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Introduction

In the last decade much progress has been made in neutrino physics. Oscillation
experiments provided a clearer picture of this elusive particle and we are now entering
the era of precision measurements. There are however questions that cannot be
addressed by oscillation experiments. The absolute mass scale of the neutrino is one
of these, and it is considered a key quantity in many theories beyond the Standard
Model of particle physics. Being only sensitive to squared mass differences, oscillation
experiments are not able to measure this parameter.
Moreover, the mechanism responsible for the generation of neutrino masses is still
unknown. Neutrinos are electrically neutral particles, and the only carried charge is
that of weak interactions. In the Standard Model there is no symmetry requiring
conservation of lepton number, even though a violation has never been observed. If
lepton number is not conserved, neutrinos could be their own antiparticles, thus
being Majorana particles.

The double beta decay without emission of neutrinos violates the lepton number
by two units, and has never been observed. Observation of this nuclear decay
would imply that lepton number is not conserved and that neutrinos are Majorana
particles, a breakthrough in our understanding of nature. Moreover it could provide
information on the absolute mass scale of neutrinos because a virtual neutrino is
exchanged and the propagator is proportional to it.
Being a very rare process the experimental search for this decay demands a large
amount of mass operating in low background conditions. Current limits on the
half-life of this process range between 1021 and 1025 years, depending on the source
isotope. Next generation experiments will improve the sensitivity to the half-life by
two orders of magnitude with respect to the present imits.

This Ph.D. work was performed within the CUORE collaboration, which will be
ready to start a 1-ton experiment within a couple of years. This experiment will
probe neutrinoless double beta decay in 130Te using TeO2 bolometers.
Bolometers are calorimeters that operate at low temperatures, able to measure the
temperature rise produced by the energy release of an impinging particle. The
response function of these detectors is not yet fully understood. Measuring the
energy deposited by a particle is complicated and the shape of the signal depends on
the energy. Moreover the response function varies with operating temperature. This
thesis concerns a study of the response function of TeO2 bolometers, performed in
order to build simulations of the detector and provide new data analysis tools with
the aim of building the neutrinoless double beta decay measurement at CUORE.

This thesis is divided into five chapters. After an overview of neutrino physics, in
chapter 1 the scientific motivations for the search of neutrinoless double beta decay
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2 0. Introduction

are introduced, followed by a description of the experimental status. In chapter 2 the
bolometric technique is described, the experimental technique used by the CUORE
experiment to search for neutrinoless double beta decay. Chapter 3 is devoted to
the development of a model of the response function of CUORE bolometers, that
includes an understanding of the main sources of non linearities. In chapter 4 an
algorithm to remove the non linearities is proposed. The data analysis based on
this algorithm is compared with the standard analysis used so far with bolometers.
In chapter 5 the analysis is repeated on a larger number of bolometers, including
precision measurements of the model parameters.



Chapter 1

Neutrino masses and double
beta decay

In 1914 Chadwick observed that the electrons emitted in β decays have a continuous
spectrum, unlike what happens in α and γ decays. Nevertheless, if the decay
products were only an electron and a nucleus, electrons would have necessarily a
monochromatic spectrum. To overcome this paradox, Pauli proposed a ‘desperate
way out’ to save energy conservation, introducing a new particle that was not
detected in the decay, the “neutron”. After that the true neutron was identified by
Chadwick, the new particle was renamed by Fermi “neutrino” (ν).
Electron neutrinos were detected for the first time by Cowan and Reines in 1956
and found to be left-handed in 1957. The muon neutrino was discovered in 1962,
while the tau neutrino was not discovered until 2000.

Great interest in neutrino physics was raised by the discovery of flavor non-
conservation. The first hints for this phenomenon date back to the late ’60, when
a deficit in the solar neutrino flux was observed. It took about thirty years to
completely understand that neutrinos change flavor along the path from the sun to
the earth. This phenomenon, named “oscillation”, was predicted by Pontecorvo in
1956 and shows that neutrinos have mass. Oscillations were then observed also in
neutrinos produced in the atmosphere by cosmic rays and in neutrinos produced in
nuclear reactors and accelerators.

In the last decade almost all oscillation parameters have been measured, giving
a much clearer picture of neutrino physics. Most of the remaining open questions
concerns its mass, which absolute value and nature cannot be determined by oscil-
lation experiments. The search for neutrinoless double beta decay is currently the
only experimental technique able to probe neutrino mass and nature.

1.1 Oscillations

The first indication of neutrino oscillations came from the Chlorine solar neutrino
experiment conducted by Raymond Davis, Jr, in the Homestake mine in South
Dakota [1]. This experiment observed only one third of the neutrinos coming from
the sun predicted by the Standard Solar Model. The “solar neutrino problem”, as
it came to be known, was bolstered by the findings of the Gallium experiments
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4 1. Neutrino masses and double beta decay

GALLEX [2] and SAGE [3]. Finally the SNO experiment confirmed that electron
neutrinos were being converted into other neutrino flavors through the comparison of
charged current reactions (sensitive only to νe) to neutral current reactions (sensitive
to all three flavors) [4]. Finally, in 2002, the KamLAND collaboration published [5]
the first observation of the oscillation effect in neutrinos emitted by nuclear reactors.
The oscillation pattern is clearly visible in the last KamLAND publication (see figure
1.1).
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Figure 1.1. Electron anti-neutrino survival probability as a function of L/E measured by
the KamLAND experiment. L0 is the effective baseline taken as a flux-weighted average
(L0 = 180 Km). Picture taken from [6].

Moreover an anomaly in the atmospheric neutrino flux was observed by Super-
Kamiokande [7]. The anomaly consisted in a difference between the flux of downward-
going and upward-going νµ. The explanation for this observation is that the νµs
were oscillating into ντ s.

Neutrino oscillations occur because the weak flavor eigenstates (νe, νµ and ντ ) are
not aligned with the neutrino mass eigenstates (m1, m2 and m3). Flavor eigenstates
|νf 〉 are related to mass eigenstates |νk〉 by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix:

|νf 〉 =
3∑

k=1
U∗fk |νk〉 , f = (e, µ, τ), k = (1, 2, 3) . (1.1)

The PMNS matrix Ufk can be parameterized as [8]:
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U =

 1 0 0
0 c23 s23
0 −s23 c23

×
 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13

×
 c12 s12 0
−s12 c12 0

0 0 1


×

 eiφ1/2 0 0
0 eiφ2/2 0
0 0 1

 . (1.2)

where s12 and c12 indicate sin θ12 and cos θ12 for example. The angles θ12, θ23 and
θ13 are known as the mixing angles, and the parameter δ is a phase which account for
the CP violation. In addition the parameters φ1 and φ2 are Majorana phases. These
phases can also violate CP, but they are not observable in neutrino oscillations.

In the simple case with only two neutrino flavors (νf ,ν ′f ) and two mass eigenstates
(ν1,ν2) the mixing matrix can be expressed in terms of a single mixing angle θ without
phases (CP violation can occur only when there are three or more states). In this
approximation the probability of detecting a neutrino with flavor f ′ at a distance L
from the source, where they were produced with flavor f , is:

P (νf → νf ′ ; t) = sin2 2θ sin2
(

∆m2

4E L

)
(1.3)

where ∆m2 = m2
2 − m2

1 and E is the neutrino energy. As this equation clearly
shows, oscillation experiments can extract the mixing angles and the squared mass
differences but not the absolute mass value. The current results are summarized in
table 1.1, where it can be seen that the two mass splittings, as well as two over the
three mixing angles have been measured with reasonable precision, while the small
mixing angle θ13 is compatible with zero. If this angle vanishes the mixing matrix
could be reduced to two independent 2× 2 matrices, excluding the possibility of CP
violation with neutrinos.

Table 1.1. Measured oscillation parameters [9].

Oscillation Parameter Value
solar mass splitting ∆m2

21 = 7.65+0.23
−0.20 × 10−5 eV2

atmospheric mass splitting |∆m2
23| = 2.40+0.12

−0.11 × 10−3 eV2

solar mixing angle sin2 θ12 = 0.304+0.022
−0.016

atmospheric mixing angle sin2 θ23 = 0.50+0.07
−0.06

’CHOOZ’ mixing angle sin2 θ13 = 0.010+0.016
−0.011

While the solar mass splitting is known with sign (e.g. m2 > m1), the atmospheric
mass splitting is known only as absolute value. This implies that we do not know
if the mass hierarchy is normal (m3 > m1,2), following the pattern of the charged
leptons, or inverted (m3 < m1,2). These possible scenarios are depicted in figure 1.2.
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Figure 1.2. Neutrino mass hierarchies. The colored bands represent the contribution of
each flavor to the mass eigenstate. The absolute mass scale is still unknown.

1.2 Masses
Even if the mass differences between neutrino states have been measured, the absolute
values are still unknown. Limits on absolute neutrino masses come from cosmological
constraints and from non oscillation experiments. Non oscillation experiments are
mainly based on two methods. One method is the double beta decay and will be
discussed later. The other method consist in the study of the endpoint of the beta
decay spectrum, where the finite mass of the neutrino modifies the shape of the
spectrum. The parameter that β-decay experiments measure is:

m2
β =

3∑
i=1
|Uei|2m2

i . (1.4)

Current best limits on mβ come from the Mainz [10] and Troitsk [11] tritium β-decay
experiments (mβ < 2.1 eV). Next generation experiments plan to further constraint
mβ in the sub-eV range, studying β-decay of tritium (KATRIN [12]) and 187Re
(MARE [13]).
Cosmological constraints on neutrino masses come from the observation of the Cosmic
Microwave Background anisotropies and from the study of large scale structures.
These observations are sensitive to the sum of the three neutrino masses. Limits
range from few eV to few hundreds of meV, depending on the data being considered.
However these constraints are less trustworthy, as they depend on cosmological
models.

From the theoretical point of view the neutrino is a massless particle in the
Standard Model of particle physics, as there was no evidence for neutrino masses
when this theory was formulated. Oscillation experiments have now changed this
scenario, calling for an extension of the theory. The mass can be included as a Dirac
mass term, as for all other fermions:

LD
mass = −mD νR νL + H.c. (1.5)

where mD is the Dirac mass that couple left-handed and right-handed neutrino.
However, once the right-handed neutrino is introduced, due to the lack of electric
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charge, there is no reason not to include a Majorana mass term, where the neutrino
is coupled to its charge conjugate:

LM
mass = 1

2 MR ν
T
R C† νR + H.c. (1.6)

where MR is the Majorana mass term and C is the charge conjugation operator.
The Majorana mass term for νL is not allowed by the symmetries of the Standard
Model because it is not invariant under SU(2)L × U(1)Y transformations. On
the other hand, the Majorana mass term for νR is allowed, being νR a singlet of
SU(3)C × SU(2)L ×U(1)Y . Therefore a Dirac-Majorana mass term:

LD+M
mass = LD

mass + LM
mass (1.7)

is allowed in the Standard Model. In order to understand the implications of the
Dirac-Majorana mass term, it is useful to define the column matrix of left-handed
chiral fields:

NL =
(
νL
νcR

)
(1.8)

so that LD+M
mass can be rewritten as

LD+M
mass = 1

2N
T
L C†M NL + H.c. (1.9)

with

M =
(

0 mD

mD MR

)
. (1.10)

While both Majorana and Dirac mass terms are not excluded by any symmetry
arguments, it is natural to ask the question why the neutrino is so much lighter than
the other fermions. The See-saw mechanism provides a compelling mechanism to
account for this discrepancy (for a detailed description see for example [18]). While
the Dirac mass mD, being generated by the Higgs mechanisms, is expected to be of
the same order of magnitude of other fermions, there are no bounds for the Majorana
mass MR. In particular it can assume arbitrarily large values. If MR � mD the two
mass eigenstates of the Lagrangian (1.9) are:

ν1 ' νL, m1 '
m2
D

MR

ν2 ' νcR, m2 'MR .

(1.11)

If this condition is verified, the heavy neutrino ν2 is predominantly νcR and the
light neutrino ν1 is essentially the observed particle νL. Thus the introduction of
the Majorana mass term in the Lagrangian leads to a natural explanation for the
smallness of neutrino masses: the bigger is the mass of the unseen particle νR, the
smaller is the mass of νL. Currently the only experimental method for determining
the quantum nature of the neutrino is the search for neutrinoless double beta decay.
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1.3 Double beta decay
Double Beta Decay (DBD) is a second-order weak process in which a nucleus changes
its atomic number by two units:

(A,Z) → (A,Z± 2) . (1.12)
It occurs for some even-even nuclei for which the single beta decay is energetically
forbidden, or suppressed by large change in angular momentum. Double beta decay
accompanied by two neutrinos is allowed in the Standard Model (see figure 1.3(a))
and it was detected for the first time in 82Se in 1987 [14]. Now, it has been observed
on several other nuclei and the half-lives range from ∼ 1018 to ∼ 1022 years.

−
ν

ν

n

n p

p

e

e

−

W

W

(a)

ν
Μ

n

n p

p

e

e
W

W

x

(b)

Figure 1.3. Double beta decay diagrams for the DBD mode (left) and the 0νDBD mode
(right). The 0νDBD diagram assumes that the process is mediated by the exchange of a
Majorana neutrino.

The double beta decay without emission of neutrinos (0νDBD) is instead forbidden
in the Standard Model, since it violates the lepton number by two units. Neutrinoless
double beta decay can proceed through many different mechanisms: almost any
physics that violates the total lepton number can generate it [15]. The simplest way
to obtain neutrinoless double beta decay is by the exchange of a massive Majorana
neutrino (see figure 1.3(b)). However, no matter which particular mechanism holds,
this decay would imply the existence of a Majorana neutrino mass term [16]. This is
shown in figure 1.4: the 0νDBD decay can be inverted to produce a ν̄e going into a
νe or, in other words, a Majorana mass term.

(ν)R νLββ(0ν)

p p
_

nnW W

ee

Figure 1.4. Conversion from ν̄e to νe by a 0νDBD interaction. This diagram proves that
the existence of 0νDBD-decay would imply a Majorana mass for neutrino, no matter what
is the mechanism that gives rise to the transition.

The rate of this process can be written as [17][
T 0ν

1/2

]−1
= G0ν |M0ν |2 〈mββ〉2 (1.13)
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where G0ν and M0ν are respectively the phase space factor and the nuclear matrix
element (NME) for the 0νDBD transition, and mββ is the effective Majorana mass:

mββ =

∣∣∣∣∣∣
3∑
j=1

U2
ejmj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3∑
j=1
|Uej |2 eiφj mj

∣∣∣∣∣∣ . (1.14)

In contrast to single beta decay, where mβ was a function of the three |Uei|2, mββ is
a function of the U2

ei and is therefore sensitive to the two Majorana phases. Since the
Uei and the two squared mass differences are known from oscillation experiments,
mββ can be written in terms of only three unknown parameters, the mass of the
lightest neutrino and the two Majorana CP phases. The result is shown in figure 1.5,
where the allowed values for mββ are plotted as a function of the lightest neutrino
mass.
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Figure 1.5. Allowed values for the effective Majorana mass as a function of the mass of
the lightest neutrino. The green band represents the allowed value in the case of inverted
neutrino mass hierarchy, while the red band is for the normal hierarchy case. The region
where the green and the red bands overlap is known as “degenerate mass hierarchy”. The
darker bands represent the allowed regions that would be obtained if the parameters from
oscillation experiments were measured with infinite precision. The gray regions represent
the parameter space that is excluded by double current double beta decay experiments and
by cosmological observations. Picture taken from [18].

Apart for a controversial claim, later discussed, neutrinoless double beta decay
has never been observed. Current experimental limits are reported in table 1.2.

1.3.1 Nuclear matrix elements

Even if the observation of neutrinoless double beta decay of an isotope is enough
to make the discovery, the confirmation and the comparison with different isotopes
is needed. Different isotopes have different phase space factors and nuclear matrix
elements (see equation 1.13), so these quantities must be known to combine and
compare the results of different experiments. While the phase space factor can be
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Table 1.2. Commonly studied double beta decay isotopes and best lower limits for the
0νDBD half lives. The claim of observation in 76Ge will be discussed later.

Parent Isotope T 0ν
1/2(y) Reference

48Ca > 1.4× 1022 [19]
76Ge > 1.9× 1025 [20]
76Ge 1.19× 1025 [21]
82Se > 1× 1023 [22]
96Zr > 1.0× 1021 [23]

100Mo > 4.6× 1023 [22]
116Cd > 1.7× 1023 [24]
130Te > 3.0× 1024 [25]
136Xe > 1.2× 1024 [26]
150Nd > 1.8× 1022 [27]

evaluated exactly, NME represents the biggest source of theoretical uncertainty and
cannot be determined experimentally, as it occurs only in the 0νDBD.

Nuclear matrix elements depend on the structure of the parent and daughter
nuclei, as well as the intermediate one. Since a many bodies problem must be
solved, the calculation cannot be carried out analytically, but requires numerical
computations in which several approximations are introduced. There are two
basic approaches for the evaluation of nuclear matrix elements, the quasi-particle
random phase approximation (QRPA) and the nuclear shell model (NSM). In NSM
interactions are described by an effective Hamiltonian which is diagonalized over
all configurations of a chosen subset of valence single-particle states. In principle
NSM calculations are more reliable, as they require few approximations. However
such calculations are computationally intensive, which places a practical limit on the
number of single-particle valence states that can be considered. For this reason the
QRPA approach is usually preferred. QRPA calculations use a larger valence space
with respect to NSM, but the interaction strengths are parameterized, and only
a subset of the possible configurations are taken into account. In QRPA particle-
particle interactions are fixed by a parameter, gpp, which is derived in various ways
by different authors and lead in the past to a significant spread in the results.

Recently, thanks to improvements in the treatment of short-range correlations in
the nucleon-nucleon interactions, and to the use of the DBD NME to constraint some
parameters in the 0νDBD NME calculations, the spread in the results of different
research groups was significantly reduced, and now the NSM and the various QRPA
calculations lie within a factor of two to each other. Figure 1.6 shows the nuclear
matrix element calculations for various 0νDBD isotopes using the QRPA and the
NSM approach.

1.4 Experimental searches for neutrinoless double beta
decay

The amount of kinetic energy released in double beta decay, called Q-value, is
given by the difference between the mass of the parent nucleus and the mass of the
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Figure 1.6. Nuclear matrix element calculations for several 0νDBD isotopes using QRPA
(black and blue bars) and NSM (red dots). The bars represent the spread introduced in
QRPA calculations by the different choices for the coupling constant gA. Picture taken
from [28].

daughter nucleus plus the mass of the two emitted electrons:

Qββ = Mp − (Md + 2me) . (1.15)

In the double beta decay the two neutrinos carry away part of the energy, giving rise
to a continuous spectrum of the sum energy of the two electrons. In the neutrinoless
decay all the energy goes into the electrons, so that the signature is a monochromatic
line in the energy spectrum (see figure 1.7).
The sensitivity of an experiment is defined as the half-life corresponding to the
minimum number of signal events observable above background at a given statistical
significance. For experiments in which the background counts scales as the total
mass of the detector it can be expressed as [17]

S0ν (nσ) = ln 2
nσ

εNa
η

A

√
M · t
b ·∆E , (1.16)

where nσ is the statistical significance, ε is the detection efficiency, Na is the Avogadro
number, η is the isotopic abundance of the studied nucleus, A is the atomic mass
number, M is the total detector mass, t is the live time of the experiment, ∆E
is the resolution and b is the background, expressed in counts/(keV · kg · years).
To compare the discovery potential of experiments using different isotopes it is
convenient to define the nuclear factor of merit FN :

FN = m2
e G0ν |M0ν |2 (1.17)

where me is the electron mass and FN has dimension of years−1. Using equation
(1.13) and replacing the half-life with the sensitivity, the Majorana mass that an
experiment is able to measure can be expressed as:

mββ = me√
S0ν · FN

(1.18)
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Figure 1.7. Illustration of the spectra of the sum of the electron kinetic energies Ke (Q
is the endpoint) for the DBD (dotted curve) and the 0νDBD (solid curve). The spectra
are convolved with an energy resolution of 5%. The small insert shows how a poor energy
resolution can lead to the confusion of the 0νDBD peak with the tail of the DBD spectrum.

where the sensitivity accounts for the experimental features and the nuclear factor
of merit account for the 0νDBD isotope. In table 1.3 the nuclear factor of merit, the
Q-value and the natural abundance of the most used 0νDBD candidates is reported.

