ultra-conservative
approach as a starting point, but incorporates the new energy estimator ENewOFWoH

(as sparingly as possible) to achieve the maximum possible exposure. In other words,
it uses the new without heater stabilization technique to fill in lost exposure where
the standard stabilization technique failed. This recovers channels 1 and 10, which
lacked stabilization heaters, and recovered most of the channels whose calibrations
had shifted.

• Aggressive Approach: This approach utilizes all energy estimators in order to opti-
mize the sensitivity. For each channel and dataset, the “best” estimator is chosen and
the final spectrum is built by combining these into a single spectrum.

Creating an Optimized Energy Estimator Combination for the Moderately
Conservative Approach

The moderately conservative approach uses the EOF estimator whenever possible, and uses
ENewOFWoH for channels 1 and 10 and whenever a channel-dataset has been flagged as
“shifted”. This was deemed the “conservative” thing to do in that it made as little use
of the new variables as possible. However, in practice this approach had many subtle prob-
lems.

The definition of “shifted channel” was any channel whose calibration shifted by more
than 1 FWHM between its initial calibration run and a final calibration run. The FWHM
was measured using a single gaussian fit, which was later determined to be a poor fit to
the detector response line shape (we discuss this further in Chapter 6). Because of this, the
measured FWHM and mean had a typical statistical uncertainty of 10–20%. This caused
our decision of whether a channel shifted to be heavily dependent on statistical fluctuations.
At some point during the CUORE-0 data production, the threshold for declaring a channel
“shifted” went from 1 FWHM to 0.5 FWHM, and this new threshold was not backward
propagated.

Since this inconsistent procedure determined which channels were flagged “shifted”. For
the Moderately Conservative approach, this directly determined whether the selected energy
estimator was EOF or ENewOFWoH. Thus, the moderately conservative approach was left
with an inconsistent and unreproducible selection of energy estimators which were heavily
influenced by statistical fluctuations.

So while the Moderately Conservative approach maximized the exposure without making
too much use of the new variables, there were many nonsensical situations (like those shown
in Fig. 4.13) that worsened the resolution, and the approach was difficult to defend.
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Table 4.3: Energy estimator breakdown for the moderately conservative approach. (Phases
i-iii.)

Number of Channel,Dataset pairs Exposure Fractional Exposure
EOF 788 26.62 92.1%

ENewOFWoH 67 2.29 7.9%
Total 855 28.90
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Figure 4.13: The moderately conservative approach was based on a poorly defined and
inconsistent definition of “shifting channels.”

Creating an Optimized Energy Estimator Combination for the Aggressive
Approach

In order to find a combination of energy estimators that optimizes the sensitivity, the “best”
energy estimator has to be chosen for each channel in each dataset. We chose the figure of
merit for determining “best” variable to be the ratio of the background exposure squared
to the variance of the 208Tl line, T 2

Bkg/σ
2
Tl. The background exposure needs to be included

in this calculation because even over the same data, two analyses could have different bad
intervals and thus different exposures. Thus it is possible that even if the resolution gets
worse it may be advantageous to choose the approach that maximizes the exposure. This
combination is proportional to the fourth power of the half-life sensitivity and is easy to
calculate.

For each dataset-channel, there are four possible energy estimators: EOF, EDecorrOF,
ENewOFWoH, and EDecorrOFWoH. (ENewOF was not included as it was functionally equivalent to
the standard energy variable and EWoH was excluded because of a bug in the data processing.)
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Figure 4.14: Comparison between the standard energy variable and the decorrelated energy
variable for dataset 2070 on channels 13 (left) and 18 (right). Channel 13 saw a statistically
significant improvement in the calculated variance. Channel 18 saw a small improvement but
not statistically significant. We chose to used the decorrelated energy estimator for channel
13 and the standard energy estimator for channel 18.

The approach to choosing the “best” variable was a single elimination tournament. First we
compared the figure of merits for EOF and EDecorrOF. The ratio of the figures of merit was
determined,

W ≡ σ2
Tl(EDecorrOF)

T 2
Bkg(EDecorrOF)

/
σ2

Tl(EOF)

T 2
Bkg(EOF)

(4.4)

Its uncertainty, σW , was calculated from direct propagation of errors and the number of
standard deviations from the null hypothesis (that W = 1) was calculated according to

Z ≡ 1−W
σW

(4.5)

If the figure of merit was improved by at least 2% (W < .98), and the number of standard
deviations from 1 was more than 1.5 (Z > 1.5), then EDecorrOF was chosen, if not EOF was
chosen. In other words, if EDecorrOF was at least a 2% improvement and the hypothesis that
the two approaches are equivalent can be rejected at ∼93% C.L., then EDecorrOF was chosen.
If either of these was not satisfied, then EOF was chosen. See Fig. 4.14.

This process was repeated between ENewOFWoH and EDecorrOFWoH, and repeated again
between the two surviving variables to select the “best” variable. If no winner can be
satisfactorily determined, the algorithm defaults to EOF if it has any background exposure
or ENewOFWoH otherwise.

This approach is not a statistically robust comparison amongst 4 variances, and the
thresholds were chosen somewhat arbitrarily, but this method was fast to implement and
worked well enough. The Aggressive distribution of variables is shown in Fig. 4.15.
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To be clear, this approach is not guaranteed to be the optimal approach; it is only shown
to be better than the Moderately Conservative and Ultra-Conservative approaches. One
downside to this approach, is that it implicitly assumes the variances being compared are
a good estimate of the resolution of the 208Tl line. However, because of the sub-structure
present in the line as well as the Compton continuum, this assumption is not fully true —
i.e. events that occur in its Compton continuum can act like extreme outliers and skew the
statistics. Thus the comparison, particularly the Z parameter, was still somewhat sensitive
to statistical fluctuations in the Compton continuum. This is therefore an area for future
improvement.
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Figure 4.15: Left: The distribution of energy estimators chosen by the optimization routine.
The standard analysis (OF + heater stabilization) is heavily favored, as it is the default
approach. Right: The same distribution, but subdivided by even and odd channels. The
WoH variables are favored in the even channels as they are more likely to shift — an effect
that is still not fully understood.

Table 4.4: Energy estimator breakdown for the aggressive approach. The data included here
are for Phases I, II and III, which were studied before unblinding. The full statistics are
shown in table A.3.

Number of Channel,Dataset pairs Exposure Fractional Exposure
EOF 496 17.41 60.0%

EDecorrOF 120 3.80 13.1%
ENewOFWoH 171 5.52 19.0%
EDecorrOFWoH 68 2.32 8.0%

Total 855 29.04

To ensure that this technique was not tuning on statistical fluctuations, we compared
the binned resolutions of other prominent peaks: the background 208Tl peak, background
40K peak, and the calibration single and double-escape peaks. Each summed line was fit
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with a channel and dataset-independent model PDF built from a sum of two gaussians
with identical means — this fit is an empirical fit which produces reasonable results. The
FWHM of the peak is determined from the resulting fit. To understand the uncertainties
on the FWHM, we determined the errors by bootstrapping. The empirical distribution was
randomly resampled and refit O(1000) times and the resulting distributions were compared.
These distributions, shown in Fig. 4.17, indicate that the Aggressive approach produces a
better FWHM than the Moderately Conservative approach the majority of the time. This
lends confidence to our energy variable selection procedure.
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Figure 4.16: Distribution of FWHM values for each channel-dataset pair derived from binned
fits for each of the three proposed data combinations.

Summarizing the Three Energy Estimator Approaches

The first point for comparison of the three approaches is the exposure. Since some energy
estimators failed on some of the channel-datasets, the ultimate exposure of an approach
depends on the particular combination of energy estimators. The exposures for the three
approaches are given in table 4.5. Since the Ultra-Conservative approach had a significantly
lower exposure, it was quickly disfavored as a candidate for the final CUORE-0 data.

We measured the FWHM of the calibration 208Tl with simple binned fits and on average
the Aggressive approach performed ∼5% better than the Moderately Conservative at the
208Tl line. The results of these comparisons are detailed in Table 4.5 and Fig. 4.16.

The aggressive approach yielded a ∼3% better sensitivity over the moderately conser-
vative approach. Ultimately we chose to use the aggressive energy variable combination
approach, and the rest of the analysis proceeded using its variables as our energy estimators.
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Figure 4.17: Bootstrapped distributions of FWHM distributions for various lines using a
double gaussian fit. In blue are the distributions for the Moderately Conservative approach,
in red are the distributions for the aggressive approach.

Table 4.5: Comparison of the three energy estimator combinations for Phases i–iii. The
FWHM numbers are from binned fits to the 208Tl line. These numbers are less accurate
than those from the approach presented in Chapter 6 and are NOT the official FWHM
numbers. The “Effective FWHM” is described in Chapter 6.

Approach Exposure (kg·yr) FWHM (keV) Effective FWHM (keV)
Ultra-Conservative 26.8 4.88 5.12

Moderately Conservative 28.9 4.83 5.09
Aggressive 29.0 4.71 4.92

Cuts Tuning

The cuts used for the final 0νββ analysis are a combination of basic event cuts, event timing
cuts, pulse shape cuts and multiplicity cuts. It is worth pointing out that while none of the
cuts depend explicitly on the energy estimators, the PSA variables, the PSA normalization
and the multiplicity evaluation all depend on the EOF energy estimator only.
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The standard cuts require that an event has been flagged by Apollo as a signal event,
that Apollo triggered no other signal events within the event window, that there only be
a single peak within the event and finally that the event not occur during a bad interval.

The event timing cuts create a 7.1 second dead window around a pulse and are designed to
prevent overlap between two consecutive events on the same channel. Since a pulse typically
takes ∼3 seconds to return to the baseline, we require that any previous event on the same
channel have not occurred within a window of 3.1 s before the event. This ensures that the
previous event has had sufficient time to return to the original baseline so that the event in
question can achieve a reasonable measurement of the baseline. We also require that any
subsequent event on the same channel not occur within a window of 4 s after the event.
This gives the event in question sufficient time to return to baseline so that we can measure
its properties accurately. There is a fair amount of redundancy between these dead window
cuts and the cut on the number of pulses within the event window.

We also impose a set of asymmetric pulse shape cuts on the normalized pulse shape
variables. These were tuned by maximizing the signal efficiency over the square root of the
background efficiency, εSignal/

√
εBkg. We used several peaks in the background spectrum

to stand in as our signal sample and the flat regions around the peak to stand in as our
background sample. To avoid statistical bias, these cuts were tuned on Phases i–iii using
only the half of the data with even-numbered time stamps. In the chapter 6, we evaluate
the efficiency on the half of the data with odd-numbered time stamps. The signal efficiency
of the resulting cuts was roughly on all peaks from 511 keV to 5400 keV. For more on this,
see [101].

The applied Normalized Pulse Shape cuts were

-4 < Normalized Baseline Slope < 4.8
-4 < Normalized Delay < 4.8
-4 < Normalized Rise Time < 4.8
-4 < Normalized Decay Time < 4.8
-6 < Normalized TVL < 5.3
-6 < Normalized TVR < 5.3

The pulse shape normalization failed on a few datasets for a few channels. For these channels
the signal efficiency was extremely low, and so the offending cut (usually only one of the
PSA cuts) was relaxed to increase the signal efficiency at a small cost to the background
efficiency.

Finally, we impose a multiplicity 1 cut to eliminate any events that occurred in multiple
crystals.
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Chapter 5

CUORE-0 Noise Analysis And
Decorrelation

During CUORE-0 we did an extensive study into the sources and behavior of the observed
noise and how it fed into the detector resolution. This was originally undertaken in the
development of a decorrelating filter, but led to several useful realizations about the noise
sources and improvements for CUORE. In this chapter, we dive into deeper detail about
the decorrelating filter that was discussed in the previous chapter. We begin by discussing a
general analysis of correlated noise in the detector, before focusing on several specific cases
of correlated noise and the subsequent insights into weaknesses in our cryogenic setup. We
then describe the new filtering module that was developed for CUORE-0 and CUORE to
remove the correlated noise and how it was implemented in the Diana v02.30 processing.
Finally, we discuss how it performed on the CUORE-0 data, its weaknesses, and directions
for future improvement.

5.1 The Full Noise Covariance Matrix and Subsets

The discussion about the behavior of the noise in CUORE-0 begins with our most general
description of the noise: the covariance matrix. The full covariance matrix is defined as

Cij(ω, ω
′) = 〈ni(ω)n†j(ω

′)〉 (5.1)

and describes the covariance between the noise, n, on channel i at frequency ω and channel
j at frequency ω′. This captures the entire two-point correlation information of the detector.
This matrix is both complex and hermitian. Each diagonal element is real and represents
the variance of a particular channel at a particular frequency.

The noise of the CUORE-0 detector is characterized by studying the noise triggers.
These triggers are fired every 200 s and collected on all channels simultaneously. Because all
channels are collected together, we get a snapshot of how the entire tower is behaving for a
short period of time. Using this, we can study the correlated noise on the detector and build
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an estimate of the covariance matrix. We evaluate the average:

Cij(ωp, ωq) =
1

Nij

∑
Snapshots

ni(ωp)n
†
j(ωq) (5.2)

This covariance matrix can be parameterized as an NChannel×NChannel×MFreq×MFreq matrix.
It turns out, that this is too time consuming to compute in full. We therefore present here
only a portion of this matrix in as the correlation matrix (Fig. 5.1), which is defined as

ρij(ωp, ωq) =
|Cij(ωp, ωq)|√

Cii(ωp, ωp)Cjj(ωq, ωq)
(5.3)

The most obvious thing to point out about the correlation matrix is that the majority
of it is consistent with zero. Specifically, the detector displays very little cross-frequency
correlations:

Cij(ωp, ωq) ≈ 0 for ωp 6= ωq

In other words, the matrix in Fig. 5.1 is pretty close to blocked diagonalized1. This is actually
expected since we expect cross frequencies to average to zero (i.e. 〈sin(ωt) sin(ω′t)〉 = 0 for
ω 6= ω′), but mostly this tells us that we do not see a lot of noise harmonics or inter-
modulation, which is convenient. The second thing to point out is that the majority of the
correlation appears at low frequency, .1 Hz, with spikes at higher frequencies (here we see
the lowest one at ∼7 Hz). We discuss this low and high-frequency noise separately in more
detail in the following sections.

Channel-Channel Covariance

Because the majority of elements in the covariance matrix are negligible — and because the
full covariance matrix is too unwieldy to be useful — we consider only a small subset of
the covariance matrix by keeping only the channel-channel covariances. In terms of the full
covariance matrix, the channel-channel covariance matrix is defined as

Cij(ωp) ≡ Cij(ωp, ωp) (5.4)

This matrix corresponds to the MFreq NChannel×NChannel sub-matrices along the diagonal of
Fig. 5.1, one channel-channel covariance matrix at each frequency.

This covariance matrix is smaller in size by a factor of MFreq and thus much more man-
ageable. Because of its smaller size and the fact that it still contains the majority of the
correlation information of the detector, we will largely be working with this subset of the
covariance matrix in CUORE-0. Indeed, throughout the rest of this thesis, when we re-
fer to the “covariance matrix”, we are referring to this channel-channel covariance unless
specifically stated otherwise.

1The frequency bins that are one off from diagonal (i.e. (ωp, ωp±1)) seem to show a little bit of correlation,
but this is actually just an artifact of the FFT and the fact that the waveforms have finite length.
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Figure 5.1: The full CUORE-0 correlation matrix, from ds2073 over the range 0–10.2 Hz.
Each tick on the X and Y axes represents a frequency bin that is 0.2 Hz wide, and within
each frequency box is a 51×51 matrix representing each channel-channel correlation in the
CUORE-0 tower. This matrix contains 6.5 million complex entries, and represents only
∼2.6% of the full covariance matrix.

To be consistent with other works [103], we plot the channel-channel covariance matrix
averaged over frequency ranges in the following manner:

R̄ij =

√∑
ωp
|ρij(ωp)|2Cii(ωp)∑
ωp
Cii(ωp)

(5.5)

where
ρij(ωp) ≡ ρij(ωp, ωp)

R̄ij can be understood as the average correlation between channel i and j, with the average
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Figure 5.2: Frequency-frequency covariance matrices from ds2073 for channel 18 (left) and
43 (right). The majority of the frequency-frequency covariance matrices showed similar
characteristics to the one on the left, with little or no cross frequency noise, however, a few
channels demonstrated a few harmonic peaks like the matrix on the right.

being weighted by the total noise on channel i. As such, R̄ij is not symmetric. Examples of
this can be seen in Figs. 5.4 and 5.9 for the low frequency noise and the noise spike at 7 Hz.

Frequency-Frequency Covariance

Another reasonable subset of the covariance matrix is to look within a single channel at the
correlations between frequencies. This frequency-frequency covariance matrix is described
for each channel in terms of the full covariance matrix as

Ci(ωp, ωq) ≡ Cii(ωp, ωq) (5.6)

This subset forms the basis of a generalization of the optimum filter found in [92], upon
which this approach further generalizes. The approach in [92] used the frequency-frequency
covariance matrix to remove any cross-frequency correlations within a single channel. How-
ever, as seen in the full covariance matrix, CUORE-0 exhibited very little cross-frequency
correlation (though there are a few channels that are exceptions to this).

In CUORE-0, these frequency-frequency covariance matrices were not used and are only
included here for future reference.
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Average Noise Power Spectrum

The final subset of the covariance matrix that must be mentioned is the Average Noise Power
Spectrum. This is mentioned frequently throughout this thesis because it is the input to
the old optimum filter. We denote this spectrum as Ni(ωp) and it can be derived from the
covariance matrix as

Ni(ωp) ≡
2

fSampMFreq

Cii(ωp, ωp) (5.7)

Ni(ωp) is, by definition, real. It is standard practice to normalize it so that if C is in units of
mV2, then Ni(ωp) has units of mV2/Hz and can be readily converted to the amount of power
per unit frequency. Here fSamp is the sampling frequency. Further, with this normalization

it has the property that the mean RMS of the noise on channel i is given by
√∑

ωp
Ni(ωp).

Ultimately, this normalization is a matter of convenience and has no effect on our final result.

5.2 Correlated Noise and Crosstalk

We will discuss three sources of correlated noise in CUORE-0: high-frequency correlated
noise, low-frequency correlated noise, and signal crosstalk. Since the low frequency correla-
tions require a separate investigation we will handle them in the next section.

High-Frequency Correlated Noise

The correlated noise in CUORE-0 was first noticed as noise spikes on many channels in the
frequency range 7–20 Hz. This noise seems most correlated between channels that are on the
same PENCu readout strips, and has been attributed to microphonics or capacitive pickup
on these strips.

A similar correlated noise was seen in Cuoricino, though at a lower level and between
fewer channels [103]. However, the Cuoricino electronic readouts did not use PENCu strips
and thus were not coupled together as they are in CUORE-0. So it’s possible that the
correlated noise seen in CUORE-0 has a different origin than pickup on the PENCu cables.

These noise spikes are very narrow in frequency, and tend to lie above the signal frequency
band. As such, they actually do not contribute too much to the overall resolution; instead
the majority of the noise was induced in the low frequency part of the spectrum.

Signal Crosstalk

So far we have been focusing on correlated noise, but another type of correlation between
bolometers is signal crosstalk. This is qualitatively different from our correlated noise, in
that our noise is common-mode noise that occurs when multiple bolometers pick up noise
from a common source, whereas signal crosstalk is when one of the bolometers is that source



86

Frequency [Hz]1 10

/H
z]

2
Po

w
er

 [
m

V

-410

-310

-210

-110

1

Frequency [Hz]1 10

/H
z]

2
Po

w
er

 [
m

V

-410

-310

-210

-110

1

10

Figure 5.3: Spikes in the average noise power spectra for channels 32 and 34 in ds2073.
These peaks appear on many of the channels all over the detector and suggest a correlated
source.

of noise. Ultimately, the question is whether a signal is shared between channels, or just the
noise.

To test this, we averaged the side pulses of heater events. Specifically, we used the same
technique described in section 4.2 to create average pulses for each channel, but instead of
triggering on 2615 keV events, we triggered on heater events in channels 1–13. The average
pulses of channels 1–13 showed the average of the heater pulses, as expected. But the average
pulses of channels 14–52 showed the average behavior of the neighboring channels during a
heater event.