Table 1.3. Nuclear factor of merit, Q-value and natural abundance (η) for several double
beta decay isotopes of experimental interest. The values of FN are taken from [29].

Parent Isotope FN [y−1] Qββ [keV] η [%]
48Ca 0.54 · 10−13 4271 0.19
76Ge 0.73 · 10−13 2039 7.4
82Se 1.7 · 10−13 2995 8.7

100Mo 5.0 · 10−13 3034 9.6
116Cd 1.3 · 10−13 2902 7.5
130Te 4.2 · 10−13 2527 34.
136Xe 0.28 · 10−13 2479 8.9
150Nd 57. ·10−13 3367 5.6

Isotopes with high Q-values are preferred for several reasons. First the background
from natural radioactivity decreases with increasing Q. A marking point is repre-
sented by the 2615 keV line from 208Tl, the γ-line from natural radioactivity with
the highest energy. Isotopes with Q-values above this energy benefit from a much
lower background level. Other reasons to prefer big Q-values are represented by the
fact that the phase space factor that appears in the formula for the decay rate scales
as G0ν ∼ Q5 [15], and that the fraction F of the DBD counts in the region of the
0νDBD peak scales as F ∼ 1/Q5 [31].
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1.4.1 Past and present experiments

Past and running double beta decay experiments have typical sensitivities that allow
to span the effective Majorana mass corresponding to the degenerate neutrino mass
hierarchy pattern (see figure 1.5). There are mainly two experimental approaches.
In the source = detector approach the DBD emitter is part of or constitute the
detector. In this way particles are fully absorbed in the detector, allowing high
detection efficiency (of order 90%) and high resolution (few keV). Nevertheless
there is no sensitivity to the event topology and nature, reducing the background
rejection capability. In the source 6= detector approach the DBD emitter is passive
and is surrounded by an active detector. Exploiting the typical signature of a two
electrons event, the background rejection is very high. On the other hand the
resolution is poor (hundreds of keV) as well as the detection efficiency (of order
30%). Examples of the source = detector approach are the Heidelberg-Moscow and
the CUORICINO experiments. An example of the source 6= detector approach is
the NEMO 3 experiment.

The best half life limit on 0νDBD (a complete list is in table 1.2) has been obtained
so far in 76Ge by the Heidelberg-Moscow collaboration, using High Purity Germanium
semiconductors (HPGe) as detectors. Similar results were also achieved in the IGEX
experiment [32]. The big advantage of semiconductor detectors is their excellent
energy resolution (about 4 keV at 2MeV). Even if these devices can only measure the
sum energy of the two electrons emitted in the decay, some background reduction can
be obtained by exploiting pulse shape analysis. The Heidelberg-Moscow experiment
took data in the period 1999-2003 in the Laboratori Nazionali del Gran Sasso (LNGS)
using five HPGe detectors. The total detector mass was 11 kg, enriched to about 86%
in 76Ge. A background of 0.12 counts/keV/kg/y was obtained around the Q-value
of the decay, the best ever so far. With a statistics of 35.5 kg · y in 76Ge the half
life limit obtained by the Heidelberg-Moscow collaboration is T 0ν

1/2 > 1.9× 1025y at
90% C.L. [20]. Using NME calculations from [33] this corresponds to a limit for the
effective Majorana mass of mββ < 0.35 eV. In 2001 a subgroup of the collaboration
found a small peak at the expected position [34, 21] (see figure 1.8) and reported an
evidence for neutrinoless double beta decay in 76Ge with an half life in the range
0.7÷ 4.2× 1025y (3 σ). Using NME from [33], this result would convert into a value
for mββ in the range 0.2÷ 0.6 eV. However, the discussion concerning the possible
evidence is quite controversial, mainly because the understanding of the background
in the region of the peak is not so clear.

Competitive limits on neutrinoless double beta decay come also from the Neu-
trino Ettore Majorana Observatory (NEMO 3 [35]). Being a tracking experiment,
NEMO 3 is not only able to measure the total released energy, but also the energy of
the single electrons, their angular distribution and the position where they are pro-
duced. NEMO 3 is located in the Frejus Underground Laboratory (France) under a
4800 m w.e. rock shield. The detector has a cylindrical structure composed by 20 iden-
tical sectors. In each sector a thin foil 0νDBD source (30-60 g/cm2) is surrounded by
a He-filled tracking detector consisting in drift cells operating in Geiger mode. A mag-
netic field facilitates identification of the background produced by electron-positron
pairs. The tracking chambers are surrounded by plastic scintillators to measure the
energy of the two electrons. Thanks to the easy way in which the source foils can
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Figure 1.8. Energy spectrum measured by the Heidelberg-Moscow experiment around the
Q-value of 76Ge (2039 keV). Picture taken from [21].

be replaced in the detector, NEMO 3 can be used to study any kind of 0νDBD
isotope. Its great background rejection capabilities make this detector an ideal tool
to study the two neutrino double beta decay mode. At present seven isotopes have
been investigated, 100Mo, 82Se, 116Cd, 150Nd, 96Zr, 130Te and 48Ca, but the source
mass (about 10 kg) is fairly dominated by 100Mo (about 7 kg) and 82Se (about 1 kg).
Figure 1.9 gives an idea of the background rejection capabilities of this experiment.
It represent the measured DBD spectra for 100Mo and 82Se. The corresponding
values for the 0νDBD half lives are T 2ν

1/2 = [7.11± 0.02(stat)± 0.54(syst)]× 1018 y

for 100Mo and [9.6± 0.3(stat)± 1.0(syst)]× 1019 y for 82Se. Limits on the 0νDBD
decay channel have also been obtained by NEMO 3: T 0ν

1/2 > 4.6 × 1023 y (100Mo)
and T 0ν

1/2 > 1.0 × 1023 y (82Se). The corresponding upper limits for the effective
Majorana mass range from 0.7 to 2.8 eV for 100Mo and from 1.7 to 4.9 eV for 82Se
(see references in [22] for the NME used to obtain these limits).
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Figure 1.9. Two neutrino double beta decay spectra after background subtraction for
100Mo (left) and 82Se (right) measured by NEMO 3. The black dots represent the data, the
solid line is the DBD spectrum expected from simulations and the shaded histogram is the
subtracted background. Picture taken from [22].
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The CUORICINO experiment [25] will be discussed in the following chapter. It
uses TeO2 bolometers operating at ∼ 10 mK to search for neutrinoless double beta
decay in 130Te. The detector is located at LNGS, under a 3400 m.w.e. rock shield.
With a background level in the region of the 0νDBD peak of 0.2 counts/keV/kg/y,
an energy resolution of ∼7 keV and a statistics of 11.83 kg · y, CUORICINO obtained
a limit on the 130Te 0νDBD half life of T 0ν

1/2 > 3.0× 1024 y. Using NME from [36]
this translates into a limit on the effective Majorana mass of mββ < 0.19÷ 0.68 eV.

1.4.2 Future experiments

In this section a brief description of the experiments that will start in the next years
is presented (see table 1.4). Next generation experiments aim at the investigation of
the effective neutrino Majorana mass in the range corresponding to the inverted mass
hierarchy region. This corresponds to an increase of about one order of magnitude in
the mββ sensitivity, that in terms of half-life corresponds to an increase of two orders
of magnitude. The projected sensitivity will be achieved mainly by an increase of
the detector mass and by a reduction of the background.

Table 1.4. Experimental technique, isotope under investigation, source mass, expected half
life sensitivity, mββ sensitivity and current status are reported for the most sensitive next
generation 0νDBD experiments. Expected sensitivities are those predicted by the authors
(see references in the text).

Experiment Technique Isotope Mass [kg] T 0ν
1/2 [y] mββ [eV] Status

Gerda HPGe 76Ge 40 2 · 1026 0.07÷ 0.3 in progress
Gerda 1000 6 · 1027 0.01÷ 0.04 R&D

Majorana HPGe 76Ge 40 2 · 1026 0.07÷ 0.3 R&D
Majorana 1000 6 · 1027 0.01÷ 0.04 R&D
CUORE bolometers 130Te 200 2 · 1026 0.02÷ 0.09 in progress
EXO TPC 136Xe 200 6 · 1025 0.1÷ 0.2 in progress
EXO 1000 2 · 1027 0.02÷ 0.03 R&D

Super-NEMO tracking 82Se 200 2 · 1026 0.05÷ 0.1 R&D

Gerda [37] (GERmanium Detector Array) is one of the two planned experiments
devoted to the study of 0νDBD decay of 76Ge. The detector, which will be operated
at LNGS, will be composed by bare HPGe semiconductor detectors immersed in
liquid Argon. This cryogenic liquid will serve both as cooling medium for detector
operation and as passive and active shield. The liquid Argon cryostat and its content
will be protected from environmental radioactivity by a 3 m thick layer of highly
purified water. Thanks to these shielding and to pulse shape analysis, the Gerda
collaboration plan to reach a background as low as 10−4 counts/keV/kg/y in the
0νDBD region. The experiment will be divided in two phases of increasing mass.
In the first phase, which will start data taking in 2009, the detectors previously
operated by the IGEX and Heidelberg-Moscow experiments will be redeployed. With
a total detector mass of ∼ 18 kg enriched in 76Ge at 86%, the first phase of Gerda
is foreseen to reach a sensitivity of 3 × 1025 y after one year of data taking, thus
being able to confirm or reject the claim of observation in 76Ge. In the second phase,
when the total detector mass will be of the order of 40 kg, a sensitivity of 2× 1026 y
(corresponding to mββ in the range 0.07÷0.3 eV) will be reached in three years of
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data taking. Depending on the results that will be achieved in the first two phases,
a third phase with a mass of the order of one ton could be supported.

MAJORANA [38, 39] will search for neutrinoless double beta decay of 76Ge using
semiconductor detectors. The ultimate goal of this experiment is to deploy an array
of segmented HPGe detectors enriched at 86% in 76Ge for a total mass of the order
of one ton. The detectors will be installed in several separate cryostats that will be
hosted in the Deep Underground Science and Engineering Laboratories (DUSEL,
4200 m w.e.) in South Dakota. The MAJORANA collaboration plan to reach a
background level smaller than 10−3 counts/keV/kg/y in the 0νDBD region. The
expected sensitivity after ten years of data taking is 6×1027 y (mββ < 0.01÷0.04 eV).
A demonstrator experiment with a total mass of 60 kg will be operated in three
cryostats starting from 2010. About 50% of the detectors will be enriched at 86%
in 76Ge while the remaining part will have natural abundance and will be used for
background studies. Despite its main purpose is the R&D for the ton scale detector,
with a sensitivity of ∼ 1026 y the MAJORANA demonstrator will be able in three
years to confirm or reject the 76Ge claim of observation.

With the same technique used in CUORICINO, the CUORE experiment [40, 41]
will operate an array of 988 TeO2 bolometers with a total mass of 760 kg (204 kg
in 130Te). In the assumption of a background level of 10−2 counts/keV/kg/y a
sensitivity of 2× 1026 y in five years of data taking is expected (mββ < 0.02÷ 0.1 eV).
CUORE is expected to start data taking in 2012.

SuperNEMO [42] is a proposed upgrade of NEMO 3. It is currently in the R&D
phase. Main efforts are being spent to achieve a source mass of ∼100 kg of 82Se,
but an equivalent mass of other isotopes, such as 150Nd, could be investigated as
well. The projected sensitivity for the half life is of ∼ 2× 1026 y, corresponding to an
upper limit on the effective Majorana mass in the range 0.05÷ 0.1 eV. Compared to
other experiments, SuperNEMO has the unique capability to accommodate several
different 0νDBD isotopes in the detector and to change the source foils rather easily.
This feature could be of great importance to check for a possible positive signal seen
by other experiments.

EXO [43] (Enriched Xenon Observatory) will search for double beta decay in
136Xe using an approach that is rather different from other experiments [44]. The
detector will consist of a time projection chamber filled with liquid Xe enriched at
80% in 136Xe, able to detect both ionization and scintillation light produced by the
two electrons emitted in double beta decay. In addition to energy measurement and
position reconstruction the EXO collaboration plan to identify the daughter ion
produced in the decay (136Ba++), which would reduce the background to a negligible
level. Once a 0νDBD candidate event is identified, the ion is extracted from the
detector and is put into a trap where it is identified by laser spectroscopy. In the
first phase of the experiment a 200 kg detector prototype will be operated without
ion tagging (EXO-200). The expected sensitivity in this phase will be of ∼ 6× 1025 y
(mββ < 0.1÷ 0.2 eV). With a total mass of 1 ton, the final EXO detector will reach
a sensitivity of 2× 1027 y (mββ < 0.02÷ 0.03 eV).



Chapter 2

TeO2 bolometric detectors for
0νDBD search

The use of bolometric detectors for the search of neutrinoless double beta decay
was proposed by Fiorini in 1984 [45]. The successful operation of a 340 g Tellurium
dioxide crystal was followed by the construction of a detector array composed by
20 crystals, for a total mass of 6.8 kg of TeO2 [46]. A further mass increase was
obtained with the recently completed CUORICINO experiment [25]. Operated in
the Laboratori Nazionali del Gran Sasso in the years 2003-2008, CUORICINO was
composed by a tower of 62 TeO2 bolometers, with a total mass of ∼ 41 kg. At present
the CUORICINO result represents one of the most competitive limits, comparable
with the ones obtained with Germanium detectors. The excellent performance
obtained with CUORICINO demonstrates the feasibility of a ton scale bolometric
experiment, CUORE [40, 41], aiming at the investigation of the effective neutrino
mass in the inverted hierarchy range.
In this chapter the TeO2 bolometric detectors will be presented.

2.1 Bolometric detectors

Bolometers are calorimeters working at low temperatures in which the energy
of particle interactions is converted into phonons and measured via temperature
variation. Conventional techniques for energy deposition measurements are based on
the detection of the energy released in the form of ionization and excitation of the
atoms in the detector. Unfortunately, the amount of energy lost in channels different
from the detected ones is quite large. Most of the energy is converted in phonon
excitations inside the detector and is not measured. Thermal detectors on the
other hand measure the portion of the deposited energy converted into phonons and
guarantee a better intrinsic energy resolution. Nevertheless they are slow detectors
so that they are suitable only for experiments working at low rates. Bolometers
consist of two main components: an energy absorber, where particles deposit their
energy and a sensor, which converts the excitations produced by the particle into a
signal (see figure 2.1).

17
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Figure 2.1. Schematic rep-
resentation of a bolomet-
ric detector: an absorber
is connected to a heat sink
through a weak thermal cou-
pling and a sensor for signal
readout is attached to the
absorber.

2.1.1 The energy absorber

The absorber can be roughly sketched as a capacitance C connected to an heat bath
through a conductance K. Therefore the temperature variation induced by a deposit
of energy E, assuming that C does not depend on temperature, is:

∆T = E

C
. (2.1)

The absorbed heat then flows trough the conductance until an equilibrium condition
with the heat sink is reached:

∆T (t) = E

C
exp

(
− t
τ

)
(2.2)

where τ = C/K is the time constant of the bolometer. With these simple con-
siderations, it is clear that to obtain big and fast signals the capacitance of the
absorber must be small. This requirement can be fulfilled only operating at cryogenic
temperatures, between 10 and 100 mK.
The specific heat of a material at low temperatures is the sum of the lattice and the
electron specific heats:

c(T ) = cl(T ) + ce(T ) (2.3)

The lattice specific heat is described by the Debye law:

cl(T ) = 12
5 π

4NakB

(
T

ΘD

)
T < ΘD (2.4)

where Na, kB and ΘD are the Avogadro number, the Boltzmann constant and the
Debye temperature respectively. In metals the specific heat of the electrons is:

ce(T ) = ZR

ΘD
π2 T

ΘF
(2.5)

where Z, R and ΘF are the number of conduction electrons, the gas constant and
the Fermi temperature respectively. Given the different temperature dependence of
cl and ce, the electron specific heat dominates at low temperatures. Dielectric and
diamagnetic materials, lacking in electron contribution, have then low capacitance
and are preferred.

Particles can interact with the absorber by scattering on nuclei or on electrons, in
both cases the energy is finally converted into phonons. When particles interact with
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nuclei the released energy produces vibrational excitations but could also produce
structural damages of the lattice, where the energy can be stored. If this energy is
not converted into phonons, the statistical fluctuation of the number of produced
defects can worsen the energy resolution. The fraction of lost energy depends on
the incident particle: for electrons and photons it is negligible, whereas for particles
having some MeV of energy it can cause a FWHM resolution of hundreds of eV.
When instead the particle interacts with the electrons of the crystal, it is slowed
down in few µm (heavy particles) or mm (electrons) from its interaction point
and normally stops in the crystal. Along its track it produces many electron-hole
pairs having at the beginning very high spatial density and energy. These charge
carriers interact with each other and spread very quickly inside the crystal. As a
quasi-equilibrium situation is reached, they undergo their final degradation via direct
interaction with the lattice site: these interactions produce phonons. During this
step undesirable processes can take place, indeed a fraction of the pair energy can
leave the crystal or can be stored in stable or metastable states instead of going into
the crystal lattice.

In a very simplified model in which all the thermal phonons are detected, a rough
estimate of the energy resolution can be derived. The thermodynamic equilibrium
between the absorber and the heat sink is hold by a continuum exchange of phonons
trough the conductance K. The fluctuation of the number of phonons in the absorber
produces a temperature variation that in turns affects the energy resolution. The
energy E in the absorber is:

E = C(T ) · T (2.6)

or in terms of the energy of each phonon ε = kBT :

E = N · ε . (2.7)

Assuming that the number of phonons obeys the Poisson statistics, the energy
fluctuation is:

∆E = ∆N · ε =
√
kBC(T )T 2 . (2.8)

It should be stressed that, at least for CUORE bolometers, the thermodynamic
fluctuations give a negligible contribution to the energy resolution. From the above
expression, using typical values of CUORE bolometers (C = 10−9 J/K, T = 10 mK),
a resolution of ∼ 10 eV is predicted, that is well below the measured resolution
(few keV). The thermodynamic limit can be obtained only when the statistical
fluctuations of the physical processes coming before the thermalization are negligible,
when the temperature of the heat sink is constant enough, and when the noise of
the detector is minimized (see section 2.6).