The result was a clear temperature rise and fall with slow time constants on almost
all neighboring channels. These types of signals are consistent with a gradual heating of
the tower from an event on a crystal (i.e. signal crosstalk). However, the typical amount of
energy that leaked to the neighboring channels was of order a few keV compared to a signal of
∼3 MeV on 13 channels simultaneously. This corresponds to a level of signal cross talk of less
than ..1%. It’s also worth noting that this approach actually gives an overly conservative
estimate of the size of the crosstalk. Because it averages over heater events, and the heater
fires in parallel on 13 channels simultaneously, we are actually looking at the crosstalk from
a major event on an entire column of the tower. Particle events are typically constrained to
one or two crystals so the heating of the neighboring crystals would be smaller. Because of
this, we feel confident in assuming that the crosstalk between channels is negligibly small in
the signals that we are interested in.
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Figure 5.5: Average pulse on channel 18 (left) and channel 26 (right) that was built out of
events triggered when the heater fired on channels 1–13. This shows an obvious temperature
rise on the neighboring channels. The amplitude of this pulse corresponds to a few keV,
which corresponds to a crosstalk of order ∼0.1%. The spike at t = 1 corresponds to electronic
pickup when the pulser fired.

5.3 Low-Frequency Correlated Noise In CUORE-0

In CUORE-0, we collect and store the continuous waveform data on all channels for possible
later use. In order to study the low-frequency noise, we ran the continuous waveform data of
dataset 2073 back through Apollo and retriggered it as if it were new data. We modified
the trigger to collect much more noise data by storing 20-second-long waveforms with a 10 s
deadtime between triggers2. This resulted in a very high statistics sample of noise data with
longer waveforms that gave us better frequency resolution. Like the noise triggers in the
standard data collection, all channels (including thermometers) were collected together for
correlated noise analysis. We processed these retriggered waveforms through the standard
Diana preprocess and average noise modules.

The most immediately obvious observation in these noise spectra was the difference in
low-frequency noise between the bottom of the tower and the top. All channels demonstrated
a 1/f noise spectrum at low frequencies, but the channels at the top showed excess noise
above the channels at the bottom by up to a factor of 10. This is seen in Fig. 5.7. The
correlation matrix built from this re-triggered dataset (see Fig. 5.9) indicates that not only
is there more low-frequency noise at the top of the tower, it is also more correlated. This
suggests that within this frequency range, all channels are picking up noise from a common
source that is stronger at the top of the tower than the bottom. The most obvious candidate
is thermal fluctuations from the mixing chamber propagating down the tower.

2The intention here was to have a 10 second dead time between windows; however, an incorrect software
setting led to a 10 second dead time between triggers. This meant that every event is overlapped with the
previous events by exactly the same amount. However, other than edge cases, this just has the effect of
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Figure 5.6: Retriggered 20-second-long waveforms collected from dataset 2073 on channels
13 (blue), 26 (red) and 23 (cyan). The channels display a visible amount of correlated noise,
with channel 23 (on floor 10) lagging slightly behind the other two channels (top floor).
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Figure 5.7: Average noise power spectra from the top of the tower vs the bottom of the
tower for the retriggered run 200990 from dataset 2073 (left) and the retriggered run 201380
from dataset 2085 (right). The bottom floor consists of channels 1, 14, 28 & 40 and the top
floors are channels 13, 26, 39 & 52.

Low-Frequency Thermal Propagation

Aside from just looking at the magnitude of the correlations, we can actually learn a lot by
studying the phase evolution of the correlated noise. Unlike the correlation matrix depicted
here, the covariance matrix itself is complex and contains information about the average

doubling the data and does not change the conclusions quoted here.
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phases between correlated noise on two channels. This can be thought of as the time delay
between two channels seeing a common signal.

The phase evolution for channels 14-26 is depicted in Fig. 5.8 and displays a clear trend:
the noise on the lower floors lags behind the upper floors and the lag grows faster with
increasing frequency. We compare this trend to the phase of the noise at high frequency
which appears to display more or less a single common phase. The noise at high frequency is
consistent with capacitive pickup, which affects all channels in phase; but the low frequency
noise behaves differently.

The leading contender for the source of this behavior is thermal fluctuations propagating
down from the mixing chamber through the top of the tower and down to the bottom of the
tower. Naively, we can model each floor of the tower as a low pass filter, with some thermal
resistance to the next floor, R, and its own heat capacity, C. In this very simplified model
we can measure the RC time constant, by fitting the phase delay between floors.

∆ tan(φ)ij = ∆NijRCω (5.8)

Here, we are fitting the average phase delay between two channel, i and j, as a function of
the number of floors between them, ∆Nij and the frequency, ω. Fitting each column of the
tower separately, we measure the values listed in Table 5.1. The numbers from each column
are in good agreement.

We can perform an extremely rough estimate of the RC time constants assuming C to
be the heat capacity of four crystals, and the thermal resistance, R, comes from the four
copper posts of the frame, yields an expected RC time constant of 15 ms. Though, it should
be emphasized that this is an extremely rough model, which could vary by up to an order
of magnitude depending on the specifics of the copper and heat conduction.

With the present data, it is impossible to tell if the thermal propagation is proceeding
through the copper frame and to the bolometers through the PTFE or through the copper
wire strips and directly to the NTDs. There are two points that are worth mentioning.
First, though this low-frequency noise was never explicitly discussed in Cuoricino, tests of
a decorrelating filter significantly reduced the noise at frequencies below 1 Hz [103], which
implies the presence of correlated low-frequency noise. Cuoricino did not use the copper wire
strips but rather used Constantine wires which have much worse thermal conductivity than
copper. This might imply that the thermal propagation in CUORE-0 proceeds through the
frames, as it may have in Cuoricino. Second, as we will discuss later in this chapter, many
of the thermometers for monitoring the tower temperature on the CUORE-0 tower did not
work or were too noisy to be correlated with the bolometers; but of all the thermometers, the
one that correlated most strongly with the thermal fluctuations on the tower was thermally
anchored to the mixing chamber rather than the tower. This might imply that the thermal
propagation is missing the other thermometers and thus proceeding through the wire strips
and directly to the NTDs on the bolometers. These two facts point toward opposite propa-
gation paths for the heat, but neither is conclusive. We may be able to study this further in
CUORE or dedicated R&D runs.
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Table 5.1: The RC time constants for modeling the CUORE-0 tower as a series of thermal
low pass filters. Measured from the covariance matrix in dataset 2073.

Channels RC (ms)
1-13 38
14-26 29
27-39 30
40-52 31
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Figure 5.8: Average phase delay for channels 14-26 in dataset 2073. Z-axis shows relative
phase between the top floor of the tower (channel 26) and channels in the same column
plotted against floor and frequency. Negative values indicate phase delay. We see that
channels lag farther behind the top floor the lower they are in the tower. The phase lag grows
faster at higher frequency. The contour represents the best fit curve tan(∆φ) = ∆NRCω.



92

1
14 27 40 2 15 28 41 3 16 29 42 4 17 30 43 5 18 31 44 6 19 32 45 7 20 33 46 8 21 34 47 9 22 35 48 10 23 36 11 24 37 50 12 25 38 51 13 26 39 52

1
14
27
40
2

15
28
41
3

16
29
42
4

17
30
43
5

18
31
44
6

19
32
45
7

20
33
46
8

21
34
47
9

22
35
48
10
23
36
11
24
37
50
12
25
38
51
13
26
39
52

0

10

20

30

40

50

60

70

80

90

100

Chan. i

C
ha

n.
 j

F
lo

or

Floor1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

Figure 5.9: Channel-channel correlation matrix for ds2073 retriggered waveforms averaged
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Low-Frequency Noise During Campaign I and II

Starting in dataset 2079, we began stabilizing the temperature of the mixing chamber in
addition to the tower itself and this lead to a significant improvement in the detector stability
and a decrease in the amount of correlated noise. In Fig A.2, we see a significant improvement
in the detector behavior after the cryostat maintenance between datasets 2076 and 2079 —
but this could also have been caused by the maintenance to the cryostat as well. To examine
the behavior of the correlated noise in Campaign II, we analyzed dataset 2085 which — in
terms of resolution — was the best dataset in the CUORE-0 data taking, and compared this
to dataset 2073 which was among the worst.

The channel-channel correlation matrix from dataset 2085 is shown in Fig. 5.10 and
displays a significantly smaller degree of correlation among the channels. Still, the channels
at the top of the tower are more correlated than those at the bottom, but to a much smaller
extent than in dataset 2073. This is not simply indicative of a lower overall noise level in
2085 — but rather a decrease especially in the correlated noise.
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Figure 5.10: Channel-channel correlation matrix for ds2085 retriggered waveforms averaged
over the frequency range 0.3–2 Hz. The channel correlations in dataset 2085 display the
same pattern as dataset 2073 but at a lower level. See Fig. 5.9.
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Temperature Stabilization in CUORE

In CUORE-0, we stabilized the detector temperature using a proportional feedback loop. We
fed the output of one of the NTD thermometers through an amplifier and directly back into
a heater attached to the tower. The main difficulty with this approach was that the majority
of the thermometers that were mounted for temperature monitoring either didn’t work, or
were too noisy to use for stabilization. As a result, we had to stabilize the temperature
of the CUORE-0 tower using a sub-optimal feedback arrangement. In this arrangement,
our stabilization heater was on the top of the tower, close to the thermal anchor with the
mixing chamber, but our stabilization thermometer was on the bottom of the tower. Due
to the phase delay discussed in the previous section, our stabilization thermometer lagged
about half a second behind the noise, and was not very useful for stabilizing temperature
fluctuations that occurred within the signal band. Though, this feedback system was effective
in stabilizing longer term temperature trends (i.e. of order tens of seconds to minutes).

Figure 5.11: Possible temperature stabilization configurations for either CUORE-0 or
CUORE. The majority of the heat flow comes in and out through a bottle-neck at the
top of the tower(s). Left: The optimal feedback configuration has the temperature sensor
before the heater so as to measure temperature fluctuations before they reach the tower.
Right: The configuration used in CUORE-0, the temperature sensor did not detect tem-
perature fluctuations until after they had already propagated through the tower, and is
constantly trying to play catch up.

For CUORE, we are developing a new Proportional-Integral-Derivative (PID) feedback
system to stabilize the temperature of the towers against fluctuations in the signal band.
Aside from upgrading it to a PID system (as opposed to proportional only), the major focus
during the construction phase of CUORE is on ensuring an optimal configuration of the
feedback system as well as the quality (and redundancy) of the temperature sensors.



95

Pulse Tubes

A possible new source of correlated noise in CUORE that wasn’t present in CUORE-0 is
the Pulse Tube coolers. CUORE will have typically three but up to five pulse tubes running
during data taking. These replace the liquid helium bath and 1 k pot in a wet fridge and
provide the first stage cooling for the cryostat. This has the potential to be much quieter and
stable than a 1 K pot (which is constantly boiling liquid helium and can lead to noise) —
however, it also has the potential to induce either thermal or pick-up noise from the operation
of the pulse tubes. In the construction of CUORE, we have taken steps to mitigate this noise
source by placing as much of the moving parts of the pulse tubes far away from the cryostat.

The pulse tubes typically pulse at a frequency of ∼1.4 Hz which lies right within our
signal band. At this point, it’s not yet clear what effect this will have on the bolometers,
or indeed if this will be a problem at all. But if it does turn out to induce noise, it’s likely
that the effect will be correlated between all channels. To address this, we could use the
decorrelation algorithm described later in this chapter but more likely since the frequency of
the pulse tubes is extremely regular, a better option may be to use a very narrow software
based notch filter. This will be studied in the first test runs of the CUORE cryostat.

5.4 Towards A Decorrelating Filter

For CUORE-0, we developed a Diana module that generalizes upon the approaches taken
in [92, 104], to create general filtering framework. Here, we describe very broad outline for
this filter, but include a more detailed description in Appendix B.

Any linear filter of time series data can be expressed as a filter in frequency space and
on an even sampled time series can be expressed in the following matrix equation

Y f = W †Y (5.9)

where Y is a column vector of the unfiltered data, Y f is a column vector of the filtered data,
and W is a matrix of weights3. This form can be used to filter data over a single channel’s
time series or over multiple channel’s time series depending on the layout of the data vector
and weight matrix. For instance a single channel may be laid out as

Y =


y(ω0)
y(ω1)

...
y(ωM)

 (5.10)

3We express Eqn. 5.9 in terms of the hermitian conjugate of the weights, W †. We do this for later
convenience, but the choice of definition is arbitrary.
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whereas a group of N channels may be laid out in terms of their single channel layouts as

Y =


Y 0

Y 1
...
Y N


Specifying a filter now amounts to choosing the matrix of weights, W and the process of
filtering amounts to solving the matrix multiplication in Eqn. 5.9.

We have implemented this formalism in a new Diana module. Unlike previous filters
in Diana, which implement specific filters one at a time, this new module is general and
evaluates Eqn. 5.9 for an arbitrary set of weights. We have also implemented this class with a
set of three filters, the Optimum Filter, a Decorrelating filter, and a Decorrelating Optimum
Filter. In this section, we describe the Optimum Filter and Decorrelating Optimum Filter,
which were both used in the CUORE-0 data production.

The NewOF and DecorrOF Modules

In the Diana 2.30 data processing, we used two implementations of this new filtering module,
which we refer to as NewOF and DecorrOF. The former is a re-implementation of the same
Optimum Filter as was used in Cuoricino [92, 93, 104], and the latter is a generalization of
the Optimum Filter which takes into account correlations between channels. For these two
implementations, equation 5.9 can be rewritten in component form as

yfi (ωp) = A
s†i (ωp)

Cii(ωp)
yi(ω) (5.11)

yfi (ωp) = B
∑
j

si(ωp)
†C−1

ij (ωp)y(ωp) (5.12)

These filters take advantage of prior knowledge of the detector response function, si(ωp),
described in section 4.2, and the channel-channel noise covariance matrix, Cij(ωp), described
earlier in this chapter. A and B are normalization constants that force the filters to have on
average unity gain4

The derivation of this choice of weights — and the justification for the name ‘Optimum
Filter’ — is described in detail in appendix B. But functionally, these filters act similarly to
a bandpass filter, with a transfer function peaking around 1-2 Hz.

To Differentiate or Not to Differentiate?

One problem with frequency based filtering is that the Fourier transform implicitly assumes
that the signal is periodic — with period equal to the size of our window, 5 s. Since our

4This is different from the old Optimum Filter module (OF) which normalizes the filter so that the
measured gain is unity — a constraint that depends on the amplitude evaluation technique. But typically,
the difference in gain is . .1%.
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Figure 5.12: Top Left: An example of an NewOF filtered template pulse for dataset 2073,
channel 18. The pulse has been cyclically shifted to align with the unfiltered peak (an
artifact of the cyclic nature of the FFT). Top Right: Magnitude of the transfer function
for the NewOF filter for dataset 2073, channel 18. Bottom: A comparison of the average
noise power spectrum for the unfiltered samples (blue) and the predicted filtered noise power
spectra for the NewOF filtered (red) and the DecorrOF filtered (green) for dataset 2073,
channel 13. Channel 13 was strongly correlated with other channels, and so is predicted to
be significantly improved by using the decorrelation.

filtering procedure is essentially a convolution, we can run into problems with wrap-around.
Here the behavior at the end of the unfiltered signal wraps around and affects the shape
at the beginning of the filtered signal. This common problem is often dealt with by zero



98

padding either the beginning or end of the pulse.
In CUORE-0, we do not zero pad. Wrap-around can become a problem for events with

non-zero baseline. In terms of the Fourier transforms, this is akin to adding a signal on top of
a saw-tooth function. When passed through a bandpass filter, a saw-tooth function oscillates
at the beginning and end of the window, and this deteriorates our energy resolution. This
is most easily demonstrated in Fig. 5.13.

This problem can be significantly reduced by filtering the derivative of the pulse rather
than the pulse itself. This has two effects, first, any non-zero baseline slope is now reduced
to a DC offset. Second, it makes the effective length of the signal significantly shorter; this is
because the derivative returns to zero significantly faster than the signal itself. This second
feature also allows us to avoid the need to zero pad, as the derivative is already effectively
zero padded.

To do this, first we can trivially differentiate the average pulse

s′(tp+1) = s(tp+1)− s(tp)

however, we must also transform the covariance matrix (or average noise power spectrum)
appropriately to account for the differentiation. We use the property of the DFT that

F (n(tp+1)− n(tp)) = F (n(tp)) (e
2πi

MFreq
p − 1)

to show that the covariance matrix is transformed to

Cij(ωp, ωq)→ 2

(
1− cos

(
2π

MFreq

p

))
Cij(ωp, ωq)

5.5 The Decorrelation Procedure in the Diana v02.30

Production

The decorrelation procedure has been designed to be incorporated into the second iteration of
the standard CUORE-0 data processing. This means that rough estimates of the stabilization
and calibration parameters were produced previously and are accessible.

Grouping Channels for the Decorrelation Algorithm

To remove the common mode noise from a particular signal event, the decorrelation algorithm
needs several samples of the common mode noise in addition to the signal waveform to be
decorrelated. In principle, we could input all of the other channels in the tower for maximum
noise removal. However, decorrelating each event against all channels in the tower can be very
computationally intensive. In CUORE-0, we reduce the size of the problem by decorrelating
with only the waveforms of the geometric neighbors which were collected along with every
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Figure 5.13: Left: A pulse vs a differentiated pulse, normalized to the same amplitude.
Right: A pulse with an exaggerated slope that has been passed through the Optimum Filter.
The same pulse is also passed through after having been differentiated. The inset zooms in
on the top of the pulse.

signal event. These ‘side pulses’ were originally collected for the coincidence analysis, but
are also useful for decorrelation.

For a channel in the middle of the tower the geometric neighbors were the other three
channels on the same floor, the four channels on the floor above, and the four channels on the
floor below. Channels on the top or bottom floor of the tower simply had 4 fewer geometric
neighbors. This defines 13 overlapping groups of crystals that are all decorrelated together
— 11 groups of 12 channels and 2 groups of 8 channels. From the point of view of matrix
inversion, this grouping allows us to reduce one large matrix, into 13 smaller matrices by
ignoring correlations between channels that are more than one floor apart.

Since the majority of the correlated noise comes from thermal fluctuations, this particular
grouping of channels is nice, in that it groups channels that are strongly thermally linked.
However, there is one caveat. The decorrelation assumes that the side channels contain
samples of noise and only noise. If a side channel instead contains a particle event, it must
be excluded from the decorrelation. Unfortunately, the choice to use geometric neighbors
maximizes the probability that a side channel will have a coincident signal event. This is an
unavoidable consequence of this grouping.

An Alternate Possible Grouping

An alternative grouping is to group channels by the PENCu readout cables rather than
geometric nearest neighbors. Typically, a PENCu cable joins about three to five floors on
one side of the tower. This grouping would be more ideal for removing the noise induced by
the capacitive pickup on these cable strips.

However, this pickup results in narrow peaks around 7 Hz - 10 Hz. This is above the
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signal band and so does not contribute as much to the noise as the thermal fluctuations at
lower frequency. Further, when the data was collected, the geometric neighbors were stored
in the triggered data files, so grouping by PENCu cable would require re-triggering the data
from the continuous waveforms. Because of this we decided to use the nearest neighbors as
the grouping for decorrelation.

The Decorrelation Module

The decorrelation itself is done in with a new Diana module. As input, this module takes the
average pulses from each channel, the channel covariance matrix, and a file which specifies
the above grouping of channels for decorrelation. It then breaks up the covariance matrix
into smaller sub-matrices and inverts them to build the weights that appear in the sum in
Eqn. 5.12. To save time, these weights are built once before the module begins processing
the list of events. Once the weights have been evaluated, Diana begins to process the list of
triggered events in order. For each triggered event, the side pulses that Apollo wrote with
the event, must be ‘unrolled’ and processed before the decorrelation sum can take place.

Here, we encounter the most complicating step in the decorrelation process. The algo-
rithm explicitly assumes that the side channels are accurate snapshots of the noise on the
tower at the time of the trigger. If instead a side pulse contains its own signal event, then
the decorrelation would smear it into the primary channel being decorrelated thus worsening
the resolution.

To prevent this, we must exclude all side channels with any signal event anywhere within
the 5 second window. This is not just an anti-coincidence cut, where we exclude any associ-
ated signals within a small window of the primary trigger. This is a much more aggressive
cut that removes any side channels with even an accidental coincidence anywhere within the
5 s window.

In the Diana 2.30 data production, we used the requirement that the side channels have
no pulses anywhere within the window with |Energy| > 12 keV. By placing a cut on the
calibrated filtered amplitude of a waveform, we are specifically limiting the amount of energy
that can be smeared between two channels after filtering. In other words, this limits not
just the highest sample or derivative in the window, but the amplitude of the full detector
response shape, si(t). Though, this has the undesirable overheard of needing to filter every
side pulse. In CUORE, we intend to try to improve on this cut.

The decorrelation itself proceeds in four steps: Differentiate the signal waveform and
all relevant side channel waveforms, transform into frequency space, evaluate the sum in
Eqn. 5.12, transform back into time domain. This process is fairly straight forward, though
somewhat computationally expensive.

The only subtlety here is how to treat side channels that have been excluded from the
decorrelation. The problem is that with channels missing, the sum in Eqn. 5.12 can not be
completed. The correct way to handle this would be to return to Eqn. 5.12 and re-evaluate
the weights starting from a subset of the covariance matrix where the missing channels have
been removed. However, this potentially requires re-inverting a covariance sub-matrix for
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a significant fraction of the event. This would be significantly more computationally time
consuming. Alternatively, we could try to precalculate all possible combinations of sub-
matrices, but this is impractical. One possible future avenue, which has not been tried yet,
is to derive the inverse of the covariance sub-matrix from the inverted covariance-matrix
itself, which can be done much faster.

In the Diana v02.30 processing we simply evaluate the sum without the missing channel.
This is the fastest solution, but comes at a cost to the final energy resolution. We discuss
the consequences of this choice later in this chapter.

Amplitude Evaluation, Stabilization & Calibration

The amplitude evaluation proceeds just like the standard OF described in the previous
chapter. The decorrelated amplitudes are stabilized using the parameters that are calculated
on the standard OF amplitude. This is done for two reasons: first, since the decorrelated
filter and the optimum filter provide unbiased estimates of the true pulse amplitude, they
should have the exact same gain dependence on temperature. Second, since the heater pulses
are fired in unison for an entire column of the tower and in reasonably quick succession, the
decorrelation of the heater pulses is ALWAYS missing two channels, and is thus intrinsically
different from the signals.

The decorrelating filter displayed a slightly different gain from both the OF. This was not
unexpected, but meant that the calibration coefficients needed to be calculated separately
for each of the filtering techniques.

5.6 Decorrelating Filter Performance

On whole, the decorrelation procedure worked very well in the Diana data production.
However, at the end of the data production, the results were somewhat underwhelming.
Several things became clear. First, the correlated noise is not the primary driver of the
energy resolution at 2615 keV. Second, our handling of pulses on neighboring channels was
insufficient, and this has a major impact on the performance of the filter. Ultimately, the
decorrelation filter had only a marginal effect on the energy resolution on the 2615 keV 208Tl
peak in the calibration data, but did significantly improve the noise level in the background
data. On some channels, decorrelation improved the energy resolution at 0 keV up to ∼25%.
This could be useful for improving the low energy thresholds for anti-coincidence analyses
or even Dark Matter searches.

Performance on the Noise During Background Runs

Focusing on the noise data collected during background runs, we see that as expected, the
decorrelation has the most significant impact on the channels at the top of the tower. Some
channels at the top of the tower had their baseline noise improved by ∼15-20%. This is
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Figure 5.14: Percentage improvement of the decorrelating filter over the standard optimum
filter as measured by the FWHM at 0 keV. Channels are ordered from the bottom of the
tower on the left to the top of the tower on the right. The decorrelation filter performed
significantly better on the top of the tower compared to the bottom. Overall about 2/3 of
the channels saw improvement in the background data, but most got worse in the calibration
data (left). In the background data, we saw more improvement in Campaign I than II (right).

consistent with what we expected since the channels at the top of the tower are the ones
most directly affected by the thermal fluctuations.

Comparing the performance between the two campaigns, we see that Campaign I showed
significantly more improvement from the decorrelation, with some channels improving by as
much as ∼ 30%. Again, this is as expected. Starting at the begin of Campaign II, we began
stabilizing the mixing chamber temperature with its own feed back loop and the amount of
correlated noise decreased.

In Fig. 5.15, we show a comparison between the expected filtered noise power spectrum
and the measured noise power spectrum after the filter. For the background data, they
line up nearly exactly, which gives us confidence that the decorrelating filter is working as
it should. We see that the NPS turns up over the predicted curve above a frequency of
∼ 30 − 40 Hz. We believe that this has to do with the fact that the template pulse (which
is built by averaging many pulses) runs into its own noise floor. See Fig. 4.4.

Performance on the Noise During Calibration Runs

Focusing on the noise data collected during calibration runs, we see significantly worse per-
formance. In Fig. 5.15 we show a comparison between the measured filtered NPS and the
predicted for the background and calibration runs. While the background runs closely fol-
low the prediction, the calibration runs show excess noise at low frequency, which ruins the
energy resolution. There are three possibilities as to why this could be, which we briefly
explain:
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Figure 5.15: Theoretical filtered noise power spectrum vs actual filtered noise power spectrum
for channel 13 (left) and channel 18 (right) on dataset 2073.

First, our measurement of the decorrelation performance on the background data is done
using the same noise pulses that were used to build the covariance matrix. In other words,
we are testing the filter on the very data that was used to build the filter. So, its possible
that we are simply over-tuning our filter. However, this is unlikely since we are only building
an average covariance matrix which has much fewer degrees of freedom than there are noise
events to be decorrelated. Further, we have seen good results using a covariance matrix built
on neighboring datasets, so this explanation is unlikely.

An second possibility is that the noise is significantly different in the calibration runs
than in the background runs. In other words, perhaps we are using the wrong covariance
matrix. However, this too does not pan out. We see no obvious differences between the noise
power spectra produced on calibration runs vs background runs.

This leaves the event rate and the most problematic part of the decorrelation: finding
signal free noise. The calibration runs typically have a ∼100 times higher event rate than
the background runs. The first assumption of the decorrelation procedure is that the side
channels being used to decorrelated a signal pulse contain only noise information and no
signals of their own. If this assumption breaks down, then our decorrelation algorithm stops
decorrelating noise and begins correlating signals. To counter this, we implemented a cut on
the side channel waveforms before they could be used in a decorrelation. To give a rough
idea of the numbers, the typical event rate for a channel during a calibration run is ∼60 mHz,
which means that probability of no events in any 5 second window is roughly ∼75% — but
the probability of no events in any 5 second window on all 11 side channels around any
given channel is ∼ 4% (for background data, this number is closer to 70%).

There are two possible scenarios where a high event rate could cause this our decorrela-
tion to fail. In each decorrelation, either we are successfully removing all the side channel
waveforms that contain signals and what remains is too few side channels to reliably decor-
relate or we are not successfully removing all of the side channel waveforms with signals and
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these signals are worsening our resolution. The troubling aspect of this, is that the correction
for either of the two scenarios will lead us into the other scenario.

In Fig. 5.16, we show the distribution of number of channels used per noise event for
channel 18 in dataset 2073. Each noise event for channel 18 is decorrelated using up to 12
channels (itself included), but when a side channel waveform has its own signal that waveform
must be excluded and the number of channels used in the decorrelation decreases. We see
that for background data, most events were decorrelated with all 12 available channels —
and those that weren’t were typically missing only one or two side channels. However, in
the calibration data, it was far more typical for an event to be decorrelated with only 8 or
9 channels and not uncommon for an event to be missing 6 or 7 side channels. This was
typical of other channels as well.

What’s more telling is that the energy resolution does not appear to degrade with de-
creasing number of pulses used. This is indicative of the second scenario, where we are not
fully removing side channels with signal events.

It’s possible that the conclusion of this study is that the calibration runs may just have
too high of an event rate to accurately run the decorrelation procedure — or perhaps we
need to think of a more clever way to deal with signals on side channels.
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Figure 5.16: Left : Distribution of the total number of pulses used in the decorrelation
procedure for channel 18 over all datasets for background noise (blue) and calibration noise
(red). For channel 18, the maximum number of channels used in the decorrelation is 12
(including channel 18). We see that in the background data, most events used 11 or 12
channels in the decorrelation. In the calibration runs, the filter usually excluded a significant
number of side pulses from each event. Right: Energy spectra for noise events which had a
different number of side pulses excluded. We see (contrary to expectation) that the fewer
side pulses used does not lead to worse energy resolution.
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Decorrelation in 208Tl Resolution

The typical energy resolution at 2615 keV is about 5-6 keV FWHM, while at 0 keV, it is
closer to 2-3 keV FWHM. If we assume that the noise adds in quadrature, this means that
the baseline noise accounts for roughly 10% of the resolution. (In Chapter 6, we make this
estimate more concrete.) So at best, our improvements in the noise at 0 keV will be reduced
by ∼10% at 2615 keV.

Despite the poor performance on the calibration data, the decorrelation performed quite
well on the background data. We expect that this could translate into improvements in the
energy resolution at 2615 keV. But in order to measure the energy resolution at 2615 keV, we
must perform a calibration run to build enough statistics to measure the energy resolution
at 2615 keV — but of course, this ruins the improvement we are trying to measure. A rather
beautifully ironic paradox: a measurement ruins the measurement.

In the final CUORE-0 dataset, the decorrelation is used on ∼20% of the data. The algo-
rithm for deciding whether or not to use the decorrelated variable is described in section 4.3.
Mostly, the decorrelation was useful on the top three floors of the tower.

Decorrelation Outlook for CUORE

The decorrelation algorithm performed well in the background noise data and so can be useful
as-is for low threshold analyses like anti-coincidence and Dark Matter searches. However, for
a 0νββ search the discrepancy between the filter performance in background and calibration
data needs to be addressed.

We have concluded here that the degradation of the filter performance on calibration
data is caused by the high rate of accidental coincidences on side channels that goes along
with the increased event rate. This causes a breakdown of the assumptions that go into the
decorrelating filter (see Appendix B), and thus worse resolution than the non-decorrelating
filter. There are several possible avenues to address this in CUORE.

The first approach is to better handle excluded side channels with accidental coinci-
dences. Here, we have chosen to just exclude them from the decorrelation, which degrades
the resolution. This required us to be very permissive in letting accidental coincidences into
the decorrelation, which also degrades our resolution. One possibility is to actively search
for channels in the tower without accidental coincidences rather than using a predefined set
of side-channels. Computationally, this is a difficult and time consuming proposition. This
could require evaluating pulses on many potential side channels until an adequate number
are located, and reinverting covariance matrices on the fly. There are numerical tricks to
make this faster, so perhaps this possibility is worth exploring.

Alternatively, since accidental coincidences are uniformly distributed in time, they can
be thought of as a kind of ‘noise’ on our amplitude evaluation and folded into the covariance
matrix. This would add an additional source of channel-uncorrelated ‘noise’ which would be
rate dependent — the more accidental coincidences we expect the more channel-uncorrelated
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‘noise’ is in our covariance matrix5. The addition of this uncorrelated noise would decrease
the expected performance of our decorrelating filter; but by accounting for the additional
‘noise’ source in the calibration data it could bring our filter performance in line with our
expectations. The limiting case of this is when the covariance matrix is completely dominated
by uncorrelated noise and our decorrelating filter becomes identical to our non-decorrelating
Optimum Filter. (This limit is demonstrated in Appendix B.)

This raises another possibility. We could also use a different filter for the calibration data
and the background data. Since we know that the decorrelating filter seems to perform well
on the background data but not the calibration data, why not use the Optimum Filter on
calibration data, and the decorrelating filter on background data? The only constraint is
to require that the two filters have the same gain at all energies in order to calibrate the
background data without bias. But this also leads to the problem that we mentioned earlier:
How do we measure the detector resolution in the background data at the 0νββ Q-value?
One possibility is to split the detector resolution into an energy dependent component and
a constant offset

σ2(E) = f(E) + σ2(0 keV) (5.13)

However, this requires a more detailed understanding of the sources of noise in the detector
than we presently have. As we will see in Chapter 6, our ignorance of this dependence is
already becoming a problem in the present analysis.

5It is worth noting that this is slightly complicated by the fact that the accidental coincidence ‘noise’
would be frequency-correlated.
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Chapter 6

CUORE-0 Analysis and 0νββ Fit

This chapter focuses on fitting the ROI and extracting a limit on the 0νββ decay rate, Γ0νββ.
Our general approach is to perform a maximum likelihood fit of a detector response function,
fDet(E), at the position we believe a 0νββ signal would appear. From the resulting fit signal
amplitude, we are able to extract a decay rate. The key ingredients to this approach are
understanding the detector response function, fDet(E), the expected location of the 0νββ
signal, and the signal detection efficiency, ε0νββ.

This chapter begins by presenting and discussing the final unblinded CUORE-0 spectra.
We then use the background data to estimate the signal detection efficiency, ε0νββ. We
then switch tracks and discuss the detector response function, fDet(E). Our approach to
estimating this is to use the high-statistics 208Tl line in the calibration data to build a
detector response for each channel-dataset pair.

Before we use fDet(E) to fit our ROI, we will first use it to fit other lines in the background
spectrum. Partly this allows us to validate our fitting technique, but it also gives us insight
into a residual calibration bias, ∆µ(E), that exists as a result of our energy reconstruction
procedure, as well as an energy dependent component of our detector energy resolution.
This residual bias slightly modifies where we search for our 0νββ peak, and the scaling of
the energy resolution with energy slightly modifies how wide we expect our signal to be.
With these modifications in hand, we fit our ROI using an unbinned extended maximum-
likelihood (UEML) fit and obtain a limit on Γ0νββ that includes statistical uncertainties
alone.

The latter part of this chapter is devoted to understanding our systematic uncertainties
and how these affect our limit. Specifically, these include our uncertainties on all of the above
steps: our choice of fDet(E), our uncertainty on ε0νββ, our uncertainty on the position of the
0νββ line and its resolution, as well as any bias introduced by our UEML fitting technique.
We quantify the effect that most of these have on our final result using toy Monte Carlo
experiments, which we describe later in this chapter.

This chapter concludes by presenting a limit on Γ0νββ including both statistical and
systematic uncertainties. We compare the limit set here to the one set by Cuoricino and
TTT, and combine them to form a single limit on the decay rate of 130Te. Finally, we use a
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range of matrix elements to convert this to a range of limits on mββ.
So hold on tight, because here we go.

6.1 Final Physics Spectra

We produce our final physics spectra by summing over all datasets. For the rest of this
thesis, we will refer generically to the set of Aggressive energy estimators that we defined in
Chapter 4 as the “Energy”.

Creating a Summed Calibration Spectrum

To build a final calibration spectrum that is representative of the background data, we chose
a scheme that weights calibration data by the amount of background exposure.

We begin by normalizing the histogram (or fit), H(D,C;E)dE, from dataset D on chan-
nel C, to unity over the range 2560–2650,

RCal(D,C;E) =
H(D,C;E)dE∫
E
H(D,C;E)dE

As long as the number of events in the range is large, this is a good approximation to dividing
by the expected number of events, which cancels out variations in the detector counting rate
between channels and datasets.

From here, we combine these normalized PDFs over channels and over datasets by weight-
ing by the background exposure, TBkg(D,C). For instance, the total weighted calibration
spectrum is given by

RCal(E)dE =

∑
D,C TBkg(D,C)RCal(D,C;E)∑

D,C TBkg(D,C)
dE (6.1)

Keep in mind, that since the calibration rate depends on the placement of the source
strings — which can vary from dataset to dataset — the overall normalization of this cal-
ibration spectrum is arbitrary. For presentation, we normalize the resulting spectrum so
that the integral of the 208Tl line matches that of the background spectrum. This is shown,
plotted against the final CUORE-0 background spectrum in Fig. 6.1.

CUORE-0 vs Cuoricino in the α Region

We can compare the background spectrum of CUORE-0 to that of Cuoricino, to measure
the efficacy of the background reduction procedures. We compare the full range and the α
region alone in Fig. 6.2.

We measure the expected α-continuum rate in the ROI by measuring the continuum in the
region 2.7–3.9 MeV, but excluding the 190Pt line between 3.2–3.4 MeV. 190Pt is a naturally
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Figure 6.1: The final CUORE-0 background spectrum (blue) and the final weighted calibra-
tion spectrum (red). The weighted calibration spectrum has been normalized so that the
rate at the 208Tl peak matches that in the background.

occurring isotope of Pt. The contamination is incurred during the crystal production which
uses thin Pt bags to hold the crystals as they grow. Typically, this contamination manifests
as tiny Pt inclusions within the crystal. But because of the extremely short range of α
particles, we get little to no degraded α spectrum from 190Pt — in other words, all 190Pt
decays are reconstructed in the 190Pt peak. So this line does not present a background for our
0νββ analysis. It is worth noting that these inclusions do affect the crystal’s heat capacity,
causing a change in the pulse shape (see Fig. A.4).

The rate between 2.7–3.9 MeV excluding 3.2–3.4 MeV is measured to be

bα = 0.0162± 0.0007 cnts/keV/kg/yr (6.2)

We compare this to the rate measured for Cuoricino of bα = 0.110 ± 0.001 cnts/keV/kg/yr
[68]. This is a factor of almost 7 reduction in background in the α region. This is consistent
with expectation and demonstrates the efficacy of our background reduction program for
CUORE.
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Figure 6.2: The final spectra for CUORE-0 and Cuoricino over 0–10 MeV (top) and
the α region alone (bottom). The α background rate is measured over the range
[2.7, 3.2] ∪ [3.4, 3.9] MeV. The line at 3.3 MeV is a 190Pt line that comes from bulk con-
tamination during the crystal growth process.



111

6.2 Efficiency Evaluation

The signal efficiency is calculated as the product of the containment efficiency, the trigger
and reconstruction efficiency, and the cut efficiency. These are, in order, the probability a
0νββ event deposits its full energy into a single crystal, the probability that we correctly
trigger on it and reconstruct its amplitude correctly, and the probability that the event
passes all of the signal cuts. A detailed description of the efficiency evaluation can be found
in [105].

The containment efficiency is estimated by Monte Carlo. We generated 5 × 106 0νββ
events uniformly throughout the volume of the crystals. We simulate detector effects like
resolutions, channel thresholds, event pile-up and dead channels that have all been measured
from the CUORE-0 detector. The containment efficiency is calculated as the number of
events that lie within the 0νββ peak compared to the number of events generated.

εContainment = (88.345± 0.04(stat)± 0.075(syst))%

The trigger efficiency and energy reconstruction efficiency are calculated together using
the pulser events. Apollo automatically flags and records each heater event with a flag
indicating that it is associated with the pulser. But if the event passes the signal trigger
threshold, then the signal trigger is recorded in the event as a secondary trigger. The trigger
efficiency is calculated as the fraction of heater events that also have a signal event as a
secondary trigger.

The energy reconstruction efficiency is calculated by taking the fraction of pulser heater
events that occur within ±3σ of the mean heater energy for each channel in each run and
dividing by .997.

The total trigger and reconstruction efficiency is the product of these two numbers and
the uncertainty comes from counting statistics.

εTrigger = (98.529± 0.004)%

This efficiency cannot be calculated on channels without functioning heaters (i.e. channels
1 and 10), so for these channels, we just assume the average efficiency of the other channels.
For &500 keV events, this is generally a safe assumption since the efficiency is driven by
pile-up and noise scattering events, rather than anything having to do with the heaters.

We split the cut efficiency into two parts: the pile-up and pulse-shape cut efficiency,
and the multiplicity cut efficiency. Since the pulse-shape cuts were tuned on the half of the
events with even numbered timestamps, we performed the efficiency calculations on the half
of events with odd numbered timestamps.

We calculate the pile-up and pulse-shape efficiency by measuring the fraction of events
in the 2615 keV 208Tl background peak that survive the pile-up and pulse-shape cuts.

εPile-Up & PSA = (93.7± 0.7)%
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The efficiency due to accidental pile-up (which is the dominant component of the pile-up
efficiency) is independent of energy as is the efficiency of the PSA cuts (see section 4.3).

Since a fraction of the 208Tl 2615 keV events are expected to occur in coincidence with
a 538 keV γ, we calculate the multiplicity cut efficiency on the 40K 1460 keV line, which is
expected to be a true multiplicity-one event. We take the pile-up efficiency to be the fraction
of events in the 40K peak which survive the multiplicity cut, which yields

εMultiplicity = (99.6± 0.1)%

This efficiency represents the probability of an accidental coincidence between two crystals,
and is therefore independent of energy.

The uncertainties on each of these efficiencies were estimated using a Clopper-Pearson
interval [106]. The total cut efficiency is given by

εCut = (93.3± 0.7)%

The final total 0νββ signal efficiency is given by

ε0νββ = (81.3± 0.6)%

This is on par with the efficiency seen in Cuoricino, 82.8± 1.1%.

Table 6.1: Summary of 0νββ signal efficiencies.

Containment Efficiency 88.345± 0.04± 0.075%
Trigger Efficiency 98.529± 0.004%

Cut Efficiency 93.3± 0.7%
Total Efficiency 81.3± 0.6%

6.3 208Tl Line Shape From Calibration

We model the detector response to 0νββ by fitting the shape of the 208Tl 2615 keV calibration
line and scaling some of the shape parameters down to the ROI. We use this shape because
the 2615 keV line is only 87 keV above the expected 0νββ decay value, so any energy-
dependent detector effects should be small. However, this approach is not without its caveats
which we will discuss in the systematics section.