2.1.2 The choice of TeO2

CUORE uses TeO2 crystals as absorbers. The use of TeO2 is motivated by various
reasons, some of them related to the 0νDBD candidate isotope (130Te) and others
related to the cryogenic properties of the material. Double beta decay of 130Te
occurs through the transition:

130Te→130 Xe + 2e− + (2 ν̄) . (2.9)
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The most striking feature of 130Te compared to other 0νDBD isotopes is the high
natural abundance (see table 1.3). Compared to other materials that usually need
to be enriched, the abundance of 130Te allows to build an experiment with natural
Tellurium. This is an advantage both in terms of costs and material cleanliness, as
enrichment procedures often introduce radioactive contaminations. The transition
energy of 130Te (Qββ = 2527.0± 0.3 keV [30]) is not very high. It has been shown
in section 1.4 that experiments using isotopes with Q-values above 2615 keV are
affected by a much lower radioactivity background. However, this transition energy
happens to be situated between the peak and the Compton edge of the 2615 keV
line of 208Tl which leaves a clean window to look for the signal.

The possibility to use pure tellurium crystals as absorbers was taken into account
but it was ruled out mainly because of the poor mechanical properties at low
temperatures. Stresses caused by the thermal contractions revealed to produce
excessive damages on pure Te crystals. TeO2 has instead a good mechanical behavior,
and has an higher Debye temperature, implying lower specific heat and thus a higher
sensitivity to thermal pulses.

2.1.3 The sensor

The phonon sensor is usually a thermistor, a resistive device that converts tem-
perature variations into resistance variations. There are basically two types of
thermistors, Transition Edge Thermistors (TES) and Semiconductor Thermistors
(ST). TES are superconducting films kept at the critical temperature, they have a
rather fast response (∼ µs) but can only work in a narrow range of temperatures.
On the other hand ST have a slower response (∼ ms) but can be used in a wider
range of temperatures. A parameter characterizing the sensor is the logarithmic
sensitivity η:

η =
∣∣∣∣d logR(T )

dT

∣∣∣∣ . (2.10)

The above expression implies that (apart signs):

dR

R
= η

dT

T
(2.11)

where it is evident that the larger is η the higher is the response of the device.
Typical values of η are 10 for ST and 100 for TES. Despite the lower sensitivity,
ST have been preferred for CUORE bolometers because of their wider range of
operating temperature. In the following, the operating principles of semiconductor
thermistor will be presented.

Semiconductors are covalent solids that behaves as insulators because the valence
band is full and the conduction band is empty, nevertheless the energy gap between
valence and conduction band is less than 2 eV. The conduction can then happen only
with an activation energy greater than the energy gap. Since at room temperature
kT ' 0.025 eV, the conduction can only happen at higher temperatures. If instead the
semiconductor lattice has impurities (extrinsic or doped semiconductors), then new
energy levels are introduced slightly above the valence band or below the conduction
band, depending on the type of atoms inserted. With this technique the conduction
can also happen at lower temperatures. The dopant concentration determines the
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Figure 2.2. Schematic representation of the hopping conduction mechanism

behavior of the solid and there is a critical concentration that characterizes the
transition from metal to insulator. The region near this concentration is named
metal-insulator transition region (MIT) [47], where the material resistivity exhibits
a dependence on the temperature.

At temperatures lower than 10K the conduction is dominated by the migration
of the charge carries between impurity sites. In this situation electrons are not
localized and the conduction happens when an electron jumps from a donor site to
another, without using the conduction band (hopping mechanism). This migration
is due to the tunnelling through the potential barrier separating the two dopant
sites and it is activated by phonons (see figure 2.2). At even lower temperature, the
energy of the phonons that are responsible for the conduction mechanism is low,
and charge carriers migrate also to far impurity sites with free energy levels that are
close to the Fermi energy. In this conduction regime, called Variable Range Hopping
[48] (VRH), the concentration of minority charge carriers determines the density of
states close to the Fermi level. The MIT is set not only varying the concentration of
dopant but also varying the ratio of acceptor and donor concentrations.

In the VRH conduction regime the resistivity dependence on temperature is
described by the law:

ρ(T ) = ρ0 exp
(
T0
T

)γ
(2.12)

where ρ0, T0 depend on the doping concentration and γ = 1/2. The expression of the
logarithmic sensitivity can be easily derived from the above equation using (2.10):

η = γ

(
T0
T

)γ
. (2.13)

2.1.4 NTD-Ge thermistors

The thermal sensor used in CUORICINO and CUORE bolometers is a Neutron Trans-
mutation Doped (NTD) germanium thermistor operating in the VRH regime [49].
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Melt-doped Ge crystals cannot achieve the necessary uniformity due to the effect of
dopant segregation. The only technique available for producing uniform doping is
NTD: Ge wafers are bombarded with thermal neutron beams that, inducing nuclear
reactions, create donor (As and Se) and acceptor (Ga) impurities. The natural
abundances of Germanium are such that this doping technique allows to obtain the
right dopant concentration, which determines the sensor performances. Wafers are
then cut into pieces, each of them is a thermistor and its resistance can be expressed
as:

R = R0 exp
(
T0
T

)γ
(2.14)

where R0 depends on the geometry and is roughly R0 = ρ0 l/S, being l and S the
length and the section of the piece respectively. The parameters R0, T0 and γ are
determined experimentally. The measurement is made coupling the sensor to a low
temperature heat sink using an high conductivity epoxy, so that the electrothermal
feedback is negligible (see next section). The heat sink temperature is then varied
(15-50mK) while a steady current flows through the thermistor. Using a calibrated
thermometer the parameters can be extracted from a fit to the R(T ) characteristic.
Typical parmeters of CUORE NTD’s are:

R0 = 1.15 Ω , T0 = 3.35 K and γ = 1/2 (2.15)

Using these values we can calculate the static resistance (RS) at the working
temperature TS = 10 mK to be approximately 100 M Ω.

2.2 Bolometer operation

To measure the resistance variation the thermistor is biased with the circuit shown
in figure 2.3(a). A bias voltage VB is produced by a voltage generator closed on a
load resistor that is put in series with the thermistor. The load resistance RL is
chosen much higher than the thermistor resistance Rbol so that the current in the
circuit I is constant and the voltage across the thermistor Vbol is proportional to
Rbol:

Vbol(T ) = I ·Rbol(T ) . (2.16)

This current produces a power dissipation P = V I that in turns heat the thermistor
decreasing its resistance, this phenomenon is known as “electrothermal feedback”.
In static conditions the thermistor temperature TS is

TS = Ths + P

K
(2.17)

where Ths is the temperature of the heat sink and K is the conductance to it. The
R− P dependence is depicted in figure 2.3(b). The electrothermal feedback makes
the I − V relation deviate from linearity and leads to a non-ohmic behavior (see
figure 2.4(a)). Increasing the bias current the slope of the curve increases until it
crosses the so called inversion point (IP) and then decreases. In static conditions
the thermistor electric and thermal parameters are described by a point on the load
curve.
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Figure 2.3. The left picture shows the electric scheme of the bias circuit used for thermistor
readout. The right picture shows the dependence of the resistance on the power dissipation
for various values of the base temperature. Curves with lower resistance at P=0 correspond
to higher base temperatures.
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Figure 2.4. Load curve of a semiconductor thermistor. On the left picture the working
point is determined by intersection of the sensor characteristic curve with the bias circuit
load line. On the right the load curve is shown together with the corresponding signal
amplitude.

When particles release an amount of energy E in the absorber the voltage across
the thermistor varies leading to a signal. A rough estimate of the voltage increase is:

∆V = ηV
∆T
TS

= η
√
P ·RS

E

C TS
(2.18)

where RS is the static resistance and we used RL � RS . This expression vanishes
both for P → 0 and P →∞ because the resistance vanishes at high temperatures,
then a maximum signal amplitude must exists somewhere. If all the detector
parameters were known, the optimal working point could be determined analytically.
Nevertheless, it happens often that not all of them are known with accuracy and
the working point has to be determined experimentally. The procedure consist in
scanning the amplitude of a pulse of fixed energy varying the bias current, and
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selecting the point where the signal is maximum (see figure 2.4(b)) .

2.3 Arrays of TeO2 bolometers

The single module is the elementary unit of arrays of TeO2 detectors. Its component
are: the absorber crystal of TeO2 the NTD thermistor, the heater, the PTFE
supports and the copper structure. The NTD-Ge thermistors are glued onto the
TeO2 crystals by nine spots of Araldit Rapid epoxy (diameter 0.5mm, height 50µm).
The crystal is held by PTFE supports that are connected to a copper frame. The
copper frame is connected to the mixing chamber of a dilution refrigerator that
provides the base low temperature (∼ 10 mK) to operate the bolometers. Heaters [50]
are heavily doped silicon chips with a resistance between 50 and 100 kΩ. They are
used as Joule heaters to inject a controllable energy in the crystal to emulate the
effect produced by real particles for calibration purposes (see section 4.1). The single
modules are usually packed into floors that in turn are piled up to form a tower. As
an example, the CUORICINO tower is represented in figure 2.5(a).

(a)

(b)

(c)

50 mm

50 mm

50 mm

(d)

Figure 2.5. On the left the entire
CUORICINO tower is shown. The
top right picture shows one of the
eleven floors composed by four crys-
tals, while the bottom left picture
shows one of the two nine crystals
floors. The picture over the caption
shows a 5× 5× 5 cm3 TeO2 crystal.

2.4 Cryogenic setups

To reach the temperature of 10mK the TeO2 bolometric experiments need a cryogenic
setup. Two cryogenic setups were installed in the ’80 at Laboratori Nazionali del
Gran Sasso (LNGS) in Italy. The first one, hosted in the A hall of the laboratory,
was used for CUORICINO and is now used for R&D activities. The second one,
hosted in the C hall, has been always dedicated to R&D activities for CUORE.
Both of them are dilution refrigerators housed inside Faraday cages to suppress
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electromagnetic interferences. The experimental volume in the hall A cryostat is
about 16 liters while in the hall C one is less then a third. The dilution refrigerators
are equipped with heavy shields against environmental radioactivity. In particular,
the hall A one is shielded with two layers of lead of 10 cm minimum thickness each.
The outer layer is made of commercial low radioactivity lead, while the internal
one is made with special lead with a 210Pb contamination of 16Bq/kg (see figure
2.6). The external lead shields are surrounded by an air-tight box flushed with fresh

Figure 2.6. Sketch of the CUORI-
CINO apparatus showing the tower
hanging from the mixing chamber of
the dilution refrigerator and the de-
tector shields.

nitrogen from a dedicated evaporator to avoid radon contamination of the gas close
to the cryostat. In order to shield the detectors against the unavoidable radioactive
contamination from some fundamental components of the dilution refrigerator, thick
layers of Roman lead are placed inside the cryostat just around the detectors. A
borated polyethylene neutron shield (10 cm) was added in 2001 to the hall A cryostat.

2.5 Signal readout

The electrical connection of the bolometric signal from 10mK to room temperature is
divided in two parts. After coming out from the single module, the signal runs along
the tower over a twisted pair of wires, until it reaches the mixing chamber. From
this point on, the signal is delivered over a pair of twisted coaxial cables: passing
through several thermalization stages these wires reach the exterior of the cryostat.
These wires are made of constantan, an electric conductor that has the rare property
of not conducting heat. The cryostat is finally plugged to the front-end electronic
boards through a set of Fisher connectors. The analog part of the readout system
performs mainly three operations: thermistor biasing, signal amplification and signal
filtering. The front-end boards contain the biasing circuit and the amplification
stages, and their parameters are remotely programmable [51].
As stated in section 2.2 the load resistors must be large compared to the sensor
resistance; since the typical thermistor resistance RS is of order 100 M Ω at 10 mK,
their value is 27 G Ω each. The bias voltage VB can be set in the range 0÷ 10 V and
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for a typical bias VB = 5 V the output voltage of the thermistor when no energy is
released in the crystal is:

VRS = VB
RS

RS +RL
' 10 mV. (2.19)

where RL represent the series of the two load resistors. The signal observed when
particles impinge on the detector leads to a voltage variation of about 200µV/MeV
that in turn is amplified. The gain (G) of the amplifier is then adjusted to fit
the energy region of interest into the ADC range with G ranging between 450
and 10000V/V. The drift current of the amplifier generates an offset voltage that
summed to VRS ·G can shift the signal out of the ADC range. To correct for this
effect an additional offset is added to the output signal.

After the amplification and the offset correction the signal goes through an
anti-aliasing 6-pole Bessel Filter with an attenuation of 120 dB/decade and a pro-
grammable cutoff ranging between 8 and 20Hz. Finally the signal is acquired by an
ADC (range [−10.5, 10.5] V, 18 bits) with a typical sampling period of 8ms (125Hz).
Given the low event rate, it was possible to implement a software trigger. When a
trigger is found the signal is recorded in a window of ∼ 3 seconds. In order to have
an estimate of the bolometer temperature at the time of the pulse (see section 4.1),
about one second of baseline before the trigger is recorded, leading the total window
length to ∼ 4 seconds. Selected events are then written to disk for offline processing.
A typical event generated by a 2615 keV γ particle is shown in figure 2.7.
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Figure 2.7. Acquired signal generated by a 2615 keV γ particle.

2.5.1 Measurement of the static resistance

The thermistor static resistance (RS) is measured right after the detector cooling
to estimate the working temperature of each detector. This parameter is also one
of the ingredients of the model developed in the next chapters. In this section we
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describe the procedure to measure the value of RS that is extracted from equation
(2.19) by measuring VRS .

The voltage measured at the end of the readout chain is not only the amplified
thermistor voltage but contains also an unknown offset Vh generated by the amplifier
itself and by the front-end board:

V = VRSG+ Vh . (2.20)

To cancel this contribution the thermistor is biased with an opposite voltage −VB
so that VRS changes sign while Vh does not:

V + = VB
RS

RS+RLG+ Vh = VRSG+ Vh (2.21)
V − = −VB RS

RS+RLG+ Vh = −VRSG+ Vh . (2.22)

It is important to notice that the gain used during normal acquisition runs is almost
always too high to contain both these voltages into the ADC range. The gain is
therefore lowered to a smaller value GS (where the S subscript is related to the RS
measurement). The voltage across the thermistor is then evaluated as:

VRS = V + − V −

2GS
(2.23)

and the corresponding resistance is:

RS = RL
VB/VRS − 1 . (2.24)

2.6 Detector noise
The thermodynamic fluctuations of the crystal described in section 2.1.1 represent
the ultimate noise source because in practical applications they give a negligible
contribution compared to the noise coming from the electronics and the cryogenic
apparatus. In this section the principal noise sources will be presented. Every
resistance R working at temperature T generates a white noise due to the fluctuations
of the charge carriers. For load resistors the spectral density can be expressed as:

∆V 2
L = 4kTRL RL (2.25)

that on the output voltage of the bolometer becomes:

∆V 2
b = ∆V 2

L

(RL2)

(
RSRL
RS +RL

)2
' 4kT R

2
S

RL
. (2.26)

Using the detector typical parameters the above equation translates into a noise
of order 300 eV rms. The preamplifier noise is of three types: series, generated by
the JFET resistances, having a value around 10 eV rms, series 1/f that amounts to
15 eV rms and parallel shot, that at room temperature amounts to 130 eV rms. To
reduce this noise, load resistors and preamplifiers of some channels were housed in
the cryostat at ∼ 110 K. This cold electronics setup however did not improve the
resolution of the detector.
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The dominant noise contribution comes from the vibrations of the cryogenic
apparatus. These vibrations are transmitted to crystals and wires producing two
different types of noise. The crystal vibrations generates an energy dissipation that
in turn changes the temperature. These temperature instabilities have a frequency
spectrum similar to the signal one, and then they are the most dangerous source of
noise. The wires vibrations change the wire-wire capacitance and the wire-ground
capacitance, generating the so called microphonic noise.
Quantifying the amount of vibrational noise is difficult, and it strictly depends on
the cryogenic setup and on the detector assembly. These vibrations are anyway
reduced hanging the detector to the cryostat by means of a spring, and mechanically
decoupling the cryostat from the outer environment.

2.7 CUORICINO and CUORE
The CUORICINO detector was a tower like structure. It was composed by eleven
floors of four modules each (5× 5× 5 cm3 crystals) and two additional floors of nine
modules each (3× 3× 6 cm3 crystals). The small crystals came from the previous
MiDBD experiment while the big crystals were made explicitly for CUORICINO.
Two of these smaller crystals were enriched in 130Te and two were enriched in 128Te.
These crystals were designed to measure the DBD spectrum of 130Te by subtracting
the background seen in the crystals enriched in 128Te. The result of this analysis
was a measurement of the DBD half-life of 6.1 · 1020 years [52].
The collected statistics was about 18 kg · y of 130Te in five years of data taking. Part
of this data (11.83 kg · y) have been analyzed assuming a Q-value of 2530 keV. The
background rates in the 0νDBD region were 0.18 ± 0.01 counts/keV/kg/y for the
5 × 5 × 5 crystals, and 0.20 ± 0.04 counts/keV/kg/y for the small crystals. The
energy resolution was evaluated to be 7 keV and 12 keV FWHM for the big and the
small crystals respectively. The single-hit spectrum is shown in figure 2.8. The
experiment was able to set a lower limit of 3.0 ·1024 y for the 0νDBD half life of 130Te
corresponding to mββ < 0.19÷ 0.68 eV, depending on the nuclear matrix element
evaluation [36, 53, 54, 28].

The CUORE detector will be made of 19 towers of 13 floors each, with four
5 × 5 × 5 cm3 crystals per floor (see figure 2.9). The goal of this experiment is
to achieve sensitivity to the inverted neutrino mass hierarchy. By increasing the
mass by a factor twenty, and reducing the background by a similar factor, the
CUORE collaboration will improve the sensitivity to the 130Te by a factor twenty.
The detector will be hosted in the A Hall of LNGS, the same experimental hall of
CUORICINO, the construction is scheduled for completion in 2012.

Now that the mass of the detector is fixed, the collaboration is mainly working on
improving the resolution and the background of the detector. The target resolution is
5 keV FWHM and will be realized reducing the detector noise. Given that the main
noise contribution is generated by crystal vibrations, the new detector structure,
known as “Gorla” configuration by the name of the proponent, includes a new
design of the Teflon supports. These supports, thanks also to the tighter crystal
size tolerances, clench the crystal reducing vibrations. The background coming from
the cryostat and from the outside will be reduced including a thicker lead shield
inside the cryostat. The background generated by radioactive contaminations of the
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Figure 2.8. Single hit background spectrum of CUORICINO. The peak at 2505 keV is
produced by the two gamma’s emitted in the beta decay of 60Co. It is about 7σ away from
the position where the 0νDBD peak is expected. The red lines represent the best fit to the
number of 0νDBD events, 68 % and 90 % C.L. bounds.

Figure 2.9. The CUORE detector array is roughly 19 times CUORICINO.

copper structure is currently under study, and different cleaning techniques of the
copper are being tested (see section 5.1). In the hoped case, CUORE will have a
background of 0.01 counts/keV/kg/y, corresponding to a half-life sensitivity of about
2.1 · 1026 y in five years (see figure 2.10).

The main technical efforts concern the construction of the cryostat and the
calibration system. The detector will be cooled by a 3He/4He dilution refrigerator
that is being especially designed for CUORE by Leiden Cryogenics and is sketched
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Figure 2.10. CUORE sensitivity to the 0νDBD half-life of 130Te in two background
scenarios, 0.01 counts/keV/kg/y and 0.001 counts/keV/kg/y.

in figure 2.11.
CUORICINO was calibrated facing Thorium sources to the detector from the outside
of the cryostat (see section 4.4.1). The greater amount of TeO2 in CUORE makes
this technique not usable. If the detector were exposed to an external source, the
innermost bolometers would experience a much lower rate of calibration events than
the outermost. Sources of different intensity could be used to calibrate at different
times inner and outer bolometers. Given that this procedure should last at least
a week, and given that the calibration is repeated every month, the live time of
the experiment could be significantly reduced. An alternative option consists in
inserting the sources between the towers, in the 10mK environment. The system
to lower and raise the sources is currently being developed, taking into account the
radioactivity constraints and the time needed to thermalize the sources from 300K
to 10mK, that even in this case could not be negligible.
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Chapter 3

Model of the response function
of CUORE bolometers

CUORE bolometers are used to detect particle energies from few keV up to several
MeV measuring the temperature change due to the energy released. The response
function of these detectors is not uniform in the energy range of interest: the rise
and decay time of the signal change with energy as well as the pulse amplitude
relationship with energy is complicated. Moreover the response function changes
when the detector base temperature changes. A faithful modeling of these detectors
is needed to improve the data-analysis and to build simulations of their signal.

The thermal process in bolometers involves many elements like the capacitance
of the crystal, the conductance of the glue that attaches the thermistor to the crystal,
the heat capacity of the crystal supports and their conductance to the main bath,
the heat capacity of the thermistor and the conductance of its wires to the main
bath (see figure 3.1). All these elements have a strong dependence on the working
temperature and may vary among different bolometers.

Heat bath ~ 10mK

Thermal coupling

thermistor

Absorber Crystal

Figure 3.1. Sketch of a bolometer (left) and a Cuoricino bolometer (right).

In order to model the bolometer response function one has to take into account all
the passages from the energy release into the crystal that contribute to shape the
signal eventually sampled by the ADC. Unfortunately not all the detector parameters
are measurable, and those that are measurable often do not have enough accuracy:
the model will be then an effective theory of the bolometer, taking advantage of
quantities that can be measured accurately. In this work particular emphasis will be
placed on the thermistor and on the biasing circuit, which represent our probe to
measure temperature variations.

33
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3.1 The CCVR run
The model developed in the next sections has been tested on the data of a mea-
surement that was done to check the first batch of CUORE crystals, the Chinese
Crystals Validation Run (CCVR). The detector was made of an array of four crystals
with two thermistors each, unfortunately one thermistor was lost during the cooling
down, therefore the number of available channels is seven. The biasing circuit of
thermistors has been described in section 2.2 and the read-out chain in section
2.5. For what concern the model that will be developed, we can treat the two load
resistances as a single resistance (RL), and we also consider the capacitance (cp) of
the wires that carry the signal from the thermistor to the front end boards. The
biasing circuit scheme we will consider is depicted in figure 3.2.

VB
RL

R(t)cp

Figure 3.2. Biasing circuit of the thermistor. The thermistor resistance R(t) is in series
with a load resistance RL. The couple of wires used to read the voltage across R(t) has a
non negligible capacitance cp.

The values of the bias voltage (VB), amplifier gain (G), load resistance (RL) and
wires capacitances (cp) of each bolometer are reported in table 3.1 together with the
measured thermistor resistance RS (see section 2.5.1). The ADC sampling frequency,
the duration of the acquisition window, and the Bessel cutoff frequency were set to
125 Hz, 5.008 s, 12 Hz respectively for all channels. The CCVR detector took data
for two months, with calibration runs performed at the beginning and at the end of
the measurement.

Table 3.1. Parameters of the CCVR bolometers.

Channel Crystal VB G RL cp RS
(mV) (G Ω) (pF) (M Ω)

1 041 9636 5030 54 255.0 26.57
2 041 8962 3536 54 255.0 39.17
3 011 7685 2241 54 256.4 50.76
4 011 6152 2540 54 255.5 65.27
5 039 9291 2938 54 247.3 40.21
6 007 7364 2938 54 257.6 55.33
7 007 6152 2241 54 255.2 96.81



3.2 The Model 35

3.2 The Model
As already stated, when energy is released into the crystal the temperature variation
is converted into resistance variation by the thermistor. The resistance variation
is then converted by the biasing circuit into a voltage signal that is modified by
the amplifier and by the Bessel filter and finally it is sampled by the ADC. The
logical path to build a model of a bolometer is to understand each single item that
contribute to shape the signal from the energy release up to the ADC. We split this
path into three main steps. The first step is the thermal model of the bolometer,
describing the physical processes from the energy release that lead to the thermistor
temperature variations, the second step is the model of the thermistor, describing
the temperature-resistance conversion and the third step is the biasing and read-out
circuit model, involving the rest of the signal chain. Our knowledge of bolometer
parameters increases along this path, therefore the thermistor, biasing circuit and
read-out circuit models will be developed first and then the thermal model.

3.2.1 Thermistor model

The thermistor converts temperature variations into resistance variations according
to the relation (see section 2.1.4):

R = R0 exp
(
T0
T

)γ
. (3.1)

Thermistor parametersR0 and T0 are not known with the desired accuracy and cannot
be measured independently unless a calibrated thermometer is used. The parameter
γ instead comes from the quantum physics of the thermistor and can be assumed
constant and equal to 1/2. The only parameter that can be measured precisely on
the detector is the resistance RS corresponding to the working temperature TS (that
conversely is not a measurable parameter):

RS = R0e

(
T0
TS

)γ
. (3.2)

As we are interested in describing temperature variations from TS , we define the
dynamic resistance as a function of the temperature change (∆T ) as:

∆R(∆T ) = R(TS + ∆T )−RS . (3.3)

This quantity depends on the same unknown quantities of equation (3.2), therefore
we will build the model making approximations of equation (3.3) using the only
measurable parameter RS . The performances of the approximations that will follow
have been evaluated using the nominal parameters (2.15) and a nominal working
temperature TS = 10 mK.
The first thing needed is a rough estimation of the amount of temperature relative
variation of the thermistor when energy is released into the crystal. From equation
(3.3) we derive ∆T/TS as a function of ∆R/RS :

∆T
TS

=
[
1 + γ

η
log

(
1 + ∆R

RS

)]− 1
γ

− 1 (3.4)
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where η is the logarithmic sensitivity (see section 2.1.3),

η =
∣∣∣∣d log(R)
d log(T )

∣∣∣∣ = γ

(
T0
TS

)γ
= γ log RS

R0
(3.5)

a quite well measurable parameter that depends on γ and logarithmically on the
unknown R0. The advantage of using the expression (3.4) is that it does not depend
on the unknown T0, TS and only logarithmically on R0 through (3.5). Figure 3.3
shows that the error due to the uncertainty on R0 is small and thus negligible in
this case.
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Figure 3.3. Temperature variation of the thermistor (∆T/TS) estimated with equation
3.4. The error made using values of R0 different from the real value Rtrue0 is still acceptable
for a rough estimation of the temperature increase.

The value of ∆T/TS can be derived from data through the resistance variation ∆R,
that can be in turn extracted from the measured voltage variation ∆V (see the
biasing circuit of figure 3.2). Neglecting the effect of the parasitic capacitances cp
and of the Bessel filter, it can be expressed as:

∆R = − (∆V/G)(RS +RL)2

(∆V/G)(RS +RL)−RL VB
. (3.6)

In figure 3.4 we show the energy spectrum of a calibration run expressed in terms of
∆V/G (the voltage across the thermistor), ∆R/RS and ∆T/TS . The tallest peak
at ∆T/TS ∼ 1.75% corresponds to 5407 keV α particles and the small peak at
∆T/Ts ∼ 0.85% is generated by 2615 keV γ particles. From the measured values for
all channels listed in table 3.2, we conclude that the average ∆T/TS is about 0.8%
in the 0νDBD region and about 1.7% in the 5407 keV α region.

Given that ∆T/TS � 1, equation 3.3 can be expanded around T = TS :

∆R = −RS
[
η

∆T
TS
− η(1 + γ + η)

2

(∆T
TS

)2
+ . . .

]
(3.7)
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Figure 3.4. Spectrum of channel 4 in terms of ∆T/TS , −∆R/RS , ∆V/G. The tallest
peak at ∆T/TS ∼ 1.75% corresponds to 5407 keV α particles and the small peak at
∆T/Ts ∼ 0.85% is generated by 2615 keV γ particles.

Table 3.2. Measured ∆V/G,∆R/RS ,∆T/TS .

ch Yield −∆R/RS ∆T/TS η
(µV/MeV) (%/MeV) (%/MeV)

1 59 1.2 0.15 8.48
2 92 1.4 0.17 8.67
3 306 4.2 0.51 8.80
4 208 2.8 0.33 8.93
5 198 2.9 0.34 8.68
6 220 2.9 0.34 8.84
7 342 3.1 0.36 9.12
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where we used a Taylor expansion up to the 2nd order. The comparison with
∆R calculated from the exact functional form (3.3) shows that the first order
approximation has an error of about 5% in the 0νDBD region and that to achieve a
smaller error we should take the second order (see figure 3.5). Nevertheless while at
the first order the unknown η is just a scale factor of ∆T/TS , and then not relevant,
the inclusion of the second order would imply the knowledge of this parameter. In
this phase we do not want to include unknown parameters and since the bolometer
resolution in the 0νDBD region is about 0.1% we conclude that this expression is
not good.
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Figure 3.5. Taylor approximation of ∆R. The 0νDBD region corresponds to ∆T/TS '
0.8%.

A better reproduction can be achieved using the exponential approximation:

∆R = RS
[
e
− η∆T

TS
+ η(γ+1)

2

(
∆T
TS

)2
+... − 1

]
(3.8)

that performs better than the linear approximation both at first and second order
expansions, in particular stopping at the first order we still have an acceptable error
(∼ 0.5%) in the 0νDBD region (see figure 3.6). Therefore the approximation we will
use for the thermistor model is :

∆R = RS
[
e
− η∆T

TS − 1
]
. (3.9)

These approximations have been tested at a nominal temperature TS = 10 mK,
but we do not know exactly the real temperature. We checked that expression
(3.9) performs well also with TS different from the nominal 10 mK (see figure 3.7).
Moreover from equation (3.2) we see that an uncertainty on TS has the same effect
of an uncertainty T0 and hence this test applies also to this parameter.
In conclusion, the model for the resistance variation we have developed reproduces
the response of an ideal thermistor with an accuracy better than 1% in the 0νDBD
region and its accuracy does not depend on the base temperature.
From equations (3.8,3.9) it turns out that the resistance variation is always propor-
tional to the working resistance, hence it is convenient to define the quantity:

∆θ = ∆R
RS

. (3.10)
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Figure 3.6. Exponential approximation of ∆R. The 0νDBD region corresponds to
∆T/TS ' 0.8%.
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3.2.2 Biasing circuit

Solving the electrical circuit of figure 3.2 we obtain the differential equation relating
resistance and voltage:[

RL +R(t)
R(t)

]
Vbol(t)− VB +RLcp

dVbol(t)
dt

= 0 (3.11)

where:
Vbol = V/G , (3.12)

is the voltage across the thermistor. The model we are building is based on the
variations of the resistance from the measured RS , these will in turn generate a
voltage variation from the measured VRS . Splitting R(t) and V (t) into static and
dynamic contributions

R(t) = RS + ∆R(t) Vbol(t) = VRS + ∆V (t)
G

(3.13)

and using (2.19), we obtain the differential equation relating resistance and voltage
variations:[
RL +RS + ∆R(t)
RS + ∆R(t)

][
VB G

RS
RS +RL

+ ∆V (t)
]
− VB G+RLcp

d∆V (t)
dt

= 0 (3.14)

The polarization circuit equation can be simplified noticing that from equation (2.24)
the measured RS is proportional to RL:

RS = RL
VB/VRS − 1 = ρRL; (3.15)

using also (3.10) we finally obtain:[
1/ρ+ 1 + ∆θ(t)

1 + ∆θ(t)

][
1

1/ρ+ 1 + ∆V (t)
VBG

]
− 1 + RLcp

VBG

d∆V (t)
dt

= 0 . (3.16)

Solving this differential equation we get the voltage variation ∆V (t) corresponding
to the resistance relative variation ∆θ(t).
Noticing that ρ� 1 and that ∆θ < 1, a good approximation that will be used in
next sections for rough calculations is:[

1/ρ+ 1
1 + ∆θ(t)

][
1

1/ρ+ 1 + ∆V (t)
VBG

]
− 1 + RLcp

VBG

d∆V (t)
dt

= 0 . (3.17)

3.2.3 Bessel filter

As mentioned before the ADC is preceded by an analogical Bessel filter to prevent
aliasing effects on the acquired signal. The ADC sampling frequency (fs) is 125Hz
in order to have enough samples to describe the pulse shape and at the same time
not compromise the signal to noise ratio. The Bessel 3dB cut-off (fb) was set to
12Hz in order to have enough signal and noise dump at the ADC Nyquist frequency
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(fs/2), therefore its value depends strictly on the choice of fs. The filter transfer
function is:

B(σ) = 10395
σ6 + 21σ5 + 210σ4 + 1260σ3 + 4725σ2 + 10395σ + 10395 (3.18)

where σ is the normalized Laplace variable that expressed in terms of the standard
Laplace variable s = jω is:

σ = s
2.703395061

fc
. (3.19)

The transfer function and the impulse response of this filter are shown in figure 3.8.
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Figure 3.8. Characteristics of the 6-pole Bessel filter with cutoff fb =12Hz (red line).The
blue line corresponds to the Nyquist frequency fs/2.

The filtered signal can be obtained multiplying V (s) (the signal in the frequency
domain) by the transfer function B(s) and then transforming back to the time
domain:

V (t)→ L−1[V (s) ·B(s)] (3.20)

where V (s) = L[V (t)] and L,L−1 are the direct and inverse Laplace transforms.

We described and modeled all the steps that go from the thermistor tempera-
ture variation to the signal read by the ADC: the thermistor model is not exact but
has a good accuracy in the region of interest, the biasing circuit and the Bessel filter
are described exactly and, depending on the use, they can be solved with numerical
algorithms. The remaining step, the expression of the thermistor temperature when
energy is released in the crystal, is decribed in the next section.

3.2.4 Thermal model

In figure 3.9 the thermal circuit representing the system composed by crystal, crystal
supports and thermistor is sketched. The crystal CT is connected with the thermistor
through the glue spots Kg and with the supports through a Kapitza conductance
Kts. A thermistor can be represented as a two stages system composed by the lattice
and the electron gas, each one with its own capacity and connected between them
by means of a conductance Ke. The lattice capacity is negligible and is not shown in
the figure, so it can be assumed that the lattice directly discharges through the gold
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wires connected to the heat sink Kb. The electron gas capacity Cel, and conductance
Kel are in parallel with the power generator P that represents the electrothermal
feedback generated when the thermistor is heated (see section 2.2): its resistance
varies and hence also the power generated through Joule effect varies, modifying the
thermal response. On the left side of the circuit, we have the crystal supports that
can be simply represented by means of their capacity Cs and conductance to the
main bath Ks.

Ks

Kts
2 1

Cs

Kg
3

KbCT

Ke
4

Kel Cel P

Figure 3.9. Thermal circuit of a bolometer.

Values for 5x5x5 Cuoricino bolometers are (K in W/K, C in J/K) [55]:

CT = 2.29 · 10−3 T 3 Cel = 9.9 · 10−9 T Cs = 5 · 10−9

Ks = 2 · 10−9 Kts = 1 · 10−9 Kg = 2.34 · 10−3 T 3 (3.21)
Kb = 4.8 · 10−5T 2.4 Ke = 0.7 · T 4.37 Kel < 5 · 10−11

The power P (t) dissipated on the thermistor in static conditions is:

PS =
(

VB
RL +RS

)2
RS , (3.22)

using typical values of the parameters we have that PS ∼ 1 pW. In dynamic
conditions the power can be calculated from (3.11):

P (t) = Vbol(t)2

R(t) =
[
cpRLV

′
bol(t)− VB

RL +R(t)

]2
R(t) (3.23)

that using (3.16) and (3.22) becomes:

P (t) = PS

[
1 + 1+ρ

ρ
∆V (t)
VB G

]2
1 + ∆θ(t) . (3.24)

If instead of the full biasing equation (3.16) we use the approximation (3.17) the
power becomes:

P (t) ' PS
(

1− cpRL V
′(t)

VB G

)2
(1 + ∆θ(t)). (3.25)

3.2.5 Simplified model without temperature dependences

In this section we will find the solution of the thermal circuit neglecting the tem-
perature dependence of each element. Even if we are not taking into account a real
bolometer, finding such approximate solution is useful to get into the problem and
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understand the dynamic behaviour that arises when particles release energy into the
crystal.
Power conservation in the nodes 1,2,3 and 4 of figure 3.9 reads:

CT
dT 1
dt

+Kts (T1 − T2) +Kg (T1 − T3) = 0 (3.26a)

Cs
dT 2
dt

+Ks T2 +Kts (−T1 + T2) = 0 (3.26b)

Kb T3 +Kg (−T1 + T3) +Ke (T3 − T4) = 0 (3.26c)

Cel
dT 4
dt
− P (t) +Kel T4 +Ke (−T3 + T4) = 0 . (3.26d)

Absolute temperatures in static conditions Ti0 can be found by omitting derivatives in
(3.26), setting the electrothermal feedback to (3.22) and adding the base temperature
TB that can be considered as a common ground. Dynamic conditions arise when
capacitors are heated at t = 0. Temperatures in each node can be expressed as the
sum of the static ones plus an increase that includes time dependences. Substituting

Ti(t) = Ti0 + ∆Ti(t) (3.27)

into (3.26) leads to the same system of differential equations with ∆Ti in the place of
Ti and the power P (t) replaced by the dynamic part of the electrothermal feedback
∆P (t) = P (t) − PS . This term links the thermal circuit with the biasing circuit
and in principle we should add equation (3.16) to the set of differential equations
(3.26). However we will demonstrate in the following that if we decide to neglect
the temperature dependence of conductances and capacitances we can decouple
the thermal circuit from the electrical circuit. Using (3.25) and the fact that
cpRL V

′(t)/VB G� 1, the power variation can be rewritten as:

∆P (t) ' PS
[(

1− 2cpRL V
′(t)

VB G

)
(1 + ∆θ(t))− 1

]
(3.28)

that substituting the first order voltage and resistance variations

∆θ ' −η∆T
TS

∆V ' VB G

RL
RS∆θ (3.29)

and neglecting second order terms, becomes:

∆P (t) ' −η PS
TS

∆T (t) + 2η PS cpRS
TS

∆T ′(t) . (3.30)

Substituting the above expression into the differential equation of the thermistor
(3.26d)

Cel ∆T ′4 +Kel ∆T4 +Ke (−∆T3 + ∆T4) + η PS
TS

∆T4 − 2η PS cpRS
TS

∆T ′4 = 0 (3.31)

shows that the electrothermal feedback can be interpreted as a correction to the
electrons capacitance and conductance:

Ceff = Cel − 2η PS cpRS
TS

Keff = Kel + η PS
TS

. (3.32)
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Now that the electrothermal feedback has been included we can move to the solution
of the system of differential equations. We turn into the Laplace domain that eases
the calculations and has the advantage of including initial conditions directly into
the equations:

sCT ∆T 1 − E1 +Kts (∆T 1 −∆T 2) +Kg (∆T 1 −∆T 3) = 0 (3.33a)
sCs ∆T 2 − E2 +Ks ∆T 2 +Kts (−∆T 1 + ∆T 2) = 0 (3.33b)

Kb ∆T 3 +Ke (∆T 3 −∆T 4) = 0 (3.33c)
sCeff ∆T 4 − E4 +Keff ∆T 4 +Ke (−∆T 3 + ∆T 4) = 0 (3.33d)

where all the ∆Ti’s depend on the Laplace frequency s and E1, E2, E4 are the
energies released in the capacitances at t = 0. In the condition of a particle releasing
its energy E inside the crystal (E1 = E, E2 = 0, E4 = 0) the thermistor temperature
is:

∆T4(s) = A′
(s− z1)

(s− p1)(s− p2)(s− pr)
(3.34)

where A′ = E
KeKg

CTCeff (Kb+Ke+Kg) , z1 = Ks+Kts
Cs

and pi’s are the roots of the polyno-
mial:

D(s) = d0 + d1s+ d2s
2 + s3 (3.35)

where the di parameters are complicated combinations of the circuit elements and
are not reported explicitly. Given the circuit configuration one has that all the
pi poles are real and negative (pi = − 1

τi
). Transforming back in the time domain

equation (3.34) we obtain:

∆T4(t) = A′·
[

z1 − pr
(p1 − p3)(pr − p2)︸ ︷︷ ︸

−a

eprt+ z1 − p1
(p1 − p2)(pr − p1)︸ ︷︷ ︸

b

ep1t+ z1 − p2
(p2 − p1)(p2 − pr)︸ ︷︷ ︸

c

eprt
]

(3.36)
It is useful for interpolation purposes to put in evidence independent parameters.
We notice that b + c = a, so defining α = b/a and A′ a = A we finally obtain the
expression of the thermistor temperature variation:

∆T4(t) = A

(
−e−

t
τr + αe

− t
τ1 + (1− α)e−

t
τ2

)
(3.37)

where 0 < α < 1. The above equation describe a pulse with one rise time constant
and two decay time constants.