Line Shape Model

We fit the calibration 2615 keV line in RooFit with a large simultaneous fit over all chan-
nels and datasets, with each channel-dataset (ChDs) pair having its own set of mean and
resolution parameters while sharing some common shape parameters. The final CUORE-0
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dataset contained 1008 ChDs pairs, so this fit is actually 1008 simultaneous fits with some
3129 free parameters over 542826 events. The free parameters are listed in Table 6.2.

The fit was performed over the range 2560–2650 keV. For CUORE-0 we used an empirical
model for each ChDs pair that can be written as

fCal(D,C;E) = fCDet (E0(D,C), σ0(D,C);E)
+α30keVf30keV (E0(D,C), σ0(D,C);E)

+
αCompt

2
Erfc

(
E0(D,C)−E√

2σ0(D,C)

)
+αBkg

(6.3)

This model describes a primary detector response with a shape given by fCDet(µ, σ;E),
centered at E0(D,C), with a resolution of σ0(D,C). The central energy, E0(D,C), and
resolution, σ0(D,C), are both free to float for each ChDs. We have several models for the
detector response function, fDet(D,C;E), that we will describe later in this section; the
fitting procedure is identical for each response function.

The second element of the calibration shape describes an X-ray escape peak that lies
∼30 keV below the main peak at E0(D,C). The amplitude of the escape peak is suppressed
by a fraction α30keV. This fraction is a global parameter common to all channels and datasets
but is free to float in the fit.

The next part is a gaussian-smeared “step function” that mimics the spectrum of γ-rays
that scatter and lose energy before interacting with the bolometer. The number of events
in the Compton shoulder is also pegged to the number of events in the photopeak and is
characterized by the ratio αCompt. This ratio is also common to all channels and datasets
but is a free parameter in the fit.

The final element is a flat background that fits the continuum at energies above the
primary peak. These events are mostly from accidental coincidences within a single crystal
and poorly reconstructed events and therefore this background should be proportional to
the signal rate in the crystal. Thus the amplitude of the flat background is also expressed
as a fraction of the main peak, αBkg, which is also common to all channels and datasets.

The channels are summed together to form a total PDF,

fCal(E) =
∑
ChDs

NSig(D,C)fCal(D,C;E) (6.4)

Here NSig(D,C) is a parameter that encompasses the number of events in each ChDs’s main
peak, and is also free to float.

Detector Response

In Cuoricino, we modeled the 2615 keV γ line with a simple gaussian, but the improved
energy resolution in CUORE-0 reveals a more complicated substructure just below the pri-
mary photopeak. We have several empirical models for the detector response to a γ-ray,
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Table 6.2: Floating parameters in the simultaneous fit, their limits, and their domains of
applicability. The detector response, fDet, is characterized by one or two parameters, here
we quote the parameters for the standard approach: rSub and αSub.

Parameter Domain Range NPar

RSig ChDs 103 - 105 1008
E0(D,C) ChDs 2612-2618 1008
σ0(D,C) ChDs 0.8-15 1008
rSub(C) Channel .997-.999 51
αSub(C) Channel 0.01-0.5 51
α30keV Global 10−4 - 10−2 1
αCompt Global 0.01-0.05 1
αBkg Global 1

Total Parameters 3129

fDet(µ, σ; , E), but our primary approach models the peak as a sum of two gaussians, one for
the main photopeak and a second sub-peak for the substructure.

fCDet(µ, σ;E) = (1− αSub(C))Gauss(E;µ, σ) + αSub(C)Gauss(E; rSub(C)µ, σ) (6.5)

The shape of the detector response varies by channel and is characterized by two parame-
ters: αSub(C) and rSub(C), which determine the amplitude and the position of the sub-peak
gaussian. Both gaussians share the same σ.

Some of the better channels in Cuoricino showed hints of this substructure, but it was
really the improved resolution of the CUORE-0 detector that has made this substructure
clear. The gaussian substructure tends to correspond to a ∼0.25% energy loss — or alter-
natively, we can look at it as a peak shifted down from the main peak by ∼6.5 keV. The
amplitude of this substructure is typically ∼ 5% of the main photopeak. Because we saw
hints of this effect in Cuoricino, as well as the ubiquity of this substructure among the peaks
in the CUORE-0 data as well as the absence of the substructure in the reconstructed pulser
heater line, we believe this is a detector effect and not a result of our energy reconstruction.
At present, however, we have no convincing physical explanation for its origin.

For these reasons, we are inclined to believe that the substructure should also be present
in the 0νββ signal shape. However, as we don’t yet understand its physical origin, we
accept the possibility that this may not be the case. Our primary approach includes the
substructure as part of the 0νββ line shape, but because of our ignorance of it origin we will
study the effect of the lineshape as part of our systematic uncertainty study.

30 keV X-ray Escape

When a γ-ray scatters off an electron in the crystal lattice, it generally ionizes the atom to
which that electron was bound. If the ejected electron comes from one of the inner atomic
shells, then atom will often release X-rays as the electrons rearrange themselves. If one of
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these X-rays escapes the crystal, this results in a slightly lower detected energy. Tellurium
has a set of characteristic X-rays between 27–31 keV whose escape peak we refer to generically
as the 30 keV X-ray escape peak.

This peak is an interesting case unto itself. It is in many ways a toy version of the actual
0νββ fit. The 30 keV peak is a small (∼.1%) peak that lies ∼30 keV below a much larger
peak; a 0νββ signal would create a small peak that lies ∼20 keV above a (presumably) larger
peak, the 60Co sum peak at 2506 keV. So this line provides a good demonstration of the
resolving power of our bolometric technique in regards to our 0νββ search.

The 30 keV line is not actually a single line, but is instead a sum of ∼6 lines. (Actually,
there are more than 6 lines, but here we use the strongest 6.) We model this line as a
constrained sum of 6 separate lines that are pinned to the main photopeak energy, E0(D,C):

f30keV(D,C;E) =
6∑
i=1

αiGauss (E;E0(D,C)− δEi, σ0(D,C)) (6.6)

The relative intensities and energies can be looked up in X-ray data tables [107], but here
we use values taken from Monte Carlo data which account for the relative probabilities of
escaping the crystal. They are listed in Table 6.3.

Table 6.3: Relative intensities and energies for the 30 keV X-ray lines. Numbers are taken
from the CUORE Monte Carlo.

Line δEi (keV) αi (%)
1 27.20 26.5
2 27.47 50.4
3 30.96 21.6
4 31.22 0.49
5 31.65 0.50
6 31.80 0.42

A Tail of Two Gaussians

We also investigated another model for the calibration detector response. This model re-
placed the single-gaussian substructure shape with two sets of X-ray escape peaks similar
to the 30 keV structure. The model is based on the observation that Te has three lower
energy X-rays at ∼3–4 keV in addition to the 30 keV lines. However, the line shape is not
modeled well with just these X-ray escape lines, but rather we must include a double-escape
line where two X-rays escaped. In this model we parameterize the substructure as

fCDet(µ, σ;E) = (1− αSingle(C)− αDouble(C))Gauss(µ, σ;E)

+αSingle(C)
∑3

i=1 αiGauss (µ− δEi, σ;E)

+αDouble(C)
∑3

i=1

∑3
j=1 αiαjGauss (µ− δEi − δEj, σ)

(6.7)
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Here, the sums run over the three Te X-rays with energies around 3–4 keV; δEi and αi are
their energies and relative intensities. These energies and intensities are listed in Table 6.4.
The parameters αSingle(C) and αDouble(C) are the ratio of the number of events in the single
or double-X-ray escape peaks to the main photopeak; these parameters are floated in the fit
and are only channel dependent.

This model looks far more complicated then the standard approach. However, it has
the same number of free parameters as the fit in the previous section. The fit with the
single gaussian substructure had a floating mean and amplitude; this model has two floating
amplitudes but fixed means.

Table 6.4: Parameters for the Te X-rays around 3–4 keV. Numbers are taken from the
CUORE Monte Carlo.

Line δEi (keV) αi (%)
1 3.77 35.5
2 4.03 52.1
3 4.25 12.4

This model produced similar residuals to the model with a single-gaussian substructure,
produced a comparable χ2 and negative log likelihood. However, this model implies an
unphysically large number of X-ray escapes from the crystal. Because the attenuation length
of 4 keV X-rays in TeO2 is so short, we expect all X-ray escapes to come from interactions in
a very shallow surface layer, and thus to be suppressed by ∼ 5 orders of magnitude relative to
the main peak. But the number of events observed in the substructure is only suppressed by
a factor of ∼20 to the main peak. As a result, we have a hard time attributing the observed
substructure to X-rays. For now, we leave this interpretation as an interesting possibility
that could be explored further in future investigations.

Calibration 208Tl Fit

The final fit to the calibration 208Tl 2615 keV line using the detector response in Eqn. 6.5
is shown in Fig. 6.3. Overall, the model does a good job describing most of the features
in the lineshape over ∼3 orders of magnitude. However, the residuals display some clear
structure around the main photopeak of the line, possibly indicating that we are overlooking
or oversimplifying some small shape effects. The fit also reproduces the shape of 30 keV
escape peak, which we are modeling for the first time as a sum of 6 individual gaussians.

Figure 6.4 shows the distribution of the 208Tl photopeak means. There are two points
to take away from this plot. First, the distribution is centered at ∼2614.7 keV, instead of
the true energy, 2614.511 keV. This 0.2 keV shift stems from the fact that the first-level
production calibration module fits the energy peaks with simple gaussian line shapes, and
the substructure causes these lines to be slightly biased downward. The second point to take
away from the distribution of means is that the RMS of means is ∼0.2 keV, which is the
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Figure 6.3: Fit to the calibration 208Tl 2615 keV line with normalized residuals in linear
and log scales. Here, we use the standard approach of a gaussian photopeak with a single
sub-gaussian to model the substructure. The bump around 2585 keV is the 30 keV X-ray
Te escape line modeled with a sum of 6 individual gaussian lines.
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residual shift after the calibration fit. We return to this issue and how we handle it in the
final 0νββ fit later in this chapter.
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Figure 6.4: Top Left: Distribution of photopeak means from the line shape fit. Top Right:
Distribution of measured FWHM values from lineshape fit. Bottom Left: Scatter plot of
208Tl 2615 keV gaussian variance vs calibration baseline noise variance with best-fit line.
Bottom Right: Gauss + X-ray detector response fit to 208Tl calibration data on channel 18.
In blue, the Gaussian lines for the main peak, 4 keV escape, double escape, and 30 keV
X-ray escape. In black is the step function.

Figure 6.4 also shows the distribution of the fit variance at 2615 keV for each ChDs
plotted against the variance of the baseline noise for that dataset. Unsurprisingly, we see
strong correlation between the two variables, indicating that higher baseline noise leads to
higher noise level at 2615 keV. But, surprisingly, we see an intercept of σ2 = 1.97 keV2

indicating that at 2615 keV we have an excess variance of ∼ 2 keV2 (FWHM of ∼3.3 keV)
on top of any baseline noise. This is an order of magnitude larger than the RMS of the
photopeak means and indicates some other source of noise above the baseline and calibration
shifting.

Presently, we do not understand the source of this excess noise, but we can say several
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things about it. First, the pulser heater — which typically reconstructs around 3.5 MeV
— does not show this excess variance, but has roughly the same energy resolution as the
baseline noise (∼2-4 keV FWHM). We thus believe that this excess noise over the baseline
seen in the 2615 keV peak is intrinsic to particle interactions. We could imagine several
sources for this, such as a position-dependent gain within the absorber, the down-conversion
of athermal phonons to thermal phonons, trapped electron-hole pairs within the crystal
lattice or something else completely. In the future, we would like to better understand this
through a combination of R&D runs and absorber modeling.

The second thing that we can say about the excess noise, is that it is energy dependent
— but we do not know the form of that energy dependence. Later in this chapter, we will
fold this into our 0νββ fit as a systematic uncertainties — in fact this is one of our largest
sources of systematic uncertainty.

Detector Performance Figure Of Merit

When quoting the energy resolution of our detector, it is common to report the FWHM at
the 2615 keV line because of its proximity to the 0νββ Q-Value. However, as seen here, we
actually have 1008 FWHM values which all contribute to the final physics result. During
CUORE-0, we reported two values which were meant to be figures of merit: the summed
FWHM and the effective FWHM.

The summed FWHM is obtained by summing the calibration data and plotting a summed
line shape (as in Fig. 6.3) and measuring the FWHM of the summed line. This has the
advantage of being true to the plot — if someone were to examine the plot, this is the
FWHM they would measure. However, this number has a few disadvantages. First, it
contains all of the inter-dataset and channel shifting shown in Fig. 6.4 (which is not part of
our detector resolution when doing a ChDs dependent fit). Second, it bears little resemblance
to the actual 0νββ, since it is heavily weighted by channels with higher event rate during
calibration.

An alternative number to quote is the effective FWHM. This is defined as

Effective FWHM ≡

(∑
i

TBkg,i

)/(∑
i

TBkg,i

FWHMi

)
(6.8)

This is the harmonic mean of the ChDs FWHM values weighted by the background exposure,
TBkg. This is inspired by Eqn. 2.31, and is more akin to weighting the FWHM by each ChDs’s
contributions to the sensitivity.

The reported calibration FWHM values are shown in Table. 6.5 and are representative
of our detector performance. Note, however, that these numbers do not enter into our 0νββ
fit.
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Table 6.5: Summed and effective FWHM at 2615 keV values for CUORE-0, by phase. These
numbers are meant to be indicative of the detector performance, but do not appear anywhere
in the actual 0νββ analysis.

Summed FWHM (keV) Effective FWHM (keV)
Phase I 5.31 5.65
Phase II 4.56 4.77
Phase III 4.63 4.81
Phase IV 4.44 4.65

Total 4.81 4.93

6.4 Projecting the Detector Response

Our approach to fitting the peaks in the ROI is to use the detector response function de-
scribed in Eqn. 6.5, fix the shape of the substructure to the best-fit from the high statistics
calibration fit, and shift the whole line down to the ROI, leaving as few free parameters
as possible. We begin by validating this technique on other known lines in the background
spectrum to understand a few systematics of the technique. In this section, we use these
fits to first understand a residual bias in the reconstructed energy estimators, and then to
understand the detector resolution. Then, in the next section, we will apply this fit to the
ROI and measure the peaks in the ROI.

We fit each peak with a fit function that depends on channel and dataset and is given by

fPeak(D,C;E) = fCDet (µ, rσσ0(D,C);E) + p1E + p0 (6.9)

Here, we project the best-fit detector response from the calibration 208Tl down to fit a peak
centered at µ (note that in this projection, µ is a global parameter for all channel-dataset
pairs). We fit the background with a polynomial; in most cases a linear background produces
a good enough fit. The σ0(D,C) are the best-fit gaussian resolutions from the calibration
208Tl fit. All ChDs pairs are scaled together by a global scaling factor, rσ

1. One important
aspect of this approach is that we assume the substructure sits at a constant fraction of the
main peak energy. In doing this, we make an implicit assumption about the origin of the
substructure — namely that it scales with energy. This is a purely phenomenological choice
justified by the quality of the resulting fits.

The ChDs pairs are summed together slightly differently for calibration and background
data. For calibration data, we assume that the number of events in each peak in the spectrum
is proportional to the number of events in the 208Tl peak. We thus sum together the ChDs

1We also briefly investigated an alternate scaling of the gaussian resolution. Instead of scaling the
full resolution, σ(D,C), we scaled only the variance in excess of the baseline variance. We wrote
σ2(D,C) = r2σ(σ2

0(D,C) − σ2
0 keV(D,C)) + σ2

0 keV(D,C). This approach assumes that the noise is partly
a constant from the baseline noise plus another source which is energy-dependent. This approach produced
promising results, but we did not pursue it due to time constraints.
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pairs as

fPeak(E) =
∑
ChDs

αPeakNSig(D,C)fPeak(D,C;E) (6.10)

where NSig is the best-fit number of events in the calibration 208Tl fit and αPeak is a global
parameter that determines each peak’s intensity relative to 208Tl. For the background lines,
we assume that all channel-datasets have the same event rate. In this case, the number of
peak events for each channel-dataset is proportional to its exposure times the global event
rate. We know that this assumption is not completely correct and that the background event
rates have a non-zero channel dependence (see Fig. A.3), but we find that accounting for
this has little effect on our results. Thus, in our projected fit there are 5 floating parameters:
the peak position, µ, the energy resolution scaling, rσ, two parameters for the background,
and the global event rate (for the background peaks) or the ratio of peak intensity to 208Tl
(for calibration peaks). We perform this fit on 33 lines in the background data and 7 lines
in the calibration data. Several of these projections are shown in Fig. 6.5. The distribution
of peak residuals is shown in Fig. 6.6; this is the µMeasured − µExpected.

The 2506 keV 60Co sum peak is a significant outlier from the rest of the distribution,
and possibly the 208Tl single escape peak at 2103 keV as well. A similar effect was seen
in Cuoricino where the 60Co peak was centered at 2506.5 ± 0.32 keV (gaussian fit). These
peaks have fundamentally different topologies from the rest of the peaks in that they are, by
definition, a coincidence of more than one high energy γ in a single crystal. The 60Co peak
is a coincidence of two γ-rays at 1.17 MeV and 1.33 MeV, while the single escape peak is
a 2615-keV γ that pair-produces within the crystal and creates two 511-keV γ-rays, one of
which is absorbed in the same crystal. These two types of events are fundamentally different
from most other peaks, either in that they are more spatially distributed across the crystal
or in that they produce a different spectra of athermal phonons. Though we do not yet fully
understand the microscopic mechanism for why these peaks are shifted, preliminary Monte
Carlo modeling indicates that the spatial extent of the energy deposition for these events is
indeed different. Combining this suspicious feature with the fact that that other 31 peaks in
the background spectrum are very well reproduced, we do not consider the shift in the 60Co
peak to be indicative of a problem with our energy calibration. It is just an unfortunate
coincidence that this peak happens to lie in our ROI.

The average of the peak residuals in Fig. 6.6 (weighted by the inverse square error) is
0.11 keV. We attribute this residual to the fact that we calibrate using gaussian line shapes,
which slightly underestimates the peak position because of the substructure that became
evident later in the analysis. The residuals also display a small parabolic energy dependence,
which we believe is also a relic of the calibration process — namely, that the calibration point
at 1592 keV is actually a sum of two lines and is systematically underestimated. We plan to
address these issues in CUORE.

For CUORE-0, we fit these peak residuals to understand our calibration bias as a function
of energy, ∆µ(E). This is the amount we expect a peak to be reconstructed off from its true
energy as a function of the true energy. In the next section, we will peg our fit in the ROI
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Figure 6.5: Projection of the lineshape model onto the background 1460 keV line (top left),
calibration 208Tl double-escape peak at 1592 keV (top right), and the background 208Tl
2615 keV peak (bottom left). Bottom Right: The resolution scaling rσ of the fits to the back-
ground peaks as a function of peak energy. The error bars are statistical only. Some peaks’
resolutions are broadened by other effects. For example, the 511 keV peak is broadened by
a 510.77 keV 208Tl line as well as positron decay in flight and is not used in this fit.

to the 208Tl calibration value and shift our lines down by an amount close to QTl − Q0νββ.
Because of this, we are not interested in the absolute bias at the 0νββ energy, but rather on
the relative bias between the calibration 208Tl peak and the 0νββ position. To reflect this, we
consider the calibration 208Tl line to be a fixed point and constrain ∆µ(E) to pass through
the 208Tl calibration peak residual, 0.21 keV. The fit is performed over the background lines,
and the 60Co sum peak and the 208Tl single escape are excluded. This result, shown in
Fig. 6.6, yields a reasonably good fit with a χ2 = 64.3 for 29 degrees of freedom:

∆µ(E) = (1.78±0.21)×10−7(E−2614.511)2+(3.94±0.36)×10−4(E−2614.511)+0.21 (6.11)

Evaluating the difference between expected bias at the true 130Te Q-value and the 208Tl
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Figure 6.6: The differences between best-fit peak position and true value as a function of
true peak value for the calibration peaks (red circles) and background peaks (blue crosses).
The error bars for the calibration lines are smaller than the points themselves. The two
outliers are the 2103 keV 208Tl single escape peak and the 2506 keV 60Co sum peak. The
calibration residual at 1592 keV is the 208Tl double-escape peak. The best-fit line does not
include either the single escape or 60Co peak and is constrained to pass through the 208Tl
calibration residual.

photopeak gives us our expected excess energy calibration residual of

∆0νββ ≡ ∆µ(2527.513)−∆µ(2614.511) = −0.033± 0.120± 0.005 keV

In other words, because of our non-constant calibration bias, we expect the 130Te Q-Value
to be 0.033 keV farther from the 208Tl 2615 keV line than it would otherwise be. The
uncertainty from the fit itself (0.005 keV) is negligibly small, owing to the fact that the ROI
is so close to the constraint at the 208Tl calibration peak. Instead, we consider the primary
uncertainty on our peak position to be given by the weighted RMS of the residual points
about this line. (Again, neither the single escape nor the 60Co sum peak are included.) This
weighted RMS evaluates to 0.12 keV and is the 0.12 uncertainty in the equation above. Later
in this chapter, we fold the 0.033 keV bias into our fit as a small correction to the position of
our 0νββ line fit, and take 0.12 keV to be the systematic uncertainty on the peak position.
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Resolution in the Background Spectrum

In addition to just measuring the peak residuals, we can also examine the resolution ratio
scaling, rσ, as a function of energy. Our central question here is if and how we need to scale
the resolution from our 208Tl fit to our 0νββ ROI. This will turn out to be our largest source
of uncertainty, and it stems from the fact that we do not yet understand what drives our
energy-dependent resolution.

There are two differences to account for when projecting our detector response to the
0νββ ROI. First, the Q-Value is at a lower energy — about 96.6% the energy of the 208Tl peak
position. Second, the ROI fit is done in the background data, which may have a different
resolution than the calibration data. Comparing the 208Tl peak fits to the background
vs calibration data, we can get a direct comparison between background resolution and
calibration resolutions. Here, we find that the resolution in the background data is worse by
9% (rσ = 1.089± 0.019) — at least for this one peak. While the statistics in the background
data are too low to pinpoint exactly the cause of the worsened resolution, it is likely due to
unresolved calibration shifting in the background data. We remove much of this calibration
shifting with the WoH stabilization algorithm, but since the background data collection is
longer than the calibration, the background data have more opportunity to shift. Though,
at this point, this is just speculation.

In Fig. 6.5, we show the distribution of rσ vs energy from the background peak fits.
Because of the low statistics in the background data, the error bars are quite large and we
cannot say with any great certainty what energy dependence the resolution scaling follows.
By fitting this distribution with various functions, and picking and choosing the higher
statistics peaks that seem to be fit “best”, we can tune our predicted resolution scaling to
just about any value between 1.0 and 1.09. In order to reflect this ignorance, we place a
large uncertainty on our resolution scaling parameter at the ROI, rσ = 1.05 ± 0.05. This
conservative approach gives us a ∼60% chance that we lie between 1.0 and 1.09 as we believe
we do, but also a not insignificant chance that we lie outside this range — this roughly reflects
our belief of rσ. We hope to improve upon this in CUORE with dedicated R&D runs to
better understand the resolution behavior.

6.5 0νββ ROI Fit Technique

The 0νββ region of interest was defined as the range 2470–2570 keV. We produced the final
unblinded CUORE-0 spectrum by removing the salted peak. This left 233 events in the
0νββ ROI. The 0νββ fit is performed as a simultaneous fit over all channel-dataset pairs,
but with most of the parameters scaled from the values fit on the calibration 2615 keV peak
and fixed. The model for each channel can be parameterized as

fROI(E) =
∑

C,D TBkg(D,C)R0νββf
C
Det (E0νββ(D,C), rσσ0(D,C);E)

+TBkg(D,C)RCo(D)fCDet (ECo(D,C), rσσ0(D,C);E)
+TBkg(D,C)(EMax − EMin)bBkg

(6.12)
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Figure 6.7: The final blinded and unblinded CUORE-0 spectra in the ROI. The peak around
2507 is the sum peak from the coincidence of the two 60Co γ-rays.

This model describes two peaks, each modeled after Eqn. 6.5, which sit on top of a flat
background continuum. Unlike the fits to the background peaks in the previous section, the
locations of the peaks in ROI fit are set relative to the location of the 208Tl peak. That is,
instead of fixing all the lines to peak at Q0νββ = 2527.513, the 0νββ peak position is fixed
at a ChDs-dependent energy of

E0νββ(D,C) =
2527.513 + ∆0νββ

2614.511
E0(D,C) (6.13)

where ∆0νββ = −0.033 keV is the small correction for our parabolic calibration bias and
E0(D,C) is the fit peak location for that ChDs calibration 208Tl line. By pegging the
fit positions to the measured 208Tl value, we accomodate the residual calibration drifts
from ChDs to ChDs on top of ∆µ(E). In essence, we are saying that for each ChDs,
we expect the 0νββ peak to occur at a fraction 2527.513/2614.511 of the measured 208Tl
peak, plus a small correction for the average bias of the peak positions, ∆0νββ/2614.511.
This approach attempts to account for the residual shifts between the ChDs pairs (i.e.
E0(D,C) − 2614.511 − ∆µ(2614.511)) by scaling the values from the 208Tl calibration line
down to the ROI. We did not scale these values for the other peak fits because we cannot
assume that the ChDs residuals about the 208Tl peak are relevant too far away in another
region of the spectrum — or to say this differently, we have 1008 residuals about the recon-
structed peak position at ≈2614.7 keV, and we do not expect these residuals to be correlated
to the residuals at 1460 keV (for example); we can only assume this in the ROI because of
the close proximity to the calibration line. Anyway, this choice is a small effect and is
encompassed in our systematic uncertainties.
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The 60Co peak position is similarly scaled down from the ChDs-dependent 208Tl peak
location, but the scaling rCo is left floating, to account for the miscalibration of the 60Co
sum peak.

The parameters R0νββ and RCo describe detector-wide rates for 0νββ and the 60Co sum
peak. Both of these rates are in units of cnts/kg/yr. The background rate, bbkg, is in units
of cnts/keV/kg/yr.

The 0νββ decay rate, Γ0νββ, can be derived from R0νββ via the relationship

R0νββ ≡ ε0νββ
aINA

W
Γ0νββ (6.14)

where aI is the isotopic abundance, W is the molar mass of TeO2, and NA is Avagadro’s
number.

We account for the 60Co lifetime by calculating the rate at the middle of each dataset

RCo(D) = RCoe
−t(D)/τCo (6.15)

where t(D) is the time of the middle of the dataset relative to the start of CUORE-0 data-
taking, τCo is the 60Co lifetime, and RCo is the decay rate at t = 0, (Mar 16, 2013).

The background rate, bBkg, is in units of cnts/keV/kg/yr, and represents the time and
channel-averaged total background rate between 2470 and 2570 keV.

We perform our fit using an unbinned extended maximum likelihood (UEML) method.
We define our likelihood function as

L(Data|θ) =
λN

N !
e−λ

N∏
i

fROI(Di, Ci, Ei; Γ0νββ,θ) (6.16)

where Γ0νββ is the 0νββ decay rate and θ represents the three remaining free parameters
of the ROI fit: the integrated 60Co sum rate, RCo, the 60Co sum position, and the total
background rate, bBkg. N is the number of events in the ROI, and λ is the expected number
of events in the ROI given Γ0νββ and θ.

We maximize the likelihood function by using RooFit to numerically solve the system
of equations

∂L
∂θi

= 0
∂L

∂Γ0νββ
= 0

(6.17)

The best-fit values are listed in Table 6.6.
The fitted background rate in the ROI is

bBkg = 0.059± 0.005 cnts/keV/kg/yr (6.18)

Comparing this value to the rate measured in Cuoricino, bBkg = 0.169±0.006 cnts/keV/kg/yr,
we see that the CUORE-0 background rate at the ROI is a factor of ∼2.5 better.

It is worth pointing out that the improvement in background appears to have come
entirely from the reduction in the α background. The excess backgrounds in the ROI over
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Table 6.6: The best-fit results to the ROI fit. All errors are statistical.

Parameter Best-fit value
RCo 0.87± 0.21 cnts/kg/yr

60Co Sum Position 2507.62± 0.65 keV
bBkg 0.059± 0.005 cnts/keV/kg/yr

Γ̂0νββ 0.00+0.13
−0.11 × 10−24 yr
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Figure 6.8: The best-fit in the ROI and the normalized residuals. The error bars are Pois-
sonian 68% C.L. intervals.

the extrapolated α backgrounds are bBkg − bα = 0.043± 0.005 cnts/keV/kg/yr for CUORE-
0 and 0.059 ± 0.006 cnts/keV/kg/yr for Cuoricino. This is consistent with the hypothesis
that the excess background in both CUORE-0 and Cuoricino comes from γ contamination
within the cryostat materials. This can also be seen in Fig. 6.1, which shows that the
background spectrum around 2525 keV follows the tail of the calibration 208Tl line. This
background forms an irreducible background for this cryostat but will not be an issue for the
CUORE cryostat, largely due to careful material selection, increased shielding and better
self-shielding.

It is also worth pointing out that the observed 60Co rate is consistent with the same rate
seen in Cuoricino after accounting for the decay of 60Co. This could imply that the majority
of our 60Co contamination is in the cryostat shields and not our frames. This is unusual,



128

Time
Jan-2004 Dec-2005 Jan-2008 Dec-2009 Jan-2012 Dec-2013 Jan-2016

C
o 

E
ve

nt
 R

at
e 

(c
nt

s/
kg

/y
r)

60

0

0.5

1

1.5

2

2.5

3

3.5

Figure 6.9: Best-fit event rate in the 60Co sum peak as a function of time with its expected
natural decay rate. The reduction in 60 rate measured between Cuoricino and CUORE-0 is
consistent with what we expected from natural decay alone. But this claim is not conclusive,
since there are other factors in play as well.

since the 60Co sum peak is a coincidence of two γ-rays, it is suppressed by ∼ 1/r4, so the
source needs to be very close to the detector. If the 60Co is entirely from the cryostat, it
would imply that we have no little to no cosmogenic activation in our copper frames, which
would be odd, though not impossible. However, the decrease in 60Co rate could also be
attributed to the fact that we reduced the amount of copper in our frame by a factor of 2.3.
So at this stage, this result is inconclusive.

Limit Setting Approach

Since we see no evidence for a nonzero 0νββ signal, we place a limit on the 0νββ decay rate
by building a posterior Bayesian probability distribution given our data,

Ppost
stat (Γ0νββ|Data) = Pstat(Data|Γ0νββ)π(Γ0νββ) (6.19)

We build our profile likelihood function, Pstat(Data|Γ0νββ), by evaluating

− logPstat(Data|Γ0νββ) ≡ −minθ {logL(Data|Γ0νββ,θ)}+ logL(Data|Γ̂0νββ, θ̂) (6.20)

where θ and Γ̂0νββ are the best-fit parameters from Eqn. 6.17 and thus yield the global
minimum of the likelihood function2. This function is shown in Fig. 6.14.

2We use the symbol P to denote that the function is not a true probability distribution as it is not
properly normalized. We will normalize it later to obtain proper probabilities.
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Figure 6.10: Profile likelihood curve for CUORE-0. Both the curves with and without
systematics are plotted in this figure, but they cannot be discerned on a linear y-scale.

We use a flat prior, subject to the physical requirement that the decay rate Γ0νββ be
positive. We write this as

π(Γ0νββ) =

{
1, Γ0νββ > 0

0, Otherwise
(6.21)

We evaluate our limit on Γ0νββ by integrating our posterior likelihood function up to the
required confidence level αC.L., remembering to normalize our posterior probability to unity:

αC.L. =

∫ ΓLimit
0νββ

−∞
P post

stat (Γ0νββ|Data) dΓ0νββ (6.22)

=

∫ ΓLimit
0νββ

0 P(Data|Γ0νββ) dΓ0νββ∫∞
0
P(Data|Γ0νββ) dΓ0νββ

(6.23)

This results in a 90% C.L. upper limit on Γ0νββ (accounting only for statistical uncertainty),
of

Γ0νββ < 0.248× 10−24 yr−1 (90% C.L. Stat. Only) (6.24)

or a half-life limit of

T
1/2
0νββ > 2.80× 1024 yr (90% C.L. Stat. Only) (6.25)

Based on statistical uncertainties only, we compare this to a limit set using a similar approach
on the Cuoricino profile likelihood [93]:

Γ0νββ < 0.26× 10−24 yr−1 (Cuoricino 90% C.L. Stat. Only) (6.26)
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Figure 6.11: Distribution of 5485 half-life 90% Bayesian confidence limits from toy Monte
Carlo experiments assuming the best-fit CUORE-0 parameters. Roughly 51% of toy Monte
Carlo experiments set a stronger limit than we find in CUORE-0 (dashed red line).

or a half-life limit of

T
1/2
0νββ > 2.7× 1024 yr (Cuoricino 90% C.L. Stat. Only) (6.27)

We can also compare this to the expected sensitivity given our best-fit parameters. To do
this, we resample our best-fit function, with Γ0νββ = 0 and plot the distribution of resulting
90% limits (see Fig. 6.11). We see that our result is pretty close to the median limit. We
expect that about 51% of experiments would set a stronger limit.

Consistency Of the Data With The Model

Qualitatively examining the 233 events in the ROI region, we see no obvious correlation
between events in time or channel. It’s worth noting that we saw two events right at the
Q-Value in the datasets added after the initial unblinding. This was unfortunate in that —
assuming they are background events — they worsened our final result significantly.

One prominent feature of the final spectrum is the structure on either side of the 0νββ
Q-value — a dip right below and a peak right above. We show in this section that these
structures are consistent with statistical fluctuations of the background. As a first rough
approach, we look at the region immediately above the 0νββ position, which shows a slight
excess of events and ask what the probability of such an excess is. First, we note that we
see no such structure in the Cuoricino final spectrum, (see Fig. 3.10) — if anything, we see
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a slight deficit of events. We can treat this as a simple counting experiment; the number
of events in this excess between 2531–2535 keV is 16 events, compared to the expected
number of 8.3 from the best-fit flat line. The probability of an upward fluctuation of this
size or larger is p =

∑∞
k=16 Pois(8.3; k) ≈ 0.5%. This makes the fluctuation seem statistically

significant, but this calculation singles out one 4 keV bin in a 100 keV wide window with
25 such bins. The probability that at least one 4 keV bin fluctuating up by this amount or
more is 1 − (1 − p)25 ≈ 12%. This is well within a reasonable probability of fluctuation —
this is referred to as the “look elsewhere effect”.

To make the above argument more rigorous, we perform two non-parametric tests between
our data and our model: a Kolmogorov-Smirnov (KS) test and an Anderson-Darling (AD)
test. Both tests compare the observed cumulative distribution function (CDF), Fn(E), to
the predicted CDF, F (E).

The KS test statistic is given by finding the maximum absolute deviation between the
two CDFs,

D = sup|Fn(E)− F (E)|
For our data, this evaluates to D = 0.046 which corresponds to a fluctuation probability of
P (D > .046) ≈ 69%. So despite prominence of the observed fluctuations, we see that it is
actually about twice as likely that we should have had more.

This KS test is generally a good test of the bulk of two distributions — i.e. when the two
CDFs diverge significantly — but it is not very powerful when the two CDFs don’t match,
but never get too far from one another — i.e. when the two CDFs oscillate around each
other. The AD test statistic is built by looking at the sum square distance between the two
CDFs and is more sensitive in the case where the two CDFs never diverge significantly. The
AD statistic can be written as

A2 = −N −
∑
i

2i− 1

N
(lnF (Ei) + lnF (EN+1−i))

Here, the Ei are the measured energy values and have been ordered

E1 < E2 < ... < EN

For our data, we have an AD statistic of A2 = 0.55, which corresponds to a probability of
P (A2 > 0.55) ≈ 69%. Again, we see that our data are on the side of lower fluctuations3.

6.6 Systematics Accounting

In this section, we consider the systematic uncertainties on our 0νββ limit. There are several
sources that contribute significantly to our systematic uncertainty on Γ̂0νββ:

3Strictly speaking, the probabilities listed for both the KS and AD tests correspond to a comparison to
a model with no free parameters. Since our model is fit to the data, there are fewer degrees of freedom and
the percentages should increase. However, since the values listed do not rule out our model, we can use them
as a conservative estimate of the likelihood of our data given the model.
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Figure 6.12: Distribution of 106 non-parametric statistics from toy Monte Carlos with
233 uniformly distributed points each for Kolmogorov-Smirnov (left) and Anderson-Darling
(right). The value from the true data is indicated by the dashed red line.

• Uncertainty in the 0νββ peak location due to the energy reconstruction.

• Uncertainty in the resolution scaling from calibration 208Tl to background 0νββ.

• Uncertainty in the 0νββ signal efficiency.

• Uncertainty in the exact shape of the detector response to an 0νββ event.

• Uncertainty in the exact shape of the background.

• Bias introduced by the fitting technique itself.

The effect of these systematic uncertainties on Γ̂0νββ is evaluated using a Monte Carlo ap-
proach and incorporated into our final limit as a modification to the profile likelihood. We
begin by describing our approach to combining systematic uncertainties and then we describe
the toy Monte Carlos. Finally, we present the final CUORE-0 limit including both statistical
and systematic uncertainties.

Approach to Convolving Systematic Uncertainties

We include our systematic uncertainties as a modification to the previously calculated likeli-
hood profile, Pstat(Data|Γ0νββ). We begin by splitting our systematic uncertainties into two
categories: absolute uncertainties and uncertainties that scale with the true decay rate. For
each source of systematic uncertainty we calculate our error as

σsyst,i(Γ) = σabs,i + Γσrel,i (6.28)



133

An example of a relative uncertainty is uncertainty in the 0νββ signal efficiency — the more
events that we expect to see, the more a systematic error in ε0νββ will bias our result. We
combine the σsyst from multiple sources in quadrature

σ2
syst(Γ) = (σabs,1 + Γσrel,1)2 + (σabs,2 + Γσrel,2)2 + . . . (6.29)

We define a χ2 statistic from our profile likelihood:

χ2
stat(Γ0νββ) ≡ −2 log [Pstat(Data|Γ0νββ)] (6.30)

and one for our systematic uncertainties

χ2
syst(Γ0νββ) ≡ (Γ0νββ − Γ̂0νββ)2

σ2
syst(Γ0νββ)

(6.31)

where Γ̂0νββ is the best-fit decay rate value from our fit. We combine our statistical and
systematic uncertainties by calculating a χ2

total.

1

χ2
total(Γ0νββ)

=
1

χ2
stat(Γ0νββ)

+
1

χ2
syst(Γ0νββ)

(6.32)

From χ2
total, we calculate our new profile likelihood, Ptotal(Data|Γ0νββ), from which we can

calculate a limit that includes both statistical and systematic errors.
This approach is actually the gaussian limit of a more general approach and this equation

is derived in Appendix C. The advantage here is that we only need to evaluate the effect of
our nuisance parameter at the 1σ value, rather than fully sampling the distribution.

Calculating Systematic Errors on Γ0νββ Using Monte Carlo

Most of the systematic uncertainties on our nuisance parameters are difficult to translate
into uncertainties on Γ0νββ, so we do this by Monte Carlo. Our approach is

1. Begin with our best-fit model.

2. Modify some nuisance parameter by 1σ.

3. Generate a sample of Monte Carlo events with a simulated signal in the
range Γ0νββ ∈ [0, 2× 10−24] yr−1.

4. Fit the simulated data assuming the unmodified nuisance parameter.

5. Repeat. (Typically 1,000–10,000 times depending on convergence.)
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The number of events generated in each iteration is given by 233 plus the number of events
expected by the assumed decay rate, Γ0νββ. We then fit the resulting distribution of best fit

rates, Γ̂0νββ, vs true decay rates, Γ0νββ, to determine σabs and σrel.
The 0νββ line shape is treated as a discrete nuisance parameter. We tested the sys-

tematic errors using the above approach by assuming two line shapes: the model of X-ray
escapes and a gaussian-only model where we set αSub = 0. The X-ray model produced a
statistically significant bias, but the bias was extremely small. The gaussian-only model pro-
duced much more significant bias and we used this as our primary source of uncertainty. The
MC produced a σabs = 7×10−27 yr−1 and σrel = 2.6%. Since this corresponds to the extreme
where the 0νββ line contains no substructure, we halve this and consider our uncertainty
to be σabs = 3.5 × 10−27 yr−1 and σrel = 1.3% to encompass the range of possibilities from
0νββ does have substructure to 0νββ has no substructure.

For the systematic bias of the fit itself, we used the same procedure but we did not modify
any nuisance parameters at all. We generated data from the best-fit model and then fit it
with the best-fit model. The resulting systematics were consistent with no bias to the level
of < 1.7× 10−27 yr−1 absolute bias and < 0.15% relative bias, which was the statistical limit
of the Monte Carlo.