3.2.6 Fit to data

We modeled all the elements from the energy release into the crystal that contribute
to shape the acquired signal, putting them together we can derive a function to
fit real pulses. The weakest element is the thermal model where we reduced the
calculations to a simplified version without temperature dependences, moreover
while we know RS and the parameters of the biasing and read-out circuits (VB, G,
RL, cp, fb) it is impossible to measure independently the elements of the thermal
part. The measured parameters (3.21) are just approximate, and are not suitable
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to be included in the fit as constants. The effective parameters (A, τr, α, τ1, τ2)
instead will be extracted from the data fit. Together with these parameters, we will
also fit the onset time t0 of the pulse in order to align the function with the data.
The fit function is not writable analytically because not all the parts of the model
can be solved analytically. The temperature of the thermistor (3.37) is analytically
converted into resistance relative variations ∆θ(t) using (3.9,3.10):

∆θ(t) = e
− η∆T (t)

TS − 1 . (3.38)

We see that the unknown parameter η/TS multiplies the parameter A that is going
to be fitted, so we define the effective amplitude parameter An = Aη/TS entering
the resistance relative variation expression:

∆θ(t) = exp
[
−An

(
−e−

t
τr + αe

− t
τ1 + (1− α)e−

t
τ2

)]
− 1 . (3.39)

To obtain the corresponding voltage variation we have to solve the biasing circuit
equation (3.16) that unfortunately is not solvable analytically, ∆V (t) is therefore
obtained form ∆θ(t) using the numerical method Runge-Kutta [56]. Finally ∆V (t)
is filtered with the Bessel (equation 3.20) by means of the FFT-convolution method
described in [57]. The interpolation of a 2615 keV γ pulse on channel 4 is shown in
figure 3.10 and the fitted values of the parameters are quoted in table 3.3.

Table 3.3. Parameters fitted on a signal of channel 4 generated by a 2615 γ particle.

t0 (s) 1.011230 ± 0.000028
An (A.U) 0.12346 ± 0.00011
α 0.91533 ± 0.00040
τd1(s) 0.15720 ± 0.00018
τd2 (s) 0.7487 ± 0.0024
τr (s) 0.020897 ± 0.000046

The fit performs pretty well on data except in the first part of the pulse. This is
clearly visible in the plot of the residuals. This mismatch appears in different sizes
on all channels making the fit imperfect. It could be due either to some error on
the read-out circuit parameters or, more likely, to the fact that the thermal model
does not include the temperature dependences of all elements and the electrothermal
feedback. The shape parameters averaged over a large number of fits of all channels
are quoted in table 3.4, we see that the average χ2/ndf is never one as expected if
the model were exact.

These results indicates that the model is pretty close to reality but not perfect.
By adding new free parameters in the thermal part we could improve the χ2/ndf
but we would never know if the new model is better: the correlations between the
parameters will increase without adding new independent information. Nevertheless,
as it will be shown in the next sections, the model is sufficiently accurate as is, and
is able to reproduce the main features of the observed data.
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Figure 3.10. Interpolation of a 2615 keV pulse recorded on channel 4. Left column
represents signal with superimposed fit function (top), zoom of the top (middle) and zoom
of the rise (bottom). Right column represents the fit residuals.

Table 3.4. Average shape parameters fitted on 2615 keV pulses.

ch τr α τd1 τd2 χ2/ndf
(s) (s) (s)

1 0.031804 0.83249 0.11205 0.9001 2.0
2 0.026263 0.87070 0.10898 0.8988 1.9
3 0.021362 0.94919 0.14726 0.7688 5.4
4 0.020702 0.91725 0.15822 0.7824 3.1
5 0.032546 0.90648 0.21780 0.8712 3.1
6 0.033858 0.91983 0.12191 0.6804 5.3
7 0.011843 0.94753 0.11998 0.8504 6.0
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3.2.7 Response function simulation

One of the purposes of this work was to build a signal simulator, a tool that could be
used to test the data-analysis algorithms, to define trigger parameters and estimate
efficiencies. Pulses have been simulated using the measured parameters of table 3.1
and the estimated thermal parameters of table 3.4. With this set of parameters we
have all the information needed to simulate pulses according to the model described
in this work. To reproduce pulses of different energies, the amplitude An has been
generated from the amplitude spectrum of each channel in order to match the
measured amplitude.

From figure 3.11 we see that the rise time and the decay time of the real pulses,
defined as the time difference between the 10% and the 90% of the pulse amplitude for
the rise time, and between 90% and 30% for the decay time, show a clear correlation
with the pulse amplitude.
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Figure 3.11. Pulse shape correlation with amplitude, signal (blue) and heater (green)
pulses. The points at ∼ 2800 mV correspond to the 5407 keV α and the points at ∼ 1400 mV
correspond to the 2615 keV γ. The shape of particle pulses has a manifest dependence on
the pulse amplitude. The shape of the heater pulses is clearly different from that of particle
ones.

To reproduce this behavior we should estimate the thermal parameters of (3.37) at
each energy and not just at 2615 keV: we are lead to think this because the thermal
shape ∆T (t) in principle contains an energy dependence due to the fact that each
capacitance and conductance of the bolometer has a temperature dependence.
However the thermistor and biasing circuit models also contain a dependence of the
pulse shape on its amplitude that seems to go in the same direction of the observed
data. In the following we will demonstrate that most of the energy dependence is
due to the fact that the thermal shape ∆T (t) is modified by the thermistor and the
biasing circuit as they have a non linear response.

From expression (3.17), we have that the relationship between ∆V (t) and ∆θ(t)
can be rewritten as:

∆V (t) +
[
1 + ∆θ(t)

]RLcpρ
1 + ρ

∆V (t)
dt

= ρ VB G

1 + ρ
∆θ(t) (3.40)



48 3. Model of the response function of CUORE bolometers

Amplitude (mV)

0 500 1000 1500 2000 2500 3000 3500

R
is

eT
im

e 
(s

)

0.05

0.051

0.052

0.053

0.054

0.055

0.056

0.057

0.058

0.059

0.06

(a) Rise Time vs Amplitude

Amplitude (mV)

0 500 1000 1500 2000 2500 3000 3500

D
ec

ay
T

im
e 

(s
)

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

(b) Decay Time vs Amplitude

Figure 3.12. Generated signal (red) and heater (magenta) pulses superimposed on data.

that can be interpreted as an RC filter with a cutoff

ωp(t) = 1 + ρ[
1 + ∆θ(t)

]
RL cpρ

(3.41)

that depends on the input signal ∆θ(t). Reminding that ∆θ(t) is negative, the
cut off increases with the pulse amplitude making the signal ∆V (t) faster. On the
other hand the form of ∆θ(t) (see equation (3.39)) makes the signal slower at higher
amplitudes. In principle these two effects compete in the modification of the rise
time and decay time, however given that the decay time is much higher than 1/ωp
the fastening effect applies mainly to the rise time.

The result of a simulation made with constant thermal parameters is shown in
figure 3.12, where we see that the shape dependence on energy is well matched in
the case of the decay time while there is a shift in the rise time. This shift might be
due to the fact that, as already mentioned, the fit experiences problems in the first
part of the pulse and will be investigated further in the next chapters.

3.2.8 Amplitude dependence on the working temperature

The bolometer working temperature varies in time because of normal fluctuations
of the cryostat temperature. This variation ∆TB shifts the working point of the
bolometer modifying its response. Looking at the amplitude of the pulse there is
a clear correlation with its baseline and hence with the working temperature (see
figure 3.13).
As for the case of shape parameters this effect could be due to the fact that the
thermal elements of the bolometer depend on the temperature, nevertheless we will
show that the thermistor model can reproduce this effect without taking into account
the thermal model at all.
When the base temperature changes, the resistance varies according to the expression
(see equation 3.10):

∆RB = RS
[
e
−η∆TB

TS − 1
]
. (3.42)
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Figure 3.13. Correlation of the amplitude of 5.4 MeV pulses with baseline.

The total resistance variation due to a temperature variation ∆TE caused by an
energy release into the bolometer is then:

∆RtotE = RS
[
e
−η∆TB+∆TE

TS − 1
]
. (3.43)

However the amplitude measured in figure 3.13 refers to the height of the signal with
respect to its baseline, that in terms of resistances variations is (see figure 3.14):

∆RE = ∆RtotE −∆RB . (3.44)

time

R

RS

RB

RE

∆RB

∆RtotE ∆RE

Figure 3.14. Resistance variations.

Under the hypothesis that the temperature increase ∆TE does not depend on ∆TB
(that implies that the thermal elements do not depend on temperature) we have:

∆RE(∆TB) = e
−η∆TB

TS ∆RE(∆TB = 0) (3.45)
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that in terms of the baseline resistance variation becomes:

∆RE(∆RB) =
[
1 + ∆RB

RS

]
∆RE(∆RB = 0) . (3.46)

The above equation describes a linear dependence of the resistance variation (and
hence the pulse amplitude) on the baseline variation, the same effect that we have
seen in the data.

Now if instead of treating ∆TE as constant we suppose that it does depend on
temperature, we could write the dependence in the generic form:

∆TE(T ) = αT β (3.47)

where β is the effective and unknown exponent generated by the thermal circuit.
Expanding at the first order around TS we obtain the dependence of the thermal
amplitude on the baseline temperature variation:

∆TE(TS + ∆TB) = ∆TE(TS) + αβT β−1
S ∆TB (3.48)

or equivalently
∆TE(TS + ∆TB) = (1 + β

∆TB
TS

)∆TE(TS) . (3.49)

Introducing the above equation into (3.44) and approximating at the first order, we
obtain the expression of the resistance variation when ∆TE depends on ∆TB:

∆RE(∆RB) '
[
1 + η − β

η

∆RB
RS

]
∆RE(∆RB = 0) , (3.50)

from which we conclude that the thermistor contribution is anyway the larger one
because of the high value of the logarithmic sensitivity η (∼ 9) with respect to any
reasonable value of β (if simply ∆TE = E/CT , from (3.21) we have β = −3).

3.2.9 Extraction of RS from the relationship between amplitude
and baseline

To give a proof of the fact that the thermistor model explains the amplitude vs
baseline relationship we could make a simulation and compare it with real data, as
we did for the shape parameters. We will instead develop a procedure to extract the
bolometer resistance RS from the relationship between amplitude and baseline. The
obtained value of RS will be compared with the measured one to check the accuracy
of the model.
Dividing (3.46) by RS and defining the constant:

C = ∆RE(∆RB = 0)
RS

, (3.51)

we rewrite the resistances relationship in terms of ∆θ:

∆θE = (1 + ∆θB)C . (3.52)

∆θE is the resistance variation corresponding to the amplitude of the pulse, where
the signal is maximum, and ∆θB corresponds to the baseline, where the signal is
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flat. In both cases the voltage derivative is zero and the biasing circuit equation
(3.16) reduces to: [

1/ρ+ 1 + ∆θ
1 + ∆θ

][
1

1/ρ+ 1 + ∆V
VBG

]
− 1 = 0 . (3.53)

Extracting ∆θ out of the above equation we have:

∆θB = − (1 + ρ)2

ρ(1 + ρ− VB G/∆V B) (3.54)

∆θE + ∆θB = − (1 + ρ)2

ρ(1 + ρ− VB G/(∆V B + ∆V E)) . (3.55)

While the voltage variation is well defined in the case of pulses (∆V E), being the
height of the pulse with respect to the baseline, in the case of the baseline variation
(∆V B) we need a reference voltage. This reference should be the baseline value (VS)
corresponding to VRS (see section 2.5.1), but unfortunately it has not been measured.
We can use the baseline of the events acquired right after the RS measurement as
VS , the baseline variation is then computed as:

∆V B = VBase − VS . (3.56)

Substituting ∆θE and ∆θB in terms of the voltage differences, equation (3.52)
becomes:

(1 + ρ)2

ρ(1 + ρ− VB G/(∆V E + ∆V B)) = (C + 1)
(

(1 + ρ)2

ρ(1 + ρ− VB G/∆V B)

)
− C (3.57)

from which we extract ∆V E in terms of ∆V B:

∆V E =
C
(
∆V B + ∆V B ρ+ VB G

) (
∆V B + ∆V B ρ− ρGVB

)
(1 + ρ)

(
(1 + ρ+ C ρ) VB G− C ∆V B (1 + ρ)

) . (3.58)

To obtain the linear relation ∆V E = m∆V B + q seen on data we expand the above
equation around ∆V B = 0:

q = ∆V E
∣∣
0 = − C ρVBG

(1 + ρ)(1 + ρ+ C ρ) (3.59)

m = d∆V E

d∆V B

∣∣∣∣
0

= C
1− (1 + C) ρ2

(1 + ρ+ C ρ)2 . (3.60)

With the (q,m) parameters estimated from linear fits on data (see figure 3.15) we
calculate back the value of ρ:

ρ = −m (VBG)2 − 2q2 − VBG
√

(mVBG)2 + 4q2 + 4mq2

2(q2 − q VBG) , (3.61)

and finally the value of the working resistance:

RS = ρRL . (3.62)
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Figure 3.15. Fit of the Amplitude vs Baseline relationship for 5.4 MeV pulses triggered on
channel 4.

Table 3.5. Working resistances estimated from amplitude vs baseline fits on data.

ch q m RES RS VS
(mV) (10−2) (M Ω) (M Ω) (mV)

1 1580.06± 0.03 −6.22± 0.04 28.3± 0.2 26.6 1613
2 1727.91± 0.03 −7.13± 0.05 41.3± 0.3 39.2 1537
3 3474.51± 0.03 −20.26± 0.04 53.7± 0.1 50.8 1597
4 2744.40± 0.03 −13.95± 0.04 68.0± 0.2 65.3 1657
5 3032.20± 0.04 −14.63± 0.07 41.0± 0.2 40.2 1558
6 3343.82± 0.05 −13.62± 0.03 61.2± 0.1 55.3 1514
7 3962.94± 0.04 −15.49± 0.05 100.2± 0.3 96.8 1415
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In table 3.5 the estimated value of the resistances (RES ) is compared with the
measured one (RS). The agreement is quite good considering that the error on RS
is unknown (see section 5.2), and proves that the thermistor model describes well
the dependence of the response function with the baseline temperature.

With the model developed so far we have been able to build a tool to fit the pulses and
extract the relevant parameters. Using these parameters we built a pulse simulator
that is able to emulate the shape dependence on energy as well as the amplitude
dependence on the base temperature.





Chapter 4

Thermal response analysis

It has been shown that the behavior of the data can be explained assuming that the
thermal response ∆T does neither depend on the energy released in the bolometer
nor on the variation of the bolometer temperature. The non-linearities of the voltage
signal ∆V seems to be generated by the thermistor and by the biasing circuit. Here
we propose an algorithm to extract ∆T from the measured ∆V , and we will make
the data analysis using ∆T . Being the thermal response more regular than the
voltage signal, an improvement is expected in the data analysis. This algorithm has
the advantage that it does not take into account the thermal model at all, a topic in
which our knowledge is very small, limiting the analysis just to a description of ∆T
without trying to explain its origin. We will compare the data analysis based on ∆T
with the standard analysis used so far with bolometers that is instead based on ∆V .

4.1 Data analysis procedure
The standard analysis of bolometer data is relatively simple, implying just few steps
from the raw data to the energy spectrum. The first step is the pulse amplitude
evaluation with the optimum filter algorithm [58]. The second step is the correction
of the amplitude drift seen in the previous chapter that is removed de-correlating the
dependence on the baseline. This is obtained by fitting with a line A = mB + q the
amplitude (A) versus baseline (B) relationship of a fixed energy pulse, for example
the 5.4MeV 210Po, and applying the correction to the amplitude of all events:

A′ = A

mB + q
C (4.1)

where C is an arbitrary constant usually set to 5000. When crystals are sufficiently
old the intensity of the 210Po (half-life = 138 days) becomes too low to probe the
baseline with enough frequency, thus the heater is used to emulate pulses of fixed
energy and frequency. In the CCVR run there was no need for the heater because the
crystals were new and there was enough 210Po to stabilize against it. The CUORE
experiment will use crystals somewhat aged by the time spent in storage and hence
will operate with the heater: looking forward we will do the analysis of the CCVR
experiment using the heater instead of the 210Po line.
The last step is the calibration. Calibration runs are usually performed at the begin-
ning of the measurement inserting Thorium sources in the cryostat, the procedure is

55
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usually repeated every 1-2 months. The calibration function and the issues related
to it will be discussed later in this chapter.

4.2 The Thermal Response algorithm
In this section we describe a digital filter that, based on the model described in the
previous chapter, transforms the voltage samples acquired by the ADC (∆V ) into
samples proportional to the temperature variation of the thermistor (∆T ).