The systematic uncertainties are summarized in Table 6.7.
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Figure 6.13: Left: Distribution of events from a toy MC of 1.2 million events, for rσ = 1.05
(blue) and rσ = 1.10 (red) and a simulated decay rate Γ0νββ = 0.4 × 10−24 yr−1. Right:

Results of systematics toy Monte Carlo. Best-fit decay rates, Γ̂0νββ, vs simulated signal rate,
Γ0νββ for data generated with no substructure and fit with a lineshape including substructure.
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Table 6.7: Summary of systematic uncertainties and their effect on the decay rate.

Absolute Uncertainty Fractional Uncertainty
(10−24 yr−1)

Line Shape 0.004 1.3%
Energy Resolution — 1.2%
Background Shape 0.004 0.8%

Efficiency — 0.7%
Energy Calibration 0.005 0.4%

Fit Bias — —

6.7 Final CUORE-0 0νββ Limit

In summary, including only statistical uncertainties, we are able to set the following limits
on the 0νββ decay rate of 130Te

Γ0νββ < 0.248× 10−24 yr−1 (90% C.L. Stat. Only) (6.33)

or a half-life limit of

T 0ν
1/2 > 2.80× 1024 yr (90% C.L. Stat. Only) (6.34)

When we include systematic uncertainties, the limit on the decay rate becomes

Γ0νββ < 0.249× 10−24 yr−1 (90% C.L. Stat.+Syst.) (6.35)

or a half-life limit of

T 0ν
1/2 > 2.79× 1024 yr (90% C.L. Stat.+Syst.) (6.36)

Note: This is different from the official CUORE-0 result, which used a slightly different
approach and slightly different numbers. Partly the difference comes from the method of
calculating and combining systematics; the rest of the difference is rounding errors. We
discuss this further at the end of this chapter.

Combination With TTT and Cuoricino

The 35.2 kg·yr exposure from CUORE-0 corresponds to a 130Te exposure of 9.8 kg·yr. We
can combine our present result with the results of the previous two 130Te bolometer exper-
iments to form a combined analysis. We include 1.2 kg·yr of 130Te exposure from the TTT
experiment [92, 96], which collected data from September 2009 – January 2010 as well as
the 19.75 kg·yr of 130Te exposure from Runs I & II of the Cuoricino experiment [68, 93],
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which collected data from 2003–2008. Cuoricino observed a typical background in the ROI
of 0.169 cnts/keV/kg/yr, while TTT improved on this slightly to 0.129 cnts/keV/kg/yr.

Both Cuoricino and TTT used a natural isotopic abundance of aI=33.8%, which has
since been updated to aI = 34.167%, which we use here. We correct both the Cuoricino and
TTT results to reflect this new number.

Combining the CUORE-0 result with TTT yields a 90% upper limit on the decay rate of

Γ0νββ < 0.215× 10−24 yr−1 (CUORE-0 + TTT) (6.37)

or a half-life limit of

T 0ν
1/2 > 3.23× 1024 yr (CUORE-0 + TTT) (6.38)

Including the Cuoricino result yields a 90% upper limit on the decay rate of

Γ0νββ < 0.154× 10−24 yr−1 (CUORE-0 + TTT + Cuoricino) (6.39)

or a half-life limit of

T 0ν
1/2 > 4.50× 1024 yr (CUORE-0 + TTT + Cuoricino) (6.40)

This is the most stringent limit on the 0νββ decay of 130Te to date (see Fig 6.14).

Limit on mββ

Using our limit on Γ0νββ, we can derive a range of limits on the effective Majorana mass, mββ.
We use the most up-to-date calculations of |M0ν |2 from a variety of techniques, [48, 52–56].

We quote two limits. One limit is for comparison between similar limits placed by 76Ge
and 136Xe, using all the same matrix element calculations. Our official limit also includes a
recent ISM calculation for which the analogous calculation in 76Ge is unavailable. So, our
official limit is up-to-date with the most recent calculations, but our limit for comparison
places all isotopes on the same footing.

Our official limit is

mββ < 250− 710 meV (CUORE-0 + TTT + Cuoricino 90% C.L.) (6.41)

We compare this to previous experiments and other experiments in Fig. 6.15.

6.8 Differences with Official CUORE-0 Result

The results presented here differ slightly from the published CUORE-0 results the collabo-
ration presented in [108]. Here we briefly outline the differences.
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Figure 6.14: Combined negative log likelihood curves for CUORE-0, CUORE-0 + TTT and
CUORE-0 + TTT + Cuoricino data.

Table 6.8: Comparison of 90% C.L. on mββ from various isotopes. The range quoted for
130Te does not include a recent ISM calculation and is thus slightly different from our official
range limit.

Isotope mββ 90% Upper Limit Range Source
76Ge < 220− 540 Gerda + HDM + IGEX
136Xe < 200− 500 EXO-200 + KamLAND-Zen
130Te < 250− 610 Cuoricino + TTT + CUORE-0

There are two subtle differences in the method of fitting the 208Tl lineshape, neither of
which has any major effect on the results. As explained in [109], in the [108] result we allow
the parameters that characterize the detector response substructure to vary between data-
taking Campaigns I and II as well as between channels. In this thesis, the substructure is only
allowed to vary by channel and not campaign. In [108], we fit the 30 keV X-ray escape peak
below the 208Tl line with a single gaussian with the same σ as the main peak, whereas in this
thesis we account for the multiple X-ray escapes by fitting multiple constrained gaussians.

The approaches to evaluating the systematics using Monte Carlo in both this thesis and
[108] are identical; however, the resulting numbers in some cases are slightly different. As
explained in [110], when combining systematics in [108] we treat the additive and relative
systematic errors as uncorrelated:

σ2
syst(Γ) = σ2

abs,1 + Γ2σ2
rel,1 + σ2

abs,2 + Γ2σ2
rel,2 + . . .
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Figure 6.15: The allowed mββ as a function of the lightest neutrino mass. Allowed regions for
normal and inverted hierarchy (assuming the mechanism of 0νββ is light Majorana neutrino
exchange). The horizontal exclusion regions are an upper bound range, with all parameter
space above excluded. The combined 76Ge limit comes from Gerda + Heidelberg Moscow +
IGEX data [65]. The combined 136Xe data comes from EXO-200 and KamLAND-Zen [66, 67].
The 130Te limit is the result presented here. The cosmology exclusion (mlightest < .2 eV at
95% C.L.) comes from Plank 2015 [70].

as compared to treating them as correlated as in Eqn. 6.29.
The primary difference between the approach we used in [108] and the one we present

here is how each approach handled the calibration bias. Here, we scaled our channel-
dataset dependent 208Tl calibration positions down to the 0νββ ROI by a scale factor
(2527.513 + ∆0νββ)/2614.511, where ∆0νββ is a tiny correction, due to the energy bias, that
evaluates to ∆0νββ = −0.033 keV. In [108], we do not scale the peak position down, but
rather translate them down by a global energy shift given by 2614.511− (2527.513 + ∆0νββ).
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These two procedures by themselves produce compatible results, but the difference is in how
we estimate ∆0νββ.

For the results presented in [108], we estimated ∆µ(E) by repeating the process of trans-
lating the detector response down to measure multiple peaks in the background spectrum,
measuring each peak shift relative to the calibration 208Tl peak, then fitting an unconstrained
parabola to the residuals (see [111]). Notice that this function has a different meaning in
[108] than it does in this thesis. In this thesis, this function is the expected total deviation
between the true energy and the reconstructed energy, whereas in [108] it is the expected
relative deviation from the expected difference between the reconstructed energy and the
calibration 208Tl reconstructed energy.

In [108], we estimate ∆0νββ by evaluating ∆µ(E) at 2527.513 keV, whereas here we
take the difference in ∆µ(E) at 2527.513 compared to 2614.511 keV. In [108], this yielded
∆0νββ = 0.05 keV — meaning that the 0νββ ROI moved closer to the calibration 208Tl peak
by 0.05 keV. The distance between the ROI position used in this thesis and the one used in
[108] is 0.08 keV, which is smaller than the systematic uncertainty on this value of 0.12 keV.

Fundamentally, these two approaches make different assumptions about what dominates
the bias ∆0νββ. In [108], we assume that the bias is dominated by a relative shift between the
calibration and background data — hence why we do not constrain the fit at the calibration
208Tl peak. However, in order to measure this bias, we must assume that we can measure a
≈ 50 eV effect in peaks that are over > 1 MeV away from our ROI. In this thesis, we are
slightly more conservative on this point and assume that we cannot measure such an effect,
and thus we must be slightly less conservative than [108] and assume that the calibration
energy provides an unbiased estimate of background events.

As it happened, the approach in [108] moved the fitting region into a slight excess in the
spectrum, while the approach here moved it into a slight dip. Ultimately, this question of
an 80 eV discrepancy is only an issue because the difference is exacerbated by Poissonian
fluctuations in the CUORE-0 background. For CUORE, we intend to address and hopefully
resolve the issue of calibration bias in the data production. But even so, a 120 eV uncertainty
on the 0νββ position is a sub-leading source of systematic uncertainty and will be less of a
concern with the higher statistics of CUORE.
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Chapter 7

CUORE and Beyond

The CUORE detector is scheduled to turn on and begin taking data in late 2015. In this
chapter, we build upon the experience that we have gained with CUORE-0 to understand
the outlook for CUORE, detail problems that need to be addressed for CUORE, and finally
outline the key issues that an experiment beyond CUORE will need to address.

7.1 Outlook for CUORE

The first extrapolation from CUORE-0 that we can make is in regards to the expected
background for CUORE. With the new cleaning and storage protocols that we developed,
our goal for the CUORE background in the ROI is 0.01 cnts/keV/kg/yr. We expect that this
number will be dominated by the residual α contamination originating from the surfaces of
either the copper frame or PTFE supports. In CUORE-0, we measured the α component of
the background to be 0.0162±0.0007 cnts/keV/kg/yr. This is consistent with the prediction
from our models. Specifically, if the residual α background in CUORE-0 is entirely due to
surface contamination of copper, then we expect to achieve our background goal in CUORE
of 0.01 cnts/keV/kg/yr (due to the smaller ratio of copper to active mass in CUORE than
in CUORE-0). If, however, the α contamination is entirely from contamination on PTFE,
then we expect our background to remain at ∼0.016 cnts/keV/kg/yr. Comparing with
simulations, our data are reasonably consistent with both hypotheses, but favor the former
hypothesis at ∼ 3σ level.

We measured a total background in the ROI in CUORE-0 of 0.059±0.005 cnts/keV/kg/yr.
This number is dominated by γ-contamination originating in the old Cuoricino cryostat. The
γ-background is expected to be significantly lower in CUORE due to more careful screening
of materials, better shielding, and active anti-coincidence rejection.

Overall, we feel CUORE-0 has achieved its background goal and gives us confidence that
the CUORE goal of 0.01 cnts/keV/kg/yr is within reach.

CUORE-0 also achieved its resolution goal of 5 keV FWHM at 2615 keV. This was
achieved through a combination of better reproducibility in the NTD gluing as well as better
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understanding of the detector response shape. Both of these aspects will carry over to
CUORE. So, while the noise environment of the new cryostat is still an open question, we
are confident CUORE will be able to maintain this excellent energy resolution.

Open Questions for CUORE

The analysis presented in this thesis has left open several questions and issues that should
be answered or addressed for CUORE. These can be seen by simply looking through the
systematic uncertainties listed in Table 6.7.

0νββ Signal Shape and Location

The largest source of systematic uncertainty is the detector lineshape — namely, the sub-
structure seen in the 208Tl peak. We do not know the origin of this substructure and we do
not know if a potential 0νββ signal would show it as well. In order to better understand the
details of our detector and analysis chain, we should try to better understand the cause of
this substructure through dedicated tests and bolometric modeling.

The second question which raises concern is the reconstructed position of the 60Co sum
peak. Presently, we do not have a concrete explanation for why this peak reconstructs 2 keV
too high. We have argued in this thesis that it has to do with the specific topology of a
multi-photon event, but we do not have a microscopic or bolometric model for how this
occurs. So while we are confident that a 0νββ event will not share the same topology as a
60Co sum event, this question opens up the possibility that a 0νββ event may not reconstruct
where we think it should.

Both of these issues can actually be directly addressed without the need for modeling.
There is currently a proposal to perform several studies on CUORE-0 with a 56Co source.
56Co has a γ line at 3549 keV, which places a double escape peak at exactly the 0νββ ROI.
A 56Co double escape mimics the exact same event topology as a 0νββ event at exactly the
energy we might expect to see it. By tagging on one or both of the 511 keV annihilation
photons we can reduce the background and perform a very clean measurement of both the
0νββ reconstruction position and the 0νββ line shape. We hope to have answers to both of
these questions before CUORE turns on.

Bias Between Calibration and Background

The other major source of systematic uncertainty is in the validity of using the calibration
data to model the background data. These issues are slightly harder to address directly.
First, we believe that the parabolic shape of the peak residuals in Fig. 6.6 is due to biases
in the calibration step in the data production. Specifically, we feel that modeling the peak
shape with gaussians rather than the more complicated lineshape and failing to account for
double lines in the calibration spectrum is systematically pulling some of the peak positions.
We plan to address both of these issues in the CUORE analysis software. Further, we expect
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our calibration spectrum in CUORE to be quite a bit cleaner than in CUORE-0, due to the
fact that CUORE will not have shielding between the crystals and the calibration sources.

A second question that we encountered during the analysis presented in this thesis is
whether the energy estimators from the calibration runs provided an unbiased estimate of
the energy of background events. Measuring a bias between the calibration and background
is difficult, mainly due to the low event rate in the background data. So, arguably the best
way to address this issue is to remove the things that could cause a bias. Mainly this is
the calibration drifts that we saw on some of the channels — particularly channel 48. It is
unclear what caused some channels’ calibrations to drift more than others, but it appears
the best way to prevent this drift is to keep the detector and mixing chamber temperature
extremely stable. This leads back to the development of the PID feedback system that we
discussed in Chapter 5. We hope that this will not be an issue in CUORE, but it remains
to be seen.

The last concern about using the calibration data to model the background data is in
the detector energy resolution. In Chapters 5 and 6 we saw systematic differences between
the calibration and background resolutions both at 2615 keV and in the filter performance
on the noise at 0 keV. We currently use an empirical argument to scale the detector energy
resolution from the calibration line at 2615 keV to the 0νββ ROI, but this scaling is fairly
subjective and has a large error bar. In the future we would like to better understand the
energy resolution behavior as a function of energy. Specifically, we would like to build a
model of energy resolution of the form

σ2(E) = f(E) + σ2(0 keV)

where σ(0 keV) is the RMS at 0 keV and f(E) is some, currently unknown, function of
energy. This would greatly help in extrapolating energy resolutions between calibration and
background and between different energies.

7.2 Beyond CUORE

Looking beyond CUORE, the next generation of experiments seeks to fully explore the
inverted hierarchy down to mββ ∼ 10 meV. We briefly outline the issues that a future
generation 0νββ search will need to surmount in order to reach this goal.

It is possible that CUORE has reached the point of diminishing returns in terms of how
clean a detector can be fabricated and assembled. It is unclear at this point if any more
sensitivity can be gained out of increased radiopurity procedures. The remaining background
will likely need to be removed through “active background rejection.”

Particle Identification

The main drawback to bolometric detectors as they are implemented in CUORE is that
they lack the ability to discriminate by particle type. The primary background for CUORE
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comes from degraded α-particles from passive surfaces, whereas the signals in which we are
interested are β/γ-type events. Presently, our detectors lack a way to discriminate between
these two particle types. A major focus for a future detector upgrade is to develop a method
for particle identification.

The energy deposited in any particle interaction is typically split between heat, light and
ionization of the surrounding material. In a good bolometer, the majority (if not all) of the
energy is converted into heat — this is what yields such excellent energy resolution. However,
the exact split between light, heat and ionization is determined both by the properties of
the detector material and the nature of the interaction itself. It is this latter fact that we
would like to leverage to discriminate α-type events from β/γ-type.

Several R&D projects have shown very promising results in this direction. For example,
the LUCIFER R&D project used a second bolometer made from a semi-conductor material
as a light collector next to a scintillating primary bolometer. By measuring both the heat
signature on the primary bolometer and the heat signature on the light collector (called the
light yield), they were able to perform very powerful background rejection [112]. Several
other projects have shown similarly promising capabilities, (see [113] for a summary).

surement the lack of space prevented us from mounting the LD.
However this was not a problem, as the previous run convinc-
ingly demonstrated that the pulse shape analysis can provide an
extremely good ↵ background rejection without the need for the
light detection.

2.1. Data Analysis

To maximize the signal to noise ratio, the pulse amplitude
is estimated by means of an optimum filter technique [26, 27].
The filter transfer function is built from the ideal signal shape
s(t) and the noise power spectrum N(!). s(t) is estimated by
averaging a large number of triggered pulses (so that stochastic
noise superimposed to each pulse averages to zero) while N(!)
is computed averaging the power spectra of randomly acquired
waveforms not containing pulses. The amplitude of a signal is
estimated as the maximum of the filtered pulse. This procedure
is applied for the signal on the ZnMoO4 bolometer. The am-
plitude of the light signal, instead, is estimated from the value
of the filtered waveform at a fixed time delay with respect to
the signal of the ZnMoO4 bolometer, as described in detail in
Ref. [28]. The detector performances are reported in Table 1.
The baseline resolution, FWHMbase, is governed by the noise
fluctuation at the filter output, and does not depend on the abso-
lute pulse amplitude. The rise (⌧R) and decay times (⌧D) of the
pulses are computed as the time di↵erence between the 10%
and the 90% of the leading edge, and the time di↵erence be-
tween the 90% and 30% of the trailing edge, respectively.

Table 1: Technical details for the ZnMoO4 bolometers (cylinder and paral-
lelepiped) and for the LD. The cylindrical ZnMoO4 was measured twice, so we
reported the parameters also for the background run (Cylinder⇤). Rwork is the
working resistance of the thermistors. Signal represents the absolute voltage
drop across the termistor for a unitary energy deposition.

Crystal Rwork Signal FWHMbase ⌧R ⌧D

[M⌦] [µV/MeV] [keV] [ms] [ms]
Cylinder 3.7 140 0.6 17 50
Parallel. 4.7 320 1.2 8 33
LD 8.8 1700 0.16 4 11
Cylinder⇤ 2.5 200 0.7 17 48

After the application of the optimum filter, signal amplitudes
are corrected for temperature and gain instabilities of the set-up
thanks to a monochromatic power injection in the Si heater tak-
ing place every few minutes. The ZnMoO4 is calibrated using
the most intense �-peaks from the 232Th source, while the LD
is calibrated using the 55Fe X-ray doublet.

The FWHM energy resolution obtained on the cylindrical
(parallelepiped) crystal ranges from 2.5 ± 0.1 (2.4 ± 0.1) keV
at 238 keV to 3.8 ± 0.9 keV (7.6 ± 1.3) at 2615 keV. The
energy resolution on the 5407 keV ↵ + recoil line (due to a
weak internal contamination of 210Po ) can be evaluated only
on the long background run for the cylindrical crystal and gives
5.3 ± 1.1 keV. The FWHM energy resolution on the LD, eval-
uated on the 55Fe X-ray doublet, is 321 ± 9 eV. Experimental
resolutions are worse than theoretical ones in agreement with
the observed performance of macro-bolometers [29].
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Figure 2: The light-to-heat energy ratio as a function of the heat energy obtained
with the cylindrical crystal in the first run, during a 62 h 232Th calibration. The
upper band (ascribed to �/� events) and lower band (populated by ↵ decays)
are clearly separated. The 2615 keV 208Tl �-line is well visible in the �/�
band as well as a the continuum rate induced by the degraded ↵ source and the
5407 keV 210Po doublet in the ↵ band. The discrimination power is reported in
Sec. 3.

The light-to-heat energy ratio as a function of the heat en-
ergy is shown for the calibration spectrum in Fig. 2. �/� and
↵ decays give rise to very clear separate distributions. In the
upper band, ascribed to �/� events, the 2615 keV 208Tl �-line
is well visible. The lower band, populated by ↵ decays, shows
the continuum rate induced by the degraded ↵ source as well as
the 210Po doublet.

The Light Yield (LY), defined as the ratio between the mea-
sured light (in keV) and the nominal energy of the event (in
MeV), was measured for the most intense �-lines giving 1.10
± 0.03 keV/MeV and 0.78 ± 0.02 keV/MeV for the cylinder
and for the parallelepiped, respectively. These values are con-
stant from 0.2 to 2.6 MeV and are not corrected for the light
collection e�ciency. The LY of the cylindrical crystal is well
in agreement with the one reported in [14, 30], while the paral-
lelepiped shows a lower LY.

The Quenching Factor (QF), defined as the ratio of the
LY↵/LY�/� for the same energy release, was evaluated on the
5407 keV ↵-line and results 0.18 for both crystals.

3. ↵ vs �/� discrimination

As reported in [14, 15], Molybdate crystals can provide
↵ vs �/� discrimination by making use of the thermal infor-
mation only. In Fig. 3 the ideal signal shape s(t) for the two
event classes is shown together with the percentage di↵erence
s(t)↵-s(t)�/�. Pulse shapes are obtained by averaging pulses (ob-
tained in the same calibration measurement of Fig. 2) in the en-
ergy range 2610-2620 keV and aligned at the maximum. Dif-
ferences at a level of a few per mille are visible both in the rise
and decay of the thermal pulse 1.

1We will refer to pulses from the cylindrical bolometer throughout the rest
of the text. However, the parallelepiped bolometer showed consistent results.

3

Figure 7.1: An example of particle type discrimination using a scintillating ZnMoO4 crystal.
The plot shows energy deposited as heat (X-axis) vs Light Yield on the light collector (Y-
axis). There is a clear separation between α type events and β/γ type events. (Plot taken
from [112].)

This approach is difficult (or impossible) in TeO2, because it is such a poor scintillator.
But another possibility along similar lines, is to try to detect the Cherenkov light that would
be emitted with β particles, but not α particles. Since the amount of energy released in
Cherenkov light is small (∼200 eV) we would require a light collector with an extremely low
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threshold. One of the promising technologies towards this goal is Transition Edge Sensors
(TES). These are superconductors that are operated in the middle of their transition from
normal to super conducting. These can be tuned to have a very narrow transition, making
their resistances a very steep function of temperature. Thus, these make very good temper-
ature sensors. Often these sensors have low electrical impedance which gives them several
advantages over CUORE-style NTDs: they have larger bandwidth, can handle faster signals
and they can be multiplexed in large arrays. This technology has been well established in
the fields of X-ray astronomy and Cosmic Microwave Background (CMB) cosmology.

One difficulty with TES sensors is that they are only useful over a very narrow range of
temperatures around their transition temperature, Tc. There are very few known materi-
als which have a transition temperature around ∼10–15 mK. One technology which shows
promise is bilayer superconductors. Here, we prepare a thin film composed of one super-
conducting material and one non-superconducting material. By tuning the ratio of the
thicknesses, we can tune the transition temperature. In Fig. 7.2, we show a transition for a
Ir/Au bilayer sample which has a Tc ≈ 21.4 mK.
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Figure 7.2: Transition curve for a Ir/Au bilayer TES. This sample has a transition tem-
perature around 21 mK. This measurement was performed with a current-biased resistance
bridge, so the transition is artificially narrow.

There is currently an intense ongoing research effort into developing particle identification
techniques for bolometric detectors. Within CUORE we have formed an interest group to
accomplish just this [113, 114]. This new group is called the CUORE Upgrade with Particle
IDentification — CUPID.
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Appendix A

CUORE-0 Dataset Data

Table A.1: Grouping of datasets into working points and data taking phases. The working
points are determined by detector performance, while the data taking phases were driven by
data processing and conference presentations.

Campaign Phase Working Point Dataset

I I

1 2049

2
2061
2064

3

2067
2070
2073
2076

II

II

4 2079

5

2085
2088
2091
2097
2100

III

2103
2109

6
2118
2124

IV 7
2130
2133
2139



156

1 14 27 40

2 15 28 41

3 16 29 42

4 17 30 43

5 18 31 44

6 19 32 45

7 20 33 46

8 21 34 47

9 22 35 48

10 23 36 49

11 24 37 50

12 25 38 51

13 26 39 52
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Figure A.1: Mapping of the bolometers in the CUORE-0 tower. Channels 1 & 10 are missing
their Si Joule heaters and Channel 49 is not functional at all. The blue labels represent the
PENCu cables and read out either 8 or 10 channels. The Si heaters are wired along an entire
column.

Table A.2: Values for various physical parameters used in this analysis.

Parameter Value Reference
Isotopic Abundance of 130Te 34.167% [115]

Standard Atomic Weight of Tellurium 127.61 u [115]
Standard Atomic Weight of Oxygen 16.00 u [116]

Molar Mass of TeO2 159.61 g/mol
Q-value of 130Te 2527.518±0.013 keV [117]
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Table A.3: Energy estimator breakdown for the CUORE-0 data. The data included here are
for the full statistics.

Number of Channel,Dataset pairs Exposure Fractional Exposure
Energy 582 20.57 58.4%

EnergyDecorrOF 133 4.32 12.3%
EnergyNewOFWoH 213 7.48 21.2%

EnergyDecorrOFWoH 80 2.84 8.1%
Total 1008 35.21 100.0%

Table A.4: Summary of 90% Bayesian limits on the 0νββ decay rate of 130Te, including
various experiments.

Experiment Γ0νββ (1024 yr−1) T 0ν
1/2 (1024 yr)

CUORE-0 (Stat Only) < 0.25 > 2.8
CUORE-0 < 0.25 > 2.8

CUORE-0 + TTT < 0.22 > 3.2
CUORE-0 + TTT + Cuoricino < 0.15 > 4.5
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Figure A.2: A candlestick plot of FWHM at 2615 keV split by channel (top) and dataset
(bottom). The box of the plot stretches from the 25th percentile to the 75th. The whiskers
stretch from the maximum to the minimum values. Channels 22, 35 and 27 are excluded
from the top plot.
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Figure A.3: Background 40K rate (top) and 208Tl rate (bottom) by channel over the entire
CUORE-0 exposure. The channels are ordered by floor from bottom on the left to top on
the right.
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Figure A.4: Left: Background 190Pt rate by channel over the entire CUORE-0 exposure.
The channels are ordered by floor from bottom on the left to top on the right. The five
channels with the highest Pt rates are highlighted, these channels show distinctly different
pulse shapes from the other channels. Right: The average pulses from channel 5 (blue) and
channel 6 (red) from dataset 2073. A similar sharp spike and slow roll off shape can be seen
on channels 15, 20, 29 and 33 as well.
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by channel over the entire CUORE-0 exposure. The channels are ordered by floor. Right:
Background α rate by dataset of the entire CUORE-0 exposure.
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Figure A.6: The sum of the event rates in the 1173 and 1332 keV 60Co peaks as a function
of time. The dashed line is the best-fit rate assuming the 60Co lifetime.
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Figure A.7: The 210Po peak for the multiplicity 1 (blue) and the multiplicity 2 (red) spectrum.
The peak to the right is the Q-Peak is is composed of decays where both the α-particle and
the nuclear recoil are contained in one crystal. The left peak is the α-Peak where only the
α-particle is detected. The multiplicity 2 spectrum contains only the α-Peak. Both peaks
are shifted up by ∼50 keV from their expected position due to an α quenching.
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Figure A.8: The multiplicity 1 210Po rate as a function of time. The Q-Peak (blue) is defined
as the range 5.4–5.5 MeV, while the α-Peak (red) is the range 5.3–5.4 MeV. The Q-Peak is
composed of both bulk 210Po, which originates from Po contamination in the TeO2 powder
before the crystal growth, decays away with a 138 day halflife, and a surface contamination
which is likely in equilibrium with a 210Pb surface contamination from Rn exposure possibly
during installation which decays with a 22 yr halflife. The α-peak is primarily due to the
surface contamination.
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Figure A.9: On July 21, 2013 at 3:32:24 CEST a magnitude 5.4 earthquake struck near
Numana, Italy. This earthquake was seen in the CUORE-0 detector as a sudden saturation
of all channels. Here, we show channel 18 (blue) saturating and slowly returning to the
baseline. We also show channel 55 (violet) which is the thermometer used for stabilization.
Channel 18 begins returning to baseline rather quickly, then experiences a blip, then returns
to baseline slowly. This is driven by the behavior of the stabilization thermometer, which
initially overshoots its set point (the dashed line), over-heats the tower and eventually settles
back to its stabilization value — before the bolometers have cooled back to equilibrium.
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Appendix B

Generalized Amplitude Evaluation

This section describes the most generalized amplitude evaluation. It is a generalization of
the Optimal Filter commonly used in Cuoricino [68] as well as the algorithm found in [92,
Appendix C].

B.1 Derivation of the Generalized Optimum Filter

We begin by describing a collection of waveforms T seconds long, collected from NC channels.
We assume that each channel has its own signal response function, si(t), which is known or
measured. Each channel also has its own additive noise signal N(t), which can have many
origins (e.g. electronic noise, microphonics or thermal instabilities). We assume that over
time the noise averages to zero, 〈N(t)〉 = 0. More precisely, we assume that the noise and
signal are independent, which to very good approximation is true since they are of different
origins. Further, we assume that the noise is stationary, and can be described by a time
independent covariance matrix.

We consider the situation where there is a signal on channel 0 with no signal on any other
channel. This is a situation that is most often of physical interest. We can write the voltage
on channel 0 as a sum of a signal response function s0(t) and a noise component n0(t), while
the other channels contain only noise components:

y0(t) = a0s0(t) +N0(t)
y1(t) = N1(t)

...
yi(t) = Ni(t)

(B.1)

The amplitude of the signal response, a0, is the quantity in which we are interested in
measuring.

Since we are sampling the waveforms in evenly spaced samples, we should consider the
discrete version of the problem. Each waveform is composed of MS = TfS samples, where
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fs is the sampling frequency. For simplicity of notation, we will use the indices i, j, k to
indicate channels and p, q to indicate frequencies.

y0(ωp) = a0s0(ωp) +N0(ωp)
y1(ωp) = N1(ωp)

...
yi(ωp) = Ni(ωp)

(B.2)

Dividing each channel by its own signal response, we get the ‘normalized’ waveforms:

c0(ωp) = a0 + n0(ωp)
c1(ωp) = n1(ωp)

...
ci(ωp) = ni(ωp)

(B.3)

Where we have defined ci(ωp) ≡ yi(ωp)/si(ωp) and ni(ωp) ≡ Ni(ωp)/si(ωp).
In this form, we can rewrite channel 0 as

a0 = c0(ωp)− n0(ωp) (B.4)

We see that for each frequency ωp, c0(ωp) provides an estimate of a0 with noise n0(ωp).
The goal is to build an estimator of a0, (call it ā0), that minimizes Var(ā0), subject to the
constraint that over many pulses 〈ā0〉 = a0. In [92], this is done on a channel by channel
basis, however, here we include all channels in the estimator to account for correlations
between channels.

We define an estimator for channel i, by a set of weights w∗i,jp:

āi =
∑
j,p

w∗i,jpcj(ωp) (B.5)

To be explicit, w∗i, jp is a set of weights that can be different for each channel, i, that when
summed over the waveforms on all channels, j, and over all frequencies, ωp, provides an
unbiased estimate of the amplitude for that channel, ai, with minimum variance.

We write the constraint mathematically as

〈ā0〉 = a0∑
j,pw

∗
0,jp〈cj(ωp)〉 = a0∑
j,pw

∗
0,jpaj = a0∑

j,pw
∗
0,0pa0 = a0

(B.6)

where the average is taken over many pulses of the same “true” amplitude. Between the
second and third line, we took advantage of the fact that that the noise averages to zero:

〈cj(ωp)〉 = aj + 〈nj(ωp)〉 = aj
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And in the next step, we took advantage of our assumption that all the other channels had
no signal (aj = 0 for j 6= 0). We rewrite this constraint as a normalization on the weights.∑

p

w∗0,0p = 1

Keeping in mind that all variables are — in general — complex, the variance of āi is
given by

Var(ā0) = 〈ā∗0ā0〉 − |〈ā0〉|2

=

〈(∑
j,p

w∗0,jpcj(ωp)

)∗(∑
k,q

w∗0,kqcl(ωq)

)〉
− a2

0

=

〈(∑
j,p

w∗0,jp (aj + nj(ωp))

)∗(∑
k,q

w∗0,kq (al + nk(ωq))

)〉
− a2

0

=

〈(∑
j,p

w0,jpnj(ωp)

)∗(∑
k,q

w0,kqnk(ωq)

)〉
=

∑
j,p,k,q

w∗0,kqw0,jp

〈
nk(ωq)n

∗
j(ωp)

〉
Where we have taken advantage of Eqn. B.6 and the fact that 〈nj(ωp)〉 = 0.

In matrix notation we could rewrite this for channel i as

Var(āi) = W †
iVW i (B.7)

Where W i is a column vector composed of the NC ·MS weights for channel i, and V is the
(NC ·MS)× (NC ·MS) covariance matrix between every channel and frequency,

Vi,j(ωp, ωq) ≡ 〈ni(ωp)n∗j(ωq)〉 (B.8)

V ≡ 〈nn†〉 (B.9)

It is useful to point out that V is both hermitian and positive definite (therefore z†V z, for
every z1).

Now, our challenge is to solve for the set of weights, W i, that minimizes Var(ā). We use
the method of Lagrange multipliers. The equation to optimize is given in matrix form by

W †
iVW i − λTi (U iW i − δi) (B.10)

1In general, any covariance matrix must be Hermitian and positive semi -definite. The more strict con-
dition here that it be positive definite stems from our assumption that all channels are linearly independent.
That is, two channels can have correlated noise, but they cannot be a strict multiple of each other.
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Where λi is a column vector of NC real Lagrange multipliers, δi is a column vector of the
Kroniker δij. U i is an NC × (NC ·MS) matrix of ones that is defined as follows

U 0W 0 =


∑

pw0,0p

0
...
0


and our constraint equation is written explicitly as

∑
pw0,0p

0
...
0

 =


1
0
...
0


Notice that the subscript i on U i denotes that a separate column vector should exist for
each channel i.

Differentiating with respect to Wi, and λi we get the system of equations:

W †
iV − λ

T
i U i = 0

U iW i − δi = 0

And solving for W i, we get:

W i = V −1UT
i

(
U iV

−1UT
i

)−1
δi (B.11)

This equation is hard to parse at first sight, but is in fact a glorified solution to a least
squares problem. We can calculate the expected variance of the final result as

Var(āi) = W †
iVW i

= δTi

((
U iV

−1UT
i

)−1
)†
U iV

−1V V −1UT
i

(
U iV

−1UT
i

)−1
δi

= δTi

((
U iV

−1UT
i

)−1
)†
U iV

−1UT
i

(
U iV

−1UT
i

)−1
δi

= δTi

((
U iV

−1UT
i

)†)−1

δi

= δTi
(
U iV

−1UT
i

)−1
δi

Inverting the Covariance Matrix V

The general solution requires finding the inverse of the covariance matrix V . However,
in CUORE-0 this matrix consisted of (626 · 51)2 elements, and in CUORE will consist of
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Figure B.1: The correlation matrix ρij = |Vij|/
√
ViiVjj over the range 0-10.2 Hz for dataset

2073. Each frequency bin is ∼.2 Hz wide, and each square frequency box in the figure
contains a 51×51 sub-matrix of the channel-channel correlations at that frequency pair. The
majority of the correlation exists at low frequency, with a noise peak at ∼ 7 Hz. Most of the
cross frequency correlations are zero, making the covariance matrix extremely sparse.
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∼ (988 · 1000)2 elements. Computationally, this problem is essentially impossible to solve
and if not done properly in danger of becoming numerically unstable and yielding spurious
results.

As can be seen in Fig. B.1, the correlation matrix is actually quite sparse. There are
obviously very high correlations between channels, but the correlation between frequencies
is small. In the following sections, we will consider special cases, that reduce the size of the
problem by considering various limiting simplifications of the covariance matrix, V .

B.2 Special Cases

In Sec. B.1 we demonstrated the most general set of weights to solve this problem. In this
section we will restrict to specific subcases and rederive both the filter described in [92,
Appendix C] and the Optimal Filter used in Cuoricino.

Zero Cross-Channel Correlation

Here we study the specific case in which the channels are not correlated, but within any
single channel the frequencies are cross correlated.

The majority of cross-frequency covariance will average to zero. This can be seen from a
simple time averaging argument:

〈n∗i (ωp)ni(ωq)〉 ∝ 〈e−iωpteiωqt〉
∝ 〈ei(ωp−ωq)t〉
∝ δ(ωp − ωq)

However, any noise sources that produce harmonics can produce correlations across multiple
frequencies. Another possibility, though likely less significant, is that non-linearities in the
gain circuit lead to intermodulation of two uncorrelated noise sources.

In the limit of no cross channel correlations, we can block diagonalize V into NC subma-
trices: one (MS ×MS) submatrix for each channel. Since our constraint equation can also
be separated by channel, the entire problem can be split into NC separate problems that can
be solved individually. The minimization condition for each channel now becomes

w†iV iwi − λi(uTwi − 1) (B.12)

Were wi is a column vector of MS weights for channel i, V i is the submatrix of V corre-
sponding only to channel i, and u is now a MS × 1 column vector of ones.

Minimizing this equation, yields the result in [92, Appendix C]:

wi =
V −1

i u

uTV −1
i u

(B.13)
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Figure B.2: Frequency-frequency covariance matrices from ds2073 for channel 18 (left) and
43 (right). The majority of the frequency-frequency covariance matrices showed similar
characteristics to the one on the left, with little or no cross frequency noise, however, a few
channels demonstrated a few harmonic peaks like the matrix on the right.

with the variance of āi given by

Var(āi) =
1

uTV −1
i u

(B.14)

Zero Cross-Frequency Correlation, Zero Cross-Channel
Correlation

We can further simplify the zero cross-channel correlation by adding the condition that
there is also no cross-frequency correlations. This is the limit where every channel and every
frequency are independent of every other. In this limit our covariance matrix is really just a
diagonal vector of variance, expressed as

Vij(ωp, ωq) = 〈ni(ωp)n∗j(ωq)〉 ∝ δijδpq

This is the limit that leads to the Optimum Filter that was used in Cuoricino and CUORE-0.
We start with the result of Sec. B.2. In this limit the covariance matrix for the ith

channel, V i, is diagonal, with the pth frequency element given by |ni(ωp)|2 = |Ni(ωp)/si(ωp)|2.
Plugging this into Eqn. B.14, we obtain the familiar equation for the Optimum Filter for
channel i:

wip =
|si(ωp)|2 /

〈
|Ni(ωp)|2

〉∑
p |si(ωp)|

2 /
〈
|Ni(ωp)|2

〉 (B.15)
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Non-Zero Cross-Channel Correlation

Here we study the alternate case where the cross-frequency correlations are negligible but
the cross-channel correlations are significant. Unfortunately, in this limit we can not factor
the constraint equation and so we are forced to revert back to Eqn. B.11.

However, since the cross frequency correlations are negligible, we block diagonalize the
covariance matrix, V . Now, instead of inverting one (NC · MS) × (NC · MS) matrix, we
need only invert MS independent NC × NC matrices. Since this is the situation we find in
CUORE-0, we go into a bit more details.

Since the covariance matrix can be block diagonalized into MS, NC × NC covariance
matrices, we rewrite our equations in terms of these smaller matrices, V (ωp). They are
defined symbolically from the block diagonalization,

V =


V (ω0) 0 0 . . . 0

0 V (ω1) 0 . . . 0
0 0 V (ω2) . . . 0
...

...
...

. . .
...

0 0 0 . . . V (ωMS
)


In practice, in CUORE-0, we never explicitly calculate either ck(ω) or V . Instead, we

work in terms of the non-normalized variables yk(ω) and C. Where the un-normalized
covariance matrix, C, is given by

Cij(ωp, ωq) ≡ 〈Ni(ωp)N
∗
j (ωq)〉 (B.16)

as opposed to V which was given by

Vij(ωp, ωq) =

〈
Ni(ωp)

si(ωp)

N∗j (ωq)

s∗j(ωq)

〉
We can now rewrite our solutions, in terms of these variables by explicitly pulling out

the expected signal response terms

Vij(ωp, ωq) = s−1
i (ωp)Cij(ωp, ωq)(s

−1
j (ωq))

∗

In the case where V has negligible cross-frequency correlations, we can write

Vij(ωp) = s−1
i (ωp)Cij(ωp)(s

−1
j (ωp))

∗

V −1
ij (ωp) = si(ωp)C

−1
ij (ωp)s

∗
j(ωp)

Where Cij(ωp) ≡ Cij(ωp, ωp).
Our general solution from Eqn. B.11, can now be written as

āi = A
∑
j,p

s∗i (ωp)C
−1
ij (ωp)yj(ωp) (B.17)
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where A is a normalization constant, given by

A =

(∑
p

s∗i (ωp)C
−1
ii (ωp)si(ωp)

)−1

(B.18)

The variance of āi is given by

Var(āi) =

(∑
p

s∗i (ωp)C
−1
ii si(ωp)

)−1

= A (B.19)

And this, of course, is our “Decorrelating Optimum Filter” used in CUORE-0.