The first step consists in extracting the resistance relative variation ∆θ from
∆V , using equation (3.16) we have that for each sampled point i:

∆θi = − ∆Vi(1 + 1/ρ) +RLcp∆V ′i
∆Vi +RLcp∆V ′i − VBG/(1 + ρ) (4.2)

where the derivative at the i-th point ∆V ′i is estimated as:

∆V ′i = Vi+1 − Vi−1
2∆t (4.3)

and ∆t is the sampling interval.
The temperature variation ∆Ti is then extracted from ∆θi using (3.9,3.10):

η
∆Ti
TS

= − log(∆θi + 1) . (4.4)

The presence of the unknown quantity η/TS is not a problem because it can be
interpreted as a scale factor. Moreover, as our target is to substitute ∆T (or
something proportional to it) into the same analysis chain used for ∆V , we rescale
the left hand side of (4.4) as it is too small compared to ∆V (see table 3.2): the
scale factor k that has been applied to all channels is 21000. We finally define the
dimensionless quantity ∆S

∆Si = −k log (∆θi + 1) , (4.5)

and the data based on it will be called “TR” (Thermal Response).
This algorithm has the advantage of being a one-to-one transformation of each

∆V sample into a ∆S sample, so there are no cases where it is not defined. Comparing
a ∆S pulse (TR) with the original ∆V (STD) we observe that the TR pulse is faster
than the STD and the high frequency noise is higher (see figure 4.1). Both effects
are due to the fact that we removed the low pass filter generated by the parasitic
capacitances. The TR algorithm can be thought as a digital, high-pass filter applied
to the data sampled by the ADC.
One might worry that the higher noise worsen the resolution, nevertheless the
optimum filter algorithm used to estimate the pulse amplitude is not sensitive to
this effect: the expression of the signal (S) to noise (N) ratio (SNR) is indeed:

SNR2 =
∫ |S(ω)|2
|N(ω)|2dω , (4.6)

so multiplying the signal and the noise by the same transfer function does not affect
the resolution.
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Figure 4.1. Comparison between STD (blue) and TR (red) timelines. TR timelines have
more high frequency components, as the low-pass filter generated by the bolometer resistance
and the wires capacitance is removed.

4.3 Check of the TR algorithm on MonteCarlo data

Before the application of the TR analysis to data, we checked that it performs as
expected on MonteCarlo simulations based on the model described in the previous
chapter. Generated data contain all the features of the model: once the TR analysis
is applied we expect no shape dependence on energy and no amplitude dependence
on the baseline, moreover the resolution has to be the same of the STD analysis to
be competitive with it. Data has been generated sampling amplitudes from an input
spectrum measured with the STD analysis to check the shape correction. These
data are not suitable for the resolution estimation because, being generated from
measured spectra, contain peaks that are already smeared. To overcome this problem
we generated heater events with monochromatic amplitude, without sampling from
the real spectrum. As the generator reproduces the amplitude vs baseline drift, that
also worsen the resolution, the intrinsic resolution has been evaluated on a separated
set of data, generated without the amplitude drift. Finally the checked quantities
are:

• slope of rise time vs energy, normalized to the rise time at zero energy.

• slope of decay time vs energy, normalized to the decay time at zero energy.

• slope of heater amplitude vs baseline.

• heater amplitude resolution (tested on data generated without the amplitude
vs baseline feature).

The slopes are expected to be zero while the resolution should be the same obtained
with the standard analysis.
In figure 4.2 the shape parameters of channel 4 are compared for the STD and the
TR analysis, showing the expected performance of the TR analysis. Both the rise
and the decay time have bad resolution at low energy, so the fit is limited in the
[1.5,6]MeV range, where these parameters perform better.
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Figure 4.2. Rise time (left) and decay time (right) vs energy in STD (blue) and TR (red)
analyses, MonteCarlo of channel 4.

In figure 4.3 the amplitude vs baseline drift is shown for the STD analysis and
for the corresponding TR analysis that perfectly corrects the drift. Finally in figure
4.4 the heater amplitude distribution is compared and fitted for both analyses.
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Figure 4.3. Correlation between heater amplitude and baseline in the non-stabilized STD
(blue) and TR (red) analyses, Montecarlo of channel 4.

From the obtained results for all channels summarized in table 4.1 we can see that
the TR analysis works well: it removes the decay time slope and the heater drift,
and it mantains the same resolution. The rise time slope is not completely corrected,
this effect is due to the error made by the derivative algorithm (4.3) and is discussed
in section 4.6.1.

As probably noticed we did not remove the Bessel filter in the deconvolution path.
This step should have been done on the voltage signal before the ∆θi evaluation
with equation (4.2). However it comes out that TR data have the expected features
and hence we deduce that the Bessel filter somewhat commutes with equation (4.2).
This is good because the FFT-deconvolution is a really difficult job with the risk of
adding new noise in the output (not just amplifying the already present noise that
would be canceled by the optimum filter). The net result of skipping this step is
that our ∆θ(t), and so ∆S(t), is the real ∆θ(t) convoluted with the Bessel. This is a
good feature because we do like the high-frequency noise removal that was originally
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Figure 4.4. Heater resolution in STD (blue) and TR (red) analyses, Montecarlo of channel
4.

Table 4.1. TR analysis compared to the STD analysis on the MonteCarlo of all channels.

Algo Rise Slope Decay Slope Heater Res. Heater Slope
%/MeV %/MeV (%)

channel 1
STD −0.103± 0.012 0.539± 0.033 0.1402± 0.0035 −0.02563± 0.00018
TR 0.0031± 0.0089 −0.033± 0.030 0.1405± 0.0035 0.00024± 0.00018

channel 2
STD −0.217± 0.010 0.550± 0.020 0.1534± 0.0037 −0.02524± 0.00014
TR 0.040± 0.011 0.013± 0.020 0.1550± 0.0045 0.00022± 0.00017

channel 3
STD −0.6780± 0.0031 1.4675± 0.0062 0.1015± 0.0022 −0.05628± 0.00017
TR 0.1421± 0.0029 0.0087± 0.0051 0.1062± 0.0024 0.00041± 0.00018

channel 4
STD −0.3634± 0.0049 0.9606± 0.0084 0.0991± 0.0024 −0.04671± 0.00015
TR 0.0841± 0.0045 0.0028± 0.0072 0.1026± 0.0025 0.00009± 0.00017

channel 5
STD −0.4097± 0.0060 0.936± 0.016 0.1203± 0.0031 −0.05711± 0.00024
TR 0.0215± 0.0058 −0.019± 0.014 0.1233± 0.0032 0.00056± 0.00025

channel 6
STD −0.4287± 0.0046 0.9790± 0.0092 0.0775± 0.0019 −0.04351± 0.00013
TR 0.0637± 0.0059 −0.0058± 0.0087 0.0807± 0.0020 −0.00016± 0.00014

channel 7
STD −0.6639± 0.0037 0.9244± 0.0065 0.0895± 0.0021 −0.03137± 0.00014
TR 0.1090± 0.0039 −0.0284± 0.0057 0.0908± 0.0020 0.00050± 0.00017
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present in the raw data.

4.4 Data analysis
If the model and the hypothesis that ∆T is constant are correct, we expect to obtain
on data the same results we obtained on the MonteCarlo. The same quantities
checked on the MonteCarlo are being checked on data except for the intrinsic
resolution that cannot be checked because the amplitude drift is unavoidably present
in real data. Together with the check of heater quantities we will also check the
resolution and the drift of two energy lines: the 2615 keV γ line, because it is close to
the 0νDBD region, and the 5.4MeV α line, because of its high statistics and because,
being more energetic, it is more sensitive to residual non-linearities. Being this line
generated by an α particle, it might be that its pulse shape is slightly different from
the rest of the spectrum that is generated by electromagnetic particles: the different
shape of α’s could be due to the different kind of interaction. Nevertheless it is still
not demonstrated [59] that CUORE bolometers are sensitive to this and we will not
investigate further this topic here. Another topic we have to take into account in
the analysis of real data is the calibration function, that for the MonteCarlo studies
done so far was assumed linear (without loss of generality): the data calibration
issue is described in detail in the next section. The analyzed measurement was the
first calibration measurement of the CCVR detector (run 5), lasted about 2.8 days.

In figure 4.5 the shape parameters of channel 4 are compared for the STD and
the TR analysis, and the results on all channels are collected in table 4.2: the decay
time is well corrected, showing a residual slope less than 0.2% on all channels except
for channel 7, were the correction is less efficient. The rise time slope is instead
overshot in the opposite direction, becoming positive: this bias is present on all
channels and it could be due either to errors on the parameters entering the model
or to some failure of the model itself, or to some bias in the algorithm (see later).
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Figure 4.5. Shape parameters vs energy for the STD (blue) and the TR (red) analysis,
data of channel 4.

Concerning the amplitude vs baseline drift, (see channel 4 in figure 4.6 and all
channels in tables 4.3, 4.4) the standard analysis perfectly corrects the heater drift
with the stabilization algorithm, meaning that all the heater slopes are compatible
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Table 4.2. Shape parameters dependence on energy, data of all channels.

ch Rise Time Slope Decay Time Slope
STD TR STD TR

(%/MeV) (%/MeV) (%/MeV) (%/MeV)
1 −0.0374± 0.0077 0.0942± 0.0062 0.764± 0.021 0.197± 0.019
2 −0.0445± 0.0051 0.1415± 0.0071 0.665± 0.016 0.115± 0.014
3 −0.3791± 0.0045 0.2711± 0.0074 1.5093± 0.0057 0.1516± 0.0026
4 −0.2606± 0.0070 0.1989± 0.0058 1.0478± 0.0088 0.1978± 0.0044
5 −0.2478± 0.0046 0.2306± 0.0077 1.005± 0.013 0.078± 0.011
6 −0.1051± 0.0047 0.3330± 0.0067 1.0772± 0.0064 0.1192± 0.0050
7 −0.3231± 0.0042 0.1203± 0.0046 1.1862± 0.0041 0.6941± 0.0046

with zero: the STD analysis slope must be zero by definition, because we are fitting
with a line a distribution that was already corrected with a line. The heater drift
is always different from zero in the TR analysis but as can be seen from the plot
of channel 4 the correction is very good. Looking at the slope of the 5.4 MeV (see
figure 4.7) we get the real comparison between STD and TR analysis on the drift of
particles events: both of them do not perfectly correct the drift but the residual slope
is contained in the resolution and hence not relevant. The drift of the STD analysis
can be accounted to the fact that the stabilization is made with heater pulses that
do not have the same shape of particles, and hence the amplitude estimation of
heater pulses is biased.
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Figure 4.6. Correlation between heater amplitude and baseline in the STD analysis before
(green) and after (blue) the stabilization, and in the TR (red) analysis, data of channel 4.

A more synthetic quantity to estimate the goodness of the correction is the
resolution of the peaks: if it is better or equal than the STD analysis it means that
the residual drift is negligible otherwise there is an error. Resolutions of heater lines
(figure 4.8), 2615 keV lines (figure 4.9) and 5.4 MeV lines (figure 4.10) are reported
in tables (4.5, 4.6): the 2615 keV line is not sensitive to the residual slope (and this
is good because it is close to our range of interest), the 5.4 MeV line reveals instead
some residual slope, channel 7 for example is remarkably worse than other channels
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Figure 4.7. Correlation between amplitude and baseline of 5.4MeV pulses in the STD
(blue) and TR (red) analyses, data of channel 4.

Table 4.3. Heater slopes, data of all channels

ch STD no stab STD TR
(1/mV)

1 −0.02438± 0.00077 0.0021± 0.0057 0.00186± 0.00075
2 −0.02522± 0.00095 0.0000± 0.0076 0.00056± 0.00098
3 −0.0585± 0.0011 0.0000± 0.0049 −0.0003± 0.0012
4 −0.04944± 0.00094 0.0000± 0.0046 −0.0017± 0.0010
5 −0.0575± 0.0015 −0.0005± 0.0055 0.0013± 0.0015
6 −0.04131± 0.00056 0.0000± 0.0027 0.00281± 0.00061
7 −0.03723± 0.00087 0.0001± 0.0042 −0.0048± 0.0010

Table 4.4. 5.4MeV slopes, data of all channels

ch 5.4 MeV Slope
STD TR

(keV/mV) (keV)
1 −0.0082± 0.0013 0.0082± 0.0015
2 −0.0083± 0.0017 0.0010± 0.0019
3 −0.0163± 0.0010 −0.00611± 0.00079
4 −0.01021± 0.00094 −0.01184± 0.00087
5 −0.0142± 0.0014 −0.0039± 0.0013
6 −0.01087± 0.00049 0.00784± 0.00054
7 −0.01275± 0.00068 −0.03164± 0.00087
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that are compatible with the STD analysis. As channel 7 performed bad also in
the decay time correction, we suspect that some input parameter of the model is
wrong. Reminding that the TR algorithm has no free parameters, it is important to
understand what is the effect generated by the error on the input parameters: this
important issue is discussed in section 4.6.
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Figure 4.8. Heater amplitude distribution of the STD (blue) and the TR (red) analysis,
data of channel 4.
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Figure 4.9. 2615 keV line of the STD (blue) and the TR (red) analysis, data of channel 4.
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Figure 4.10. 5407 keV line of the STD (blue) and the TR (red) analysis, data of channel 4.

Table 4.5. Heater resolutions comparison, data of all channels.

ch Heater Resolution
STD TR
h h

1 1.289± 0.067 1.319± 0.065
2 1.355± 0.073 1.279± 0.070
3 0.756± 0.031 0.815± 0.038
4 0.841± 0.039 0.822± 0.034
5 1.009± 0.046 0.993± 0.045
6 0.607± 0.032 0.657± 0.036
7 0.712± 0.032 0.767± 0.034

Table 4.6. Particle resolutions comparison, data of all channels.

ch 2.615 keV Resolution 5.4 MeV Resolution
STD TR STD TR
(keV) (keV) h h

1 3.05± 0.29 3.07± 0.24 0.580± 0.014 0.601± 0.014
2 3.35± 0.23 3.50± 0.26 0.581± 0.013 0.590± 0.014
3 1.98± 0.14 1.92± 0.13 0.4238± 0.0069 0.3971± 0.0067
4 2.17± 0.13 2.38± 0.18 0.4112± 0.0073 0.4329± 0.0079
5 2.55± 0.16 2.52± 0.17 0.517± 0.014 0.482± 0.011
6 1.64± 0.10 1.654± 0.099 0.3096± 0.0062 0.2941± 0.0052
7 1.747± 0.094 1.643± 0.079 0.3054± 0.0061 0.3947± 0.0070
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4.4.1 Calibration

After the amplitude evaluation and, only in the STD analysis case, after the stabi-
lization, the amplitude spectrum is calibrated. The evaluation of the coefficients of
the calibration function is performed with the most prominent peaks generated by
the Thorium source. In figure 4.11 the spectrum obtained with the two analyses is
shown, indicating the nominal energy (in keV) of the used peaks.
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(b) TR analysis

Figure 4.11. Amplitude spectrum before calibration, the peaks of the Thorium source used
for the evaluation of the calibration function are tagged with their nominal energy (in keV).

The calibration function used to calibrate the amplitude x in the STD analysis
is:

E = ec1 xc2+c3 log(x) . (4.7)
For the TR analysis we use instead a second order polynomial

E = a x+ b x2 (4.8)
because we expect small deviations from linearity. The calibration routine looks for
the peaks in the spectrum, fits their positions xi with the expected p.d.f. for each
peak (gaussian or gaussian + different types of background), and finally evaluate the
calibration function coefficients from the E (nominal) vs x plot. The fit residuals
of channel 4 are shown in figure 4.12 and the fitted parameters with the χ2/ndf of
each channel are reported in tables (4.7,4.8): the TR analysis performs better than
the STD one as the chi-squares are lower.

The 5407 keV α line is not included in the estimation of the coefficients and is
very far from the last calibration point (2615 keV), hence it is a good line to check
how close is the calibration function to the ideal calibration function. From the
summed energy spectrum over all channels (see figure 4.13) we see that the TR
analysis is much more consistent among channels than the STD analysis. However
the peak is shifted of about 40 keV; this shift could be either due to an error of the
calibration function or to an intrinsic alpha quenching. At this level it is impossible
to distinguish between the two effects.

The last comparison we performed is the deviation from linearity of the calibra-
tions of the two analysis. The chi-squares of the simple fit E = c x are reported in
table 4.9, where we see that the TR analysis is much closer to linearity than the
STD one, but it cannot be assumed linear yet.
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Figure 4.12. Residuals of the calibration function of the STD (blue) and the TR (red)
analysis.

Table 4.7. Coefficients of the STD analysis calibration function, E = ec1 xc2+c3 log(x).

ch c0 c1 c3 χ2/ndf

1 −0.4634± 0.0088 0.8944± 0.0020 0.00712± 0.00012 2.0
2 −0.715± 0.041 0.9301± 0.0099 0.00495± 0.00060 3.2
3 −0.3919± 0.0059 0.7711± 0.0014 0.015733± 0.000080 22
4 −0.4669± 0.0068 0.8522± 0.0016 0.010380± 0.000091 9.7
5 −0.4232± 0.0078 0.8724± 0.0018 0.00923± 0.00011 8.9
6 −0.6192± 0.0046 0.8515± 0.0011 0.010370± 0.000065 18
7 −0.7428± 0.0047 0.8301± 0.0011 0.011466± 0.000063 22

Table 4.8. Coefficients of the TR analysis calibration function, E = a x+ b x2.

ch a b χ2/ndf
(keV) (10−6 keV)

1 3.7296± 0.0012 12.9± 1.8 1.7
2 3.22396± 0.00092 11.3± 1.3 0.94
3 1.00517± 0.00018 6.882± 0.076 3.3
4 1.53999± 0.00036 8.41± 0.23 3.3
5 1.57197± 0.00038 4.87± 0.25 2.8
6 1.51001± 0.00022 8.44± 0.14 2.7
7 1.24302± 0.00017 11.237± 0.093 4.0
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Figure 4.13. 5407 keV lines summed over all channels.

Table 4.9. χ2/ndf of the linear calibration function E = c x on all channels.

Channel 1 2 3 4 5 6 7
STD 256 464 10381 2186 1996 8372 9806
TR 15 14 1150 105 54 417 1597

4.5 Residual drift in time

Since the time the detector is calibrated, background data begins to be acquired
for long time (one or more months). During this time the baseline moves and if the
drift is too high there is the risk that the resolution gets worse; moreover if the drift
is not symmetric the peaks could significantly loose the position they had at the
calibration time. Due to some difficulties in the cryostat stabilization, the baseline
drifted considerably during the first weeks of the CCVR data taking. This is not
good in general but give us the opportunity to check the residual amplitude drift.

Plotting the position of the 5.4 MeV line against the baseline of each single run
we can have an idea of what is the magnitude of the residual drift; from figure 4.14
we see that after the calibration run (5), the peak position drifts in the TR analysis,
while in the STD analysis it is stable. We have seen before that also in the STD
analysis there is a residual drift inside a run, nevertheless, since the stabilization
procedure is applied to each single run, the average position is taken back every run
to the same value: instead of a single drift there is something like a sawtooth shape.
In table 4.10 the 5.4 MeV peak positions of the calibration run are compared with
the average positions over the four subsequent background runs: it turns out that in
the TR analysis the drift is more evident.

At some point between run 9 and run 10 something uncontrolled happened to
the baselines, as shown in figure 4.15 the baseline jump is evident between the end
of run 9 and the beginning of run 10. It is not clear if what happened was due to
the cryogenics or to the electronics. Looking at the residual drift for both analyses
(shown in figure 4.16), we see that the TR analysis was much more resistant to this
event; after run 11 the heater was disconnected so the STD analysis with the heater
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Figure 4.14. Position of the 5.4 MeV line over runs, error bars corresponds to the resolution
of the peak, channel 4.

Table 4.10. Position of the 5.4 MeV line in the calibration run (5) and in the four
background runs after.

ch STD TR
Run 5 Runs 6,7,8,9 Run 5 Runs 6,7,8,9

1 5439.4 5438.8 5450.5 5445.7
2 5417.5 5417.0 5449.6 5451.2
3 5332.1 5334.6 5446.8 5447.7
4 5382.6 5382.6 5449.5 5452.5
5 5378.4 5378.8 5445.9 5447.1
6 5369.7 5371.5 5450.5 5445.9
7 5366.1 5367.8 5451.1 5456.3

could not be performed anymore. In table 4.11 the average positions of the 5.4 MeV
peak are compared for the two runs before and after the baseline jump, the TR
analysis performs better on all channels and the peak shift is comparable with the
the residual drift seen in normal conditions.
Looking at the plot in figure 4.17, the heater energy after run 9 increased of about
0.2%, probably because of a grounding problem of the electronics. An instability of
the heater energy worsen the resolution and the calibration in the STD analysis, as
the amplitude spectrum is scaled by a non constant factor. This is the cause of the
5.4MeV peak shift in the STD analysis. The TR analysis instead was not affected
by this heater shift because it was not used to stabilize the data.
After this event the CCVR run went on because of the presence of the 5.4MeV line
that can be used to stabilize in place of the heater. With bolometers without the
210Po contamination (like CUORE bolometers), if the heater position changes, a
re-calibration of the detector is necessary with the STD analysis, while it seems not
necessary with the TR analysis.
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Figure 4.15. Baseline vs time of channel 4, the jump between run 9 and run 10 (in blue)
is evident.
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Figure 4.16. Residual drift up to run 12.

Table 4.11. Positions of the 5.4 MeV line before and after run 10.

ch STD TR
Runs 8,9 Runs 10,11 Runs 8,9 Runs 10,11

1 5438.9 5428.3 5444.8 5441.5
2 5417.2 5406.3 5452.0 5450.5
3 5334.6 5328.1 5447.9 5447.7
4 5381.7 5374.0 5453.2 5454.4
5 5378.0 5370.5 5447.4 5445.0
6 5372.0 5362.5 5444.9 5441.6
7 5368.0 5358.3 5457.7 5460.0



70 4. Thermal response analysis

Baseline (mV)
1000 1100 1200 1300 1400 1500 1600 1700

A
m

p
li

tu
d
e 

(m
V

)

1010

1020

1030

1040

1050

Figure 4.17. Non-stabilized heater amplitude in the STD analysis. The baseline jump
from 1280 to 1150mV is accompanied by a shift of the heater amplitude. This shift is not
fully compatible with a temperature variation, as the data do not lie on the same line.

4.6 Sources of systematic errors

The TR analysis and the underlying model are very close to remove all the unwanted
non-regularities of the response function. We have seen that there is some residual
drift in the shape parameters and in the amplitude vs baseline relationship. In this
section we will investigate how the uncertainty on the parameters used in the TR
analysis affects the resulting response function. The quantities entering equation
(4.2) are ρ, VB, G,RL, cp, and the derivative algorithm used to estimate ∆V ′ from
the sampled ∆V signal. We will first analyze the effect of the derivative algorithm
and finally the effect generated by the uncertainty on the biasing circuit and read-out
circuit parameters. The analyses have been performed on MonteCarlo data checking
rise time, decay time, heater slope and heater resolution (see section 4.3).

4.6.1 Choice of the derivative algorithm

There are many numerical methods in literature [60] to compute the derivative of a
discrete function. The simpler algorithms are the 2-point Eulero’s formulas:

V ′i = Vi − Vi−1
∆t ε = ∆t

2 V ′′i [2P] (4.9a)

V ′i = Vi+1 − Vi
∆t ε = −∆t

2 V ′′i [2PF] (4.9b)
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where ∆t is the sampling interval and ε is the error of the approximation. The error
can be reduced using formulas with more points, the class of 3-point formulas is:

V ′i = −3Vi + 4Vi+1 − Vi+2
2∆t ε = ∆t2

3 V ′′′i [3PF] (4.10a)

V ′i = Vi+1 − Vi−1
2∆t ε = −∆t2

6 V ′′′i [3P] (4.10b)

V ′i = 3Vi − 4Vi−1 + Vi−2
2∆t ε = ∆t2

3 V ′′′i [3PB] (4.10c)

When dealing with the limits of the acquisition window some equation cannot be used
and the other equations in the set are used: if for example the data are processed
with the symmetric algorithm (4.10b), the first and the last point are processed
with 4.10a and 4.10c respectively. The last formulas we will test are the 5 points
formulas:

V ′i = −25Vi + 48Vi+1 − 36Vi+2 + 16Vi+3 − 3Vi+4
12∆t ε = ∆t4

5 V V
i [5PF] (4.11a)

V ′i = −3Vi−1 − 10Vi + 18Vi+1 − 6Vi+2 + Vi+3
12∆t ε = −∆t4

20 V V
i (4.11b)

V ′i = Vi−2 − 8Vi−1 + 8Vi+1 − Vi+2
12∆t ε = ∆t4

30 V V
i [5P] (4.11c)

V ′i = 3Vi+1 + 10Vi − 18Vi−1 + 6Vi−2 − Vi−3
12∆t ε = −∆t4

20 V V
i (4.11d)

V ′i = 25Vi − 48Vi−1 + 36Vi−2 − 16Vi−3 + 3Vi−4
12∆t ε = ∆t4

5 V V
i [5PB] (4.11e)

In principle best algorithms are those with more points, however one has to deal also
with the stability of the algorithm that is something depending on the data being
analyzed and not predictable a priori; it is known that algorithms with more points
work better when the function is smooth but experience problems when the function
is stiff. As our data have both fast (rise time) and slow (decay time) features and
there is also the presence of the noise, it is hard to define whether we are dealing with
a stiff or a smooth function, hence we will test each algorithm on the MonteCarlo.
From the results reported in table A.1 it turns out that the algorithms performing
better are 2P, 3P and 5P; forward algorithms are instead the worst ones and so we
did not try the 5PF. The choice between 2P, 3P, and 5P is not simple because none
of them stands out with respect to others: 2P is the best in the correction of the
rise time and the worst in the correction of the decay time, 3P is slightly better in
the rise time correction than 5P, that instead is slightly better in the decay time
correction. The resolution is slightly worst with respect to the standard analysis but
not relevant in all cases, and the residual drift of the heater is slightly better in 3P
and 5P than in 2P. It turns out that the number of bolometers is too small or the
model is not sensitive to the difference between these algorithms to decide which
one is better. We chose the 3P algorithm, keeping in mind that also the 2P and 5P
algorithms should be revisited with future detectors.
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4.6.2 Error on the biasing and read-out circuits parameters

To put in evidence the dependence of the TR algorithm on the biasing and read-out
circuits parameters we take the approximated expression of equation (3.16):

∆V (t) +
[
1 + ∆θ(t)

]RLcpρ
1 + ρ

∆V (t)
dt

= ρ VB G

1 + ρ
∆θ(t) . (4.12)

As shown in section 2.5.1 the estimation of RS and hence of ρ (see equation 3.15) is
made measuring the amplified thermistor voltage V G

RS
= VRSGS . Substituting the

measured quantity
ρ

1 + ρ
=

V G
RS

2VB GS
(4.13)

we obtain:
2GS
GV G

RS︸ ︷︷ ︸
1/m1

∆V (t) +
[
1 + ∆θ(t)

] RLcp
VB G︸ ︷︷ ︸
m2

∆V (t)
dt

= ∆θ(t) . (4.14)

We see that the there are two independent quantities that are possible source of
errors, the multiplication factor of ∆V , (1/m1), and the multiplication factor of
∆V ′, (m2). Varying these two parameters in the TR analysis of MonteCarlo data
we can estimate the effect on the usual quantities: rise time slope, decay time slope,
heater slope and heater resolution . The expected error is about 10% for 1/m1, due
to the error on the gains, and about 20% for m2, dominated by the error on the load
resistances. From the results reported in tables (A.2,A.3) we see that the residual
drift of the amplitude we have seen on data is compatible with the drifts generated
by the uncertainties on m1 and m2, the residual drift on the rise time instead cannot
be explained. Concerning the residual drift on the decay time it cannot be fully
explained, however being the correction somehow very effective with respect to the
STD analysis it is not the main problem in this phase.

The needed precision on the parameters should be at percent level on m1 and
below 10% on m2.



Chapter 5

Thermal response analysis on
the Three Towers detector

The bolometer model we have developed is able to describe the main features of
the response function of CUORE bolometers. The TR algorithm, based only on
measurable parameters, proved to be a powerful tool to remove the unwanted non-
regularities of the response function, but still it is not perfect. The rise time behavior
is not fully understood as well as there is a small residual correlation between
amplitude and baseline, compatible with the uncertainty on the parameters entering
the model. Without this residual drift the proposed analysis could be competitive
with the standard analysis that suffers from heater instabilities. Moreover, being
the pulse shape less dependent on energy, the pulse shape discrimination, a topic we
will not cover, becomes simpler. The correctness of the model is also enhanced by
the fact that the TR data are closer to a linear calibration than the raw data.
The residual drift could be removed changing by hand the model parameters, however
we prefer to examine the model deeper and measure these parameters on the detector.
These measurements were not performed for the CCVR run and the nominal values
of gains, bias voltages and load resistors were used. In this chapter the model will be
validated on the Three Towers detector, where the parameters have been measured
with the required accuracy.

5.1 The Three Towers detector

This detector has been built to test three different cleaning techniques of the copper
holding the crystals, and select the best in terms of α’s contamination. Each tower
contains 12 crystals, some of them equipped with two thermistors. A few thermistors
and heaters is broken so that some crystal is not readable at all and about half
of them does not have the heater. Since the used crystals do not have the 210Po
contamination, when the heater is not present there is no way to stabilize the data.
To overcome this problem a permanent 40K source has been faced to the detector,
and the photopeak of its 1461 keV γ line has been used to stabilize the data. Heaters
and thermistors could have been repaired before the cooling down, however the
earthquake in L’Aquila [61] caused big delays to the assembly of this detector. Given
that the number of alive crystals is sufficient to compare the copper contamination

73
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of the towers, and given that the stabilization is preformed with the 40K, the lost
channels were not repaired. The Three Towers detector started the data taking the
4th of September 2009.

The current configuration is listed in table B.1, where it can be seen that the
number of thermistors is 39. A subset of channels (16) is plugged to the “cold
electronics” (see section 2.6). The main difference with the warm electronics, the
one used in CCVR, is that pre-amplifiers and load resistances are inside the cryostat,
at about 110K. It was set-up in the past to check if the noise coming from load
resistors and pre-amplifiers affected the bolometers, nevertheless it was found that
the resolution in the 0νDBD region did not improve. CUORE will not use cold
electronics, however in the Three Towers we were forced to use it since in the hall A
cryostat the availability of warm channels is limited.

5.2 Measurements of model parameters

The MonteCarlo studies (see section 4.6.2) showed that the error on the model
parameters should be at percent level on V G

RS
, G and GS , and less than 10% on

RL, cp and VB. Rewriting the ∆θ expression (4.2) in terms of these parameters:

∆θ(t) = −
VBGS
V GRS

∆V (t) +RLcp∆V ′(t)
G
GS

(V G
RS
− VBGS) + ∆V (t) +RLcp∆V ′(t)

(5.1)

it turns out that they are not all independent. The independent quantities instead
are V G

RS
, G/GS , RLcp, VBGS and their precision should be:

Parameter Precision needed
V G
RS

< 2÷ 3 %
G/GS < 2÷ 3 %
VBGS < 10 %
RLcp < 10 %

The amplified thermistor voltage V G
RS

is usually measured with a multimeter, the
data instead are acquired with the DAQ. To be unaffected by the intercalibration
of the two instruments, V G

RS
should be measured with the DAQ. The nominal gain

values provided by the FE board specifications have a precision of order 5%, therefore
the ratio G/GS could have an even higher error. The measurement of this parameter
is then necessary. Concerning the parameter VBGS , the nominal values of bias
voltages (VB) provided by the FE boards specifications have a precision of order 5%
that is enough for our purposes. However, even if the precision on the gain is less
than 5%, the absolute value of GS is not only the gain provided by the amplifier of
the FE board, but it contains also the gain of the Bessel Filter, the gain of the DAQ,
and any possible signal attenuation (like cables couplings, grounding problems, etc...).
It is then important to measure also the VBGS parameter. The vendor specifications
of load resistances (RL) report a nominal value of 54 GΩ with a precision of order
10%. This value is then at limit, and some resistance could not have the needed
precision. The parasitic capacitance (cp) generated by the wires used to bias and
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read the thermistor depend on the detector and on the cryostat set-up so they must
be measured for each new detector configuration.

In conclusion all the parameters of the model need dedicated measurements. In
this section the measurements made on the Three Towers detector will be presented.

5.2.1 Measurement of V G
RS

and VS

As already stated, the measurements of the working resistances RS are usually done
right after the detector cooling and before the start of the data acquisition to check
what is the rough temperature of the detectors. For our purposes the precision of the
usual procedure is not enough (or better is undefined). Moreover the baseline value
VS associated to the measured resistance is not recorded, and is needed to compute
∆V (t) = V (t) − VS in equation (5.1). To overcome this problem an automated
tool to measure the thermistor voltage V G

RS
and VS of each channel with the data

acquisition system has been developed, following the procedure described in section
2.5.1. The measurement is broken down in four steps. For each step five baseline
events, each of them lasting five seconds, are acquired with the DAQ. Once the
baselines are acquired the system modify the FE parameters for the next step. These
steps are (see figure 5.1):

• Step V 1
S : Offset, gain G, bias voltage VB and bias polarity are the same of

the data acquisition phase.

• Step V −: The additional offset is removed and the gain is lowered to GS .

• Step V +: Same configuration of the step V − but the polarity is inverted.

• Step V 2
S : Back to the normal configuration, same conditions of the step V 1

S .

time

V

V 1
S

V −

V +

V 2
S

Figure 5.1. The four steps needed to measure the thermistor voltage and the associated
baseline.

The baseline events are then averaged to obtain a good estimate of the voltage of
each step (V 1

S , V −, V +, V 2
S ). The thermistor voltage V G

RS
is then obtained as:

V G
RS

= V + − V−
2 . (5.2)

During the measurement the global temperature of the detector could change. This
implies that V + and V − could not refer to the same temperature. Assuming that



76 5. Thermal response analysis on the Three Towers detector

the drift in temperature is constant in time, the error on V G
RS

can be (over) estimated
from the voltage variation between the beginning and the end of the measurement
as:

σV GRS
=
∣∣∣V 1
S − V 2

S

∣∣∣ GS
G

. (5.3)

Finally VS is estimated as the average between V 1
S and V 2

S :

VS = V 1
S + V 2

S

2 . (5.4)

Using the measured values of RL and VB GS (see sections 5.2.3 and 5.2.4), the
thermistor resistance can also be extracted using equation (2.24):

RS = RL
VBGS/V G

RS
− 1

. (5.5)

An example of the baselines acquired with this procedure is shown in figure 5.2. The
measured values are listed in table B.2 where it can be seen that σV GRS

is always less
than 0.2%.
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Figure 5.2. Measurement of the thermistor voltage and the associated baseline for a low
resistance thermistor (a) and a high resistance one (b). Each dot represents the baseline of
the acquired window.

5.2.2 Measurement of G/GS

The ratio between the gain G used during the data acquisition and the gain GS
used to measure V G

RS
can be estimated by measuring the amplitude of a pulse of

fixed energy in these gain configurations. The 1461 keV pulses generated by the 40K
source have been used for this purpose. For each channel, about 20 pulse amplitudes
have been measured using the gain G and about the same have been measured using
the gain GS . The parameter G/GS has been simply calculated as:

G

GS
= Amplitude measured with gain G

Amplitude measured with gain GS
. (5.6)

The measured values are reported in table B.3, where it can be seen that the error is
always smaller than 0.2%. The departure from the nominal value (see table B.1) is
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shown in figure 5.3, the dispersion is about 0.3% and the average difference is about
−0.6%. Given that the needed precision should be less than 2%, one could also use
the nominal value in this case.
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Figure 5.3. Departure of the measured G/GS parameter from its nominal value, all
channels of the Three Towers detector.

5.2.3 Measurement of RL

Resistances higher than G Ω’s cannot be measured with a common multimeter,
being too high. The technique consists instead in biasing the resistance with a
known voltage V , measuring the current I flowing into it with a pico-ammeter
and computing its value using the Ohm’s law R = V/I. The load resistances have
been biased with a DC voltage of 10V and the current flowing into them has been
measured with a Keithley device. Since the current in the circuit is very small, of
order 100 pA, the resistances were housed in a grounded metal shield to prevent
currents generated by electromagnetic interferences (see figure 5.4).

10 V

RL

A

metal shield

Figure 5.4. Experimental setup of the load resistances measurement.
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Unfortunately only warm electronics resistances were measured, because unsoldering
the cold electronics resistances could severely damage the rest of the circuit. The
systematic error of the measurement, dominated by the environmental setup, has
been evaluated to be less than 2%. The measured values are reported in table B.3.
The difference with the nominal value (see table B.1) is about zero and the dispersion
is about 4% (see figure 5.5)
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Figure 5.5. Departure of the measured RL parameter from its nominal value, warm
electronics channels of the Three Towers.

5.2.4 Measurement of VBGS

The FE boards provide the possibility of switching the biasing circuit from the
bolometer resistance to a couple of resistances (RG) shorted to ground.
They are high precision resistances (tolerance less than 0.5%) used to test the boards
in the production phase and their value is RG = 1.1 M Ω. Biasing them in the same
way of the thermistor, the voltage across the resistances can be expressed as:

V2RG = 2RG
RL + 2RG

VBGS . (5.7)

Measuring it with the same procedure described in section 5.2.1 we can extract the
VBGS parameter:

VBGS = V2RG
RL + 2RG

2RG
(5.8)

where we used the measured value of RL. The values of VBGS are reported in
table (B.3), the estimation error is dominated by the systematic error on RL (about
2%). Unfortunately it is not possible to short to ground the biasing circuit of cold
electronics channels, so the measurement was only made with warm electronics. The
departure from the nominal value (see table B.1) is shown in figure 5.6, where it can
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be seen that the dispersion is about 0.6% and the average difference is about −1%,
consistent with the systematic error on RL. Given that the needed precision should
be less than 10%, one could also use the nominal value in this case.
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Figure 5.6. Departure of the measured VBGS parameter from its nominal value, warm
electronics channels of the Three Towers.

5.2.5 Measurement of cp
For each bolometer the connection to the pre-amplifier contained in the FE board
consists of three couples of wires in series (see section 2.5), each with its own
capacitance: the wires connecting the bolometer to the socket above the 1-K pot
(ckp), the wires carrying the signal from the 1-K pot out of the cryostat (ccp), and the
Fisher cables connecting the cryostat to the FE boards (cfp). For cold electronics
channels the wire path stops in the middle of the cryostat, where are the pre-
amplifiers.

Rbol

thermistor to 1K-pot

ckp

cryostat

ccp

fisher to FE

to FE

cfp

Figure 5.7. Scheme of the wires connecting the bolometer to the Front-End board.

The total capacitance (cp) is the sum of all these capacitances plus the input
capacitance of the FE board (cFEp ):

cp = ctp + ccp + cfp + cFEp (5.9)
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The values of ccp and cfp have been measured for every channel using a capacitance
meter with a precision of 2 pF. The cFEp parameters is available in the FE board
specifications, it is the same for each channel and equal to 15 pF.

The ctp value, instead, cannot not be measured directly for each channel. The
couple of wires connecting the bolometer to the 1-K pot sockets are already connected
to the bolometer in the assembly phase and their length is not the same as in the
operating phase. When the tower is afterwards hanged to the cryostat, the wires are
cut at the correct length before being plugged. Measuring the capacitance is then
impossible because they are shorted to the thermistor, that at room temperature has
a resistance of few Ohms. Nevertheless the resistance of the series composed by the
two wires and by the thermistor is a measurable parameter. As both capacitance and
resistance scale with length, it can be assumed that capacitance scales with resistance,
then the ctp parameter can be extracted from the measurement of the resistance of
the bolometer wire at room temperature (Rt). The ctp − Rt characterization has
been done measuring wires of variable length of the same type of the wires used to
assemble detector. The parameters estimated from the linear fit (see figure 5.8):

ctp = ac + bcR
t (5.10)

are ac = −2.2± 0.8 pF and bc = 0.251± 0.003 pF/Ω. The error on the capacitances
estimated with this method has been computed from the residuals of the fit (see
figure 5.8) to be approximately 2 pF.
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Figure 5.8. Relationship between the resistance and the capacitance of a bunch of test
wires (a). Residuals of the linear fit C = ac + bcR (b).

The capacitances measured fore each channel are listed in table (B.4) and the
average values are summarized in table (5.1) where it can be seen that the obtained
precision is about 2% for cold electronics and 1% for warm electronics.

Table 5.1. Average wires capacitance of the Three Towers detector, values are in pF.

electronics ctp ccp cfp cFEp cp σcp
cold 19 114 0 0 132 3
warm 19 261 80 15 376 4
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In conclusion the precision reached on all parameters is much better than what
was needed (see table 5.2). For what concern cold electronics, the RL and VBGS
parameters could not be measured, so their nominal values will be used.

Table 5.2. Summary of the model parameter measurements.

Parameter Precision needed Actual Precision
V G
RS

< 2÷ 3% 0.2%
G/GS < 2÷ 3%% 0.2%
VBGS < 10% 2% (only warm electronics)
RL < 10% 2% (only warm electronics)
cp < 10% 1÷ 2%
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5.3 Results on calibration data

In this section the comparison between the STD and the TR analyses made on the
Three Towers detector is presented. The comparison of shape parameters, amplitude
slope and calibration function is made using the data of the first calibration. The
amplitude drift in time is instead evaluated on background data (see next section),
as we did for the analysis of the CCVR detector.

The dependence of the pulse rise time on amplitude is shown in figure 5.9, where
it can be seen that the TR algorithm reduces the average slope of a factor ∼ 50%.
The same result is obtained for the decay time, shown in figure 5.10.
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Figure 5.9. Rise time slope of all channels, data of the first calibration of the Three Towers
detector.
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(a) STD analysis
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(b) TR analysis

Figure 5.10. Decay time slope of all channels, data of the first calibration of the Three
Towers detector. The outlier of the TR distribution is channel 63 with a decay time slope of
3.2%/MeV and will be discussed in section 5.5.

As already stated the crystals of this detector are sufficiently aged so that the
210Po contamination is not enough to evaluate the amplitude dependence on baseline
using the 5407 keV α line. The evaluation has been made using the events of the
2615 keV γ line, the highest line in the calibration spectrum. The comparison
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Figure 5.11. Slope of the 2615 keV line in the STD analysis before stabilization (blue) and
in the TR one (red). Data from the first calibration runs of the Three Towers detector,
channel 1.

between STD and TR data of channel 1 is shown in figure 5.11 where it can be seen
that slope of TR data is negligible. The comparison of the amplitude slopes on all
channels is shown in figure 5.12, the average slope is almost zero in the TR analysis
case, while in the STD case it is about 3.5%.
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(a) STD analysis
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(b) TR analysis

Figure 5.12. Slope of the 2615 keV γ line, data from the first calibration runs of the Three
Towers detector. The outlier of the TR distribution is channel 57 with a slope of -0.13
(keV/keV), and will be discussed in section 5.5.

The linearity of the calibration function has been evaluated fitting the positions
of the energy peaks with a line (E = c x) and computing the χ2 of the residuals (see
section 4.4.1). The residuals of channel 1 are shown in figure 5.13, where it can be
seen that the TR data are much closer to linearity than STD data. This result is
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obtained almost on all channels, as shown in figure 5.14.
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Figure 5.13. Residuals of a linear calibration function applied to STD data (blue) and TR
data (red). The χ2/ndf is 3500 and 22 respectively.

Channel

0 10 20 30 40 50 60 70

/n
d
f

2
χ

1

10

2
10

3
10

Figure 5.14. χ2/ndf of a linear calibration function on all channel in the STD (blue) and
TR (red) analysis. The threshold to reject a calibration is usually set to 25.

In conclusion the shape dependence on energy is reduced with respect to STD
data, the amplitude dependence on baseline is close to zero and the calibration
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function is a close to a line almost on all channels. A few channels (about 15%) are
not well corrected and will be discussed in section 5.5.

Concerning the STD analysis, we have seen that the 1461 keV line of a 40K source
is used to perform the stabilization. This line is in the middle of the calibration
spectrum and the dependence of the amplitude with the baseline worsens its resolution
and shifts its position. These effects makes this line difficult to recognize in a reliable
way and make the stabilization step hard or even impossible in some case. This
problem was not present in the analysis of CCVR, where the 5407 keV line of 210Po
stands out in the energy spectrum. TR data on the other hand are not sensitive
to baseline variations so that the peak position is constant in time. Given this
advantage and the better calibration function, it was decided to use the TR as
official analysis in place of the STD one. Given that the 1461 keV line is easy to
recognize with TR data, it was used to stabilize the TR data itself, removing the
residual amplitude drift.

One of the purposes of this work was to evaluate the possibility of avoiding the
use of the stabilization. In CUORE it will be made with the heater, that can be
a source of instabilities (see section 4.5). In the next section we will compare the
results obtained with the TR analysis stabilized with 40K (TR-stabilized) and TR
analysis without stabilization (TR).

5.4 Results on background data

The residual amplitude drift has been evaluated checking the position of the 1461 keV
line in each run. An example is shown in figure 5.15, where the amplitude drifts of a
good channel and a bad one are plotted.
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(b) Channel 57

Figure 5.15. Evaluation of the residual slope of the 1461 keV γ line, example of a good
(left) and a bad (right) channel. Background runs corresponding to the first 15 days of data
taking of the Three Towers detector.

From the slope distribution on all channels shown in figure 5.16, we can see
that almost all channels are contained in a 0.5% band, meaning that for a 100 keV
baseline variation the amplitude variation is less then 0.5 keV. The outlying channels,
in particular channels 47, 57 and 64, are of particular interest since they will be
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useful to understand the missing pieces of the model (see section 5.5).
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Figure 5.16. Residual slope of the 1461 keV γ line on all channels, background data
acquired in the first 15 days of data taking of the Three Towers detector. Almost all channel
are contained in a ±0.005 range, the few outliers are described in section 5.5.

As final result we compare the resolution obtained on the 2615 keV γ line visible
in the background. This line comes from the natural 232Th contamination of the
environment and has a very low rate. The sum spectrum of this line over all crystals
gives an idea of what is the effective resolution in the 0νDBD region, the resolution
that affects the final result of the CUORE experiment. From the distributions shown
in figure 5.17, the resolution is evaluated to be 4.7 ± 0.5 keV FWHM for the TR
analysis with stabilization and 6.3 ± 0.7 keV FWHM for the TR analysis without
stabilization.
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Figure 5.17. Distribution of the 2615 keV γ line summed over all crystals for the stabilized
TR analysis (left) and the non stabilized one (right). Background data acquired in the first
15 days of data taking of the Three Towers detector.
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5.5 Future developments
We have seen that the TR algorithm removes almost all the non linearities of the
data. A few channels is not corrected, effect that is particularly evident in the
linearity of the calibration function and in the amplitude slope. Looking at the
distribution of the χ2 of the linear calibration function shown in figure 5.14 and
at the distribution of the amplitude slope shown in figure 5.16, we see that when
the amplitude slope is high, also the linear calibration χ2 is high. As the model
parameters have been measured with precision, this effect reveals an incompleteness
of the model.

Comparing the TR pulse of a well corrected channel and of a bad one, we see
that the shape of the latter exhibits a strange behavior (see figure 5.18). After
reaching its maximum the pulse goes down and then up again, as if there was an
undershooting. The corresponding STD pulse does not exhibits this behavior since it
is masked by the RC cutoff created by the parasitic capacitances and the bolometer
resistance.
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Figure 5.18. Comparison between the average pulse made on STD data (blue) and TR
data (red). On the left a channel with small amplitude slope, on the right a channel with
high amplitude slope (see figure 5.15).

This effect is visible on channels 47, 57 and 64, the worst ones in terms of amplitude
slope and calibration linearity. It can be addressed to the electrothermal feedback
(see sections 2.2 and 3.2.4) and can be qualitatively interpreted as follows. When
the temperature increases, the variation of the power injected in the thermistor
is negative, if this variation is too high it can even decrease the signal. The
electrothermal feedback hypothesis is also supported by the fact that this kind of
pulses is visible when the bolometer operates after the inversion point of the load
curve (see section 2.2). Crossing this point the thermistor is so warm that even if
the current in it is higher, the resistance is smaller so that the net voltage decreases.

The next step of this model will be the inclusion of the electrothermal feedback
and the study of the dependence on the position on the load curve.





Conclusions

In this Ph.D. work I developed a model of the response function of the CUORE
bolometers. The non-linearity of bolometer signals has been found to be dominated
by the thermistor and by the biasing circuit used to operate the thermistor. The
model is based on the description of these elements, without including the thermal
part of the bolometer that contains unmeasurable parameters.

A signal simulator has been developed. It is able to reproduce the non-linearities
of the data, in particular it reproduces the pulse shape dependence on energy and
the pulse amplitude dependence on the base temperature. This is the first simulation
engine of the response function of TeO2 bolometers and it is used by the collaboration
to test trigger efficiencies and data analysis algorithms.

Given the good performances of the model in reproducing the data, I created
a digital filter that is able to remove the non-linearities. This filter transforms the
voltage samples acquired by the ADC into samples proportional to the temperature
variation of the thermistor (TR), a much more linear quantity. The algorithm has
been included in the official data analysis of the currently running Three Towers
detector. This is the first time in the analysis of TeO2 bolometers that the physics
of the detector is used, leading to great improvements: the shape dependence on
energy is halved, the amplitude dependence on base temperature is removed, and
the calibration function is very close to a line.
Only 15% of the bolometers are not well linearized by this algorithm, and new tests
have been planned to understand the missing piece of the model.

The analysis based on TR can avoid the use of the heater to remove the tem-
perature dependence, the resolution is evaluated to be just 30% worse than what
obtained with an ideal correction. This makes TR a valid alternative when the
heater is broken or when grounding problems compromise its behavior and render
the data unusable, reducing the live time of the experiment. A better behaving
calibration function could also shorten the time needed to calibrate the detector,
which is currently one of the biggest issues of CUORE.
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Appendix A

Thermal response analysis on
the CCVR detector

Table A.1. Shape parameters and resolution dependence on the derivative algorithm,
MonteCarlo data.

Algo Rise Slope Decay Slope Heater Res Heater Slope
%/MeV %/MeV (%)

channel 1
STD −0.103± 0.012 0.539± 0.033 0.1402± 0.0035 −0.02563± 0.00018
D2P 0.0024± 0.0098 −0.031± 0.030 0.1420± 0.0034 −0.00008± 0.00018
D3P 0.0031± 0.0089 −0.033± 0.030 0.1405± 0.0035 0.00024± 0.00018
D5P 0.0079± 0.0090 −0.031± 0.030 0.1398± 0.0034 0.00021± 0.00018
D2PF −0.020± 0.013 −0.029± 0.030 0.1408± 0.0035 0.00058± 0.00018
D3PB 0.0105± 0.0095 −0.036± 0.030 0.1422± 0.0035 0.00016± 0.00018
D3PF 0.0143± 0.0089 −0.036± 0.030 0.1413± 0.0035 0.00018± 0.00018

channel 2
STD −0.217± 0.010 0.550± 0.020 0.1534± 0.0037 −0.02524± 0.00014
D2P 0.0063± 0.0075 0.018± 0.019 0.1547± 0.0047 −0.00029± 0.00018
D3P 0.040± 0.011 0.013± 0.020 0.1550± 0.0045 0.00022± 0.00017
D5P 0.030± 0.011 0.012± 0.021 0.1544± 0.0046 0.00017± 0.00017
D2PF 0.0646± 0.0090 −0.016± 0.019 0.1562± 0.0037 0.00067± 0.00014
D3PB 0.044± 0.012 0.011± 0.021 0.1548± 0.0046 0.00003± 0.00017
D3PF 0.044± 0.010 −0.006± 0.019 0.1566± 0.0037 0.00006± 0.00015

channel 3
STD −0.6780± 0.0031 1.4675± 0.0062 0.1015± 0.0022 −0.05628± 0.00017
D2P 0.0109± 0.0028 0.0501± 0.0048 0.1069± 0.0024 −0.00103± 0.00018
D3P 0.1421± 0.0029 0.0087± 0.0051 0.1062± 0.0024 0.00041± 0.00018
D5P 0.1870± 0.0026 0.0036± 0.0053 0.1063± 0.0024 0.00016± 0.00018
D2PF 0.2867± 0.0033 −0.0279± 0.0054 0.1064± 0.0024 0.00153± 0.00017
D3PB 0.1356± 0.0026 −0.0160± 0.0051 0.1070± 0.0024 −0.00041± 0.00017
D3PF 0.1734± 0.0023 −0.0089± 0.0051 0.1062± 0.0024 −0.00037± 0.00018

channel 4
STD −0.3634± 0.0049 0.9606± 0.0084 0.0991± 0.0024 −0.04671± 0.00015
D2P 0.0383± 0.0051 0.0435± 0.0069 0.1026± 0.0025 −0.00078± 0.00017
D3P 0.0841± 0.0045 0.0028± 0.0072 0.1026± 0.0025 0.00009± 0.00017
D5P 0.1004± 0.0046 0.0000± 0.0073 0.1026± 0.0025 −0.00003± 0.00017
D2PF 0.1901± 0.0039 −0.0410± 0.0076 0.1033± 0.0025 0.00083± 0.00016
Continued on Next Page. . .
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Algo Rise Slope Decay Slope Heater Res Heater Slope
%/MeV %/MeV (%)

D3PB 0.0850± 0.0049 −0.0102± 0.0073 0.1039± 0.0025 −0.00026± 0.00017
D3PF 0.1528± 0.0048 −0.0082± 0.0073 0.1025± 0.0024 −0.00025± 0.00017

channel 5
STD −0.4097± 0.0060 0.936± 0.016 0.1203± 0.0031 −0.05711± 0.00024
D2P 0.0156± 0.0067 −0.013± 0.014 0.1231± 0.0032 −0.00066± 0.00025
D3P 0.0215± 0.0058 −0.019± 0.014 0.1233± 0.0032 0.00056± 0.00025
D5P 0.0363± 0.0058 −0.018± 0.014 0.1235± 0.0032 0.00040± 0.00025
D2PF 0.0254± 0.0052 −0.023± 0.014 0.1236± 0.0032 0.00175± 0.00025
D3PB 0.0690± 0.0060 −0.020± 0.014 0.1237± 0.0032 0.00003± 0.00025
D3PF 0.0614± 0.0056 −0.018± 0.014 0.1232± 0.0033 0.00009± 0.00025

channel 6
STD −0.4287± 0.0046 0.9790± 0.0092 0.0775± 0.0019 −0.04351± 0.00013
D2P −0.0111± 0.0070 0.0142± 0.0086 0.0809± 0.0020 −0.00092± 0.00014
D3P 0.0637± 0.0059 −0.0058± 0.0087 0.0807± 0.0020 −0.00016± 0.00014
D5P 0.0836± 0.0062 −0.0085± 0.0088 0.0808± 0.0020 −0.00027± 0.00014
D2PF 0.1230± 0.0062 −0.0143± 0.0089 0.0808± 0.0020 0.00049± 0.00014
D3PB 0.0835± 0.0062 −0.0163± 0.0090 0.0808± 0.0020 −0.00040± 0.00014
D3PF 0.1277± 0.0064 −0.0136± 0.0088 0.0806± 0.0020 −0.00045± 0.00014

channel 7
STD −0.6639± 0.0037 0.9244± 0.0065 0.0895± 0.0021 −0.03137± 0.00014
D2P 0.0469± 0.0026 0.0546± 0.0057 0.0912± 0.0020 −0.00007± 0.00018
D3P 0.1090± 0.0039 −0.0284± 0.0057 0.0908± 0.0020 0.00050± 0.00017
D5P 0.1111± 0.0041 −0.0227± 0.0057 0.0907± 0.0020 0.00037± 0.00017
D2PF 0.1615± 0.0035 −0.1365± 0.0059 0.0913± 0.0020 0.00085± 0.00016
D3PB 0.0991± 0.0047 −0.0023± 0.0055 0.0912± 0.0020 0.00018± 0.00017
D3PF 0.1275± 0.0046 −0.0209± 0.0056 0.0913± 0.0020 0.00014± 0.00017

Table A.2. Shape parameters and resolution dependence on the error on 1/m1, MonteCarlo
data.

Error Rise Slope Decay Slope Heater Res Heater Slope
(%) %/MeV %/MeV (%)

channel 1
-9 −0.0038± 0.0091 −0.087± 0.030 0.1681± 0.0038 0.00298± 0.00018
-6 0.0001± 0.0086 −0.064± 0.029 0.1570± 0.0033 0.00198± 0.00018
-3 0.0011± 0.0093 −0.042± 0.031 0.1514± 0.0033 0.00107± 0.00018
0 0.0034± 0.0090 −0.033± 0.030 0.1487± 0.0035 0.00024± 0.00018
3 0.0027± 0.0090 −0.020± 0.030 0.1495± 0.0035 −0.00047± 0.00018
6 0.0017± 0.0090 −0.001± 0.030 0.1528± 0.0036 −0.00124± 0.00018
9 0.0005± 0.0091 0.013± 0.030 0.1571± 0.0037 −0.00196± 0.00018

channel 2
-9 0.039± 0.011 −0.056± 0.019 0.1677± 0.0030 0.00308± 0.00015
-6 0.043± 0.011 −0.026± 0.019 0.1533± 0.0031 0.00206± 0.00017
-3 0.045± 0.011 −0.009± 0.021 0.1538± 0.0032 0.00110± 0.00017
0 0.040± 0.011 0.015± 0.020 0.1497± 0.0030 0.00022± 0.00017
3 0.012± 0.010 0.009± 0.018 0.1481± 0.0029 −0.00063± 0.00017
6 0.025± 0.011 0.047± 0.020 0.1515± 0.0030 −0.00143± 