Decorrelation Filter

Here we derive the “decorrelation” filter from [103]. This filter is similar to the Decorrelating
Optimum Filter, in that it subtracts noise from neighboring channels, however, it does not
make use of an expected signal response, si(t). Instead, it seeks to preserve the spectral
shape of the channel being filtered by setting all the weights for a channel on itself to unity
(i.e. wi,ip = 1 for all i).

Mathematically, this can be written by specifying that si(ωp) = 1 for all i and ωp. Our
constraint matrix Ui is modified to a MS × (NC ·MS) matrix such that

U 0W 0 =


w0,00

w0,01
...

w0,0MS

 (B.20)

so that our constraint takes the form
w0,00

w0,01
...

w0,0MS

 =


1
1
...
1

 (B.21)

In this case, Eqn. B.11 can be written as

wi,jp =
C−1
ij (ωp)

C−1
ii (ωp)

(B.22)

Notice that we are using the unscaled covariance matrix Cij(ωp), rather than Vij(ωp). In
fact, in the limit that si(ωp) = 1, they are equal.

Our filtered signals take the form

yfi (ωp) = yi(ωp) +
∑
j 6=i

C−1
ij (ωp)

C−1
ii (ωp)

yj(ωp) (B.23)

which is the “Decorrelating Filter” found in [103].
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B.3 Waveform Filtering in CUORE-0

One of our implicit assumptions, seen in Eqn. B.1, was that the measured signals were
actually composed of noise terms and a single “signal” pulse that started at t = 0. In practice,
it’s actually difficult to determine the start time of the signal, since the position within the
acquired window depends on when the signal had risen enough to pass the threshold and
trigger the acquisition. This gives the start time of the signal a dependence on both the
amplitude and noise.

If we include this uncertainty in the start time of the signal, our equation for channel 0
might look more like this

y0(t) = a0s0(t−∆t) +N0(t)

and in frequency space, this adds a frequency dependent phase to the amplitude components:

y0(ωp) = a0e
−iωp∆ts0(ωp) +N0(ωp)

y0(ωp) = a0(ωp)s0(ωp) +N0(ωp)

The problem is, of course, since we assumed a0 to be real our summation of estimates of
estimates of a0, will now include complex phasors, which will add noise and worsen our
resolution.

There are several approaches to solving this issue. The first is that we could include
this uncertainty in our minimization and solve for ∆t. However, since the ∆t appears in
the exponential, this would make the minimization non-linear forcing a numerical approach
and a non-analytic solution. A second approach would be to shift the template pulse to
align with each signal pulse we wish to filter. Computationally, this is feasible, but would
require deciding on an alignment parameter, such as a χ2 statistic to determine when the
template is “most” aligned with the signal pulse. Computationally, this adds a large amount
of complexity, due to repeatedly evaluating this alignment parameter.

In CUORE-0, we approach this problem by solving for the MS amplitude estimates,
āi(ωp), without summing over frequency. In CUORE-0, Eqn. B.17 is actually calculated as

āi(ωp) = A
∑
j

s∗i (ωp)C
−1
ij (ωp)yj(ωp) (B.24)

The āi(ωp) are then inverse Fourier transformed back into time domain to yield a filtered
amplitude waveform, āi(t).

The filtered waveform, āi(t), has a noise power spectrum given by

NPS(ωp) = A2
(
s∗i (ωp)C

−1
ii (ωp)si(ωp)

)
(B.25)

At this point, the problem becomes one of locating the peak of the filtered waveform
and evaluating its height. This is the equivalent problem to aligning the template pulse
with the signal pulse or evaluating ∆t, but computationally much simpler. In CUORE-0,
we do this interpolating a parabola through the maximum point in the waveform and its
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immediate to neighbors. The amplitude and time of the pulse is given by measuring the
maximum of this parabola. The resulting evaluated amplitude, ā′i, still has a variance given
by Eqn. B.19. Though, the amplitude evaluation process may add a relatively small amount
of added noise due to the uncertainty in ∆t. One possible channel to improve this in the
future is trigonometric interpolation rather than parabolic fitting.
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Raw Noise Power Spectrum                             (RMS: 2.70 mV)

OF Filtered Noise Power Spectrum                     (RMS: 1.13 mV)

Decorr+OF Filtered Noise Power Spectrum              (RMS: 0.80 mV)

Figure B.3: Noise power spectra for Channel 13 in Dataset 2073. Blue: Raw noise power
spectrum calculated from averaging the noise events. Red: The predicted noise power spec-
trum after having been passed through the new Optimum Filter given in § B.2. Green:
The predicted noise power spectrum after having been passed through the Decorrelating
Optimum Filter given in § B.2.
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Appendix C

Bayesian Nuisance Parameters

.
In this Appendix, we discuss a more general approach to dealing with systematic un-

certainties and derive the approach that we used in Chapter 6 as a limiting case of the
general approach. Broadly speaking, our approach to including systematic uncertainties is
to modify our profile likelihood function, Pstat(Γ̂|Γ), to a profile likelihood which includes
our systematic uncertainties, Pstat+syst(Γ̂|Γ).

φ
0 1 2 3 4 5 6 7 8 9 10

True Signal

Expected Best Fit Signal

Figure C.1: Toy example of a relative bias caused by a nuisance parameter. Here, because
we are fitting the peak at a wrong location, we expect a bias in our fit rate. The bias will
also be proportional to the true decay rate, 〈Γ̂− Γ〉 ∝ Γ.

We consider some nuisance parameter, φ, with a probability distribution, π(φ), which
has some effect on our measured decay rate, Γ̂, given a true value of the decay rate, Γ. We
define the systematic uncertainty on our measurement to be the expected bias from our lack
of knowledge of the true value of φ. For a fixed value of φ, we can write the expected bias
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on our measurement Γ̂ as
δ(φ,Γ) ≡ 〈Γ̂− Γ〉(φ,Γ) (C.1)

We then create our profile likelihood which accounts for this systematic, Pstat+syst(Γ̂|Γ), by
apply the bias correction δ(φ,Γ) and integrated over the probability distribution of φ, π(φ):.

Pstat+syst(Γ̂|Γ) =

∫
Pstat(Γ̂− δ(φ,Γ)|Γ)π(φ)dφ (C.2)

This approach requires two things: the expected bias, δ(φ,Γ), and the probability dis-
tribution of our nuisance parameter, π(φ). We outlined an approach to calculated the first
term in Chapter 6. There we calculated δ(φ,Γ), for a single value of φ over a range of Γ.
The value of φ was the 1σ deviation, but generically, δ(φ,Γ) can be scanned over both φ
and Γ — this requires many toy Monte Carlos. The second term, π(φ), is a prior on the
distribution of φ. For nuisance parameters like the efficiency, we can make a good argument
that π(φ) should be gaussian distributed, but for other nuisance parameters (e.g. the choice
of line shape) it is difficult to assign prior probabilities.

Combining Statistical and Systematic Errors in the Gaussian Limit

To connect this to the approach we used in Chapter 6, we look at the case were all probability
distributions are gaussian, and the bias is linear in φ.

Assume that our bias takes the form:

δ(φ,Γ) = c1φ+ c2φΓ (C.3)

Further, assume that φ is gaussian distributed, π(φ) ∼ Gauss(0, σφ). In this case, our
combined profile likelihood can be calculated as

Pstat+syst(Γ̂|Γ) ∝
∫
Pstat(Γ̂− c1φ− c2φΓ|Γ)e−

1
2
φ2/σ2

φdφ (C.4)

This can be numerically evaluated to solve for the total profile likelihood. However, in
the case where our statistical profile likelihood is also gaussian distributed (i.e. Γ̂ − Γ is
distributed as Gauss(0, σstat)), this can be written

Pstat+syst(Γ̂|Γ) =
1

2πσstatσφ

∫
e−

1
2

(Γ̂−Γ−(c1−c2Γ)φ)2/σ2
state−

1
2
φ2/σ2

φdφ

We solve this by making the integration substitution x = (c1 + c2Γ)φ and identifying the
sigma for x as

σsyst ≡ c1σφ + c2σφΓ = σabs + σrelΓ (C.5)

And solve the convolution to yield our new distribution

Pstat+syst(Γ̂|Γ) =
1√

2π(σ2
stat + σ2

stat)
e−

1
2

(Γ̂−Γ)2/(σ2
stat+σ

2
stat) (C.6)
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Which is, of course, the expected result of the convolution of two gaussians. One thing to
notice, is that this is not truly a gaussian, because σstat depends on Γ. However, in our
case we can ignore this fact, since our statistical uncertainty is significantly larger than our
systematic uncertainty. This function only deviates from gaussian far out in out in the wings.

Since the result of our calculation was just to add two gaussian uncertainties in quadra-
ture, we can derive a faster way to do this. We can define the two parameters

χ2
stat ≡ −2 log

[
Pstat(Γ̂|Γ)

]
(C.7)

χ2
syst ≡

(Γ̂− Γ)2

σ2
syst

(C.8)

Of course in the gaussian limit, the first parameter can be evaluated to

χ2
stat =

(Γ̂− Γ)2

σ2
stat

And we can simply achieve our convolution of statistical and systematic uncertainties using

1

χ2
stat+syst

=
1

χ2
stat

+
1

χ2
syst

(C.9)

Which is exactly the equation that we used in Chapter 6.
And of course, this process can be repeated over and over for each additional systematic

uncertainty. Each one adding in quadrature

σ2
total = σ2

stat + (σabs,1 + σrel,1Γ)2 + (σabs,2 + σrel,2Γ)2 + . . . (C.10)

Note: It’s not uncommon to see the combination

σ2
syst = σ2

abs + σ2
relΓ

2

but this is only valid in the case where σabs and σrelΓ are uncorrelated uncertainties.
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Appendix D

The Coldest Cubic Meter in the
Universe

The full CUORE detector consists of 988 bolometric modules for a total mass of 741 kg.
When operational, this mass, plus an additional 2 metric tonnes of supporting material, will
need to be cooled to 10 mK, producing the largest region in the Universe at that temperature.
In this section, I briefly discuss the temperature of the Universe and some of the naturally
occurring cold places in it. I introduce the CUORE detector and cryostat and describe the
working volume and its temperature. I also compare the CUORE detector to some of the
other large low temperature experiments that are operating or being built.

D.1 Low Temperature Regions in Nature

In comparison to the CUORE detector, the Universe is actually quite warm. Its temper-
ature is dominated by the Cosmic Microwave Background (CMB) photons that pervade
all empty space. This thermal bath of photons exists everywhere throughout the Universe
and has a well defined temperature which has been measured with extreme accuracy to be
TCMB = 2.72548± 0.00057 K [118].

Many regions of space are heated above TCMB by structure formation and the radiation
this gives off, but there is currently only one known naturally occurring region below TCMB

and that is the Boomerang Nebula [119]. This proto-planetary nebula (PPN) consists of a
central star surrounded by an envelope of molecular gas. The Boomerang Nebula is unique
among known PPN in that it has produced an extremely massive and rapidly expanding
envelope of gas. The high opacity of this envelope absorbs CMB photons in the outer layers,
shielding the inner regions and allowing them to cool via adiabatic expansion. By combining
radio measurements with radiative modeling, the authors of [120] place the kinematic tem-
perature at about 1 K, but possibly as cold as 0.3 K. This makes the Boomerang Nebula the
coldest known object in the Universe outside the laboratory. But here on Earth we routinely
achieve temperatures colder than 300 mK.
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Figure D.1: Image of the Boomerang Nebula taken on the Hubble Space Telescope. Photo
credit: NASA/ESA.

D.2 The CUORE Cryostat

The CUORE detector is hosted in one of the largest cryostats ever constructed and is cooled
by a 3He/4He dilution refrigerator that was designed and built by Leiden Cryogenics and is
one of the most powerful in the world. A detailed description of the CUORE cryostat can be
found here [121], and a paper describing its commissioning is in preparation. The cryostat
is built as a series of nested vessels that step the temperature down from 300 K to ∼ 40 K,
∼ 3.5 K, ∼ 800 mK, ∼ 50 mK and finally the detector temperature of 10 mK. Each stage is
connected to a cooling unit and has a radiation shield that thermally isolates the enclosed
volume.

The largest stage of the cryostat below 1 K is the Still. The temperature of this stage will
be adjusted to optimize the temperature of the coldest stage, but it is typically maintained
between about ∼800-900 mK. It is composed of a radiation shielding copper can 112 cm in
diameter by 185 cm in height, mounted to the bottom of the copper Still plate that has a
diameter of 133 cm and a thickness of 4.3 cm. The total enclosed volume at or below ∼ 1 K
is ∼1890 L.

Inside the still shield is the next colder stage of the cryostat, the Heat Exchanger. The
temperature of this stage will also be adjusted to maintain the base temperature but it is
typically maintained at ∼50 mK. This stage consists of a radiation shielding copper can of
diameter of 103 cm and height of 165 cm, it is mounted to the bottom of a copper plate
107 cm in diameter and 2.8 cm thick. The total enclosed volume at or below ∼50 mK is
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Table D.1: The stages of the CUORE cryostat below 1K and the volumes and masses
colder than that temperature. The values are cumulative and should be read as the ‘total
volume/mass colder than.’ (Numbers are approximate.) [122–124]

Stage Temperature (mK) Volume (L) Mass (kg)
4K Stage 3.5 K 3340 16000

Still 850 1890 14100
Heat Exchange (HEx) 50 1440 5900

Base (no load) 10 990 400
Base 10 636 2000

1435 L.
Inside the Heat Exchanger (HEx) vessel is the coldest stage of the cryostat, the Mixing

Chamber (MC) plate, the lead shielding, and the CUORE detector itself. The MC plate is
suspended from the Heat Exchanger plate and hosts the final stage of the dilution refrigerator.
The plate itself is 98 cm in diameter and 1.8 cm thick and supports a radiation shielding
copper vessel below, which is 94 cm in diameter and 130 cm in height. The MC stage is
cooled to 10 mK and encloses a volume of 990 L.

However, inside this volume things get slightly complicated. Below the 10mK plate,
there will be ∼2.6 metric tonnes of lead and copper shielding, which, for reasons of cooling
power, is thermalized to 50 mK. This shielding takes up a volume of 235 L inside the 10 mK
shielding. So to be conservative, we will take the operating volume at 10mK to be only that
of the shielded detector itself, 636 L. These sizes and volumes are summarized in Tab. D.1.

D.3 Discussion

The current record for the coldest cubic meter in the Universe was set in the first of the
CUORE cryostat commissioning runs without the lead shielding mounted [paper in prepa-
ration]. When the CUORE detector is fully commissioned and running (2015), the detector
will be held stably at the operating temperature of ∼10 mK for the duration of CUORE
data taking – which is expected to be ∼ 5 years. During this time, both the 636 L held
at 10 mK and the 1435 L held entirely below 50 mK will be the coldest volumes of those
respective sizes in the known Universe. This gives CUORE cryostat the distinction of being
the Coldest Cubic Meter in the known Universe.

In Tab. D.2, I list a few, but certainly not all, of the larger currently running experiments
below 100 mK. I list their approximate cold volumes and operating temperatures. Not
surprisingly, the largest coldest experiments are often rare-event searches.
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Table D.2: A (non-exhaustive) list of currently running large volume experiments with
operating temperatures below 100mK. The mass represents the target or detector mass,
excluding any supporting material or structure. CUORE (HEx) is not a separate experiment,
but just the 50 mK stage of the CUORE detector. All numbers are approximate, and only
meant to give a sense of scale. aAuriga/Nautilus operated at T ∼ 100 mK from 1997-99,
but are currently taking data at 4.4 K.

Experiment Mass (kg) Size (L) Temperature Physics Goal Location Ref.
CUORE 741 636 10mK 0νββ Gran Sasso, Italy [121]

CUORE-0 39 27 12mK 0νββ Gran Sasso, Italy
CRESST-II 10 24 15mK Dark Matter Gran Sasso, Italy [125]
Edelweiss 32 50 20mK Dark Matter Modane, France [126]

SuperCDMS 10 21 40mK Dark Matter Soudan, SD [127]
CUORE (HEx) - 1435 50mK 0νββ Gran Sasso, Italy [121]

Auriga/Nautilusa 2200 848L 100mK Gravity Wave Italy

D.4 Caveats, Qualifications, Ifs and Buts..

There are several caveats and assumptions that should be noted. Many of these are techni-
calities, but they deserve mentioning:

• The CUORE detector, like everything on Earth, is bathed in a constant flux of neu-
trinos both from the sun and earth’s core. The solar neutrinos were last thermalized
in the core of the sun to temperatures of order 107 K and neutrinos from the earth’s
core were last thermalized to temperatures of order 104 K. However, neutrinos interact
so infrequently — we expect of order 100 solar neutrinos per year to interact in the
CUORE detector — that they never reach a thermal equilibrium with anything on
Earth (thankfully). However, all of these neutrinos are still technically present inside
the volume of the CUORE detector, so I explicitly ignore them here.

• Another very interesting source of neutrinos that are also present inside the volume of
the CUORE detector is the Cosmic Neutrino Background (CνB). These are the relic
neutrinos from the Big Bang, and like the photons in the CMB they are expected to
pervade the entire Universe. Unlike the photons in the CMB, these neutrinos interact
so infrequently that they have not actually been detected yet. These neutrinos are
expected to be warmer than the CUORE detector but like the solar and geo-neutrinos,
never come into thermal equilibrium, so I explicitly ignore these as well.

• CUORE will have a significant amount of lead shielding sitting inside the 10 mK shield
and thermalized to 50 mK. Lead becomes superconducting around 7 K and as a result,
as the temperature drops below ∼ Tc/10 = 700 mK, the thermal conductivity becomes
very poor and the lead begins to self insulate. It will eventually reach 50 mK, but it
is difficult to say on what timescale. Neglecting the lead in the 10 mK volume, the
remaining volume at 50 mK is about 1245 L.
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• The definition of the cubic meter can be made fuzzy. Here I have considered only a
simple contiguous convex volume of space.

• Proving the non-existence of a cubic meter in the Universe colder than CUORE is,
of course, an impossible task. I have implicitly restricted the discussion to known or
discovered phenomena. But, I admit the possibility of another planet somewhere in an
infinite Universe, which is entirely identical to Earth in every way, except that their
CUORE collaboration has decided to operate their CUORE detector at 9 mK.

D.5 More on the CMB

The CMB sets the standard for what we consider the temperature of the Universe, and
in this appendix we consider the possibility of a purely statistical fluctuation of the CMB
temperature down to 10 mK somewhere in the Universe. If we broaden our working definition
of temperature, we can calculate the probability that the mean kinetic energy of all the CMB
photons in a single cubic meter of space fluctuates down to the point that their mean energy
is consistent with ∼ 10 mK. (I should warn, that the following argument will be very
approximate.)

Starting from the Planck distribution

n(E)dE =
1

π2~3c3

E2

eE/kBT − 1
dE

we can integrate this to find the photon number density at 2.7 K, n ∼ 4×108 m−3, the mean
photon energy 〈E〉 ≈ 0.7 meV, and the RMS σE ∼ 0.4 meV. Due to the extremely large
number of photons in a given cubic meter, the magnitude of fluctuations of mean kinetic
energy is extremely suppressed, σ〈E〉 ∼ σE√

〈N〉
∼20 neV. A fluctuation down to a mean kinetic

energy consistent with T ∼ 10 mK (or 〈E〉 ∼ 2.3 µeV), amounts to a ∼ 31, 000σ downward
fluctuation.

If one were to assume a Gaussian probability distribution, this calculation would imply
that the fraction of cubic meters in the Universe that had fluctuated down this far would be
about 1 in ∼ 10108

. For reference, there are ∼ 1080 cubic meters in the observable Universe.
However, we are extrapolating this distribution down so far that considering it Gaussian is
certainly no longer warranted.

So instead we ask the question what is the coldest cubic meter in the CMB — according to
this interpretation of mean energy density. Or in other words, what temperature corresponds
to the mean energy density which we expect fewer than 1 in 1080 cubic meters of space to
be colder than. Assuming a Gaussian distribution, this would take us down only 19σ — a
much more modest distance to extrapolate than 31,000σ. This corresponds to a fractional
difference in temperature of ∆T

T
∼ 6.1× 10−4. Or in other words, for statistical fluctuations

alone, we expect that at any given time the coldest cubic meter anywhere in the CMB is
only ∼ 1.6 mK colder than the average temperature of the CMB.
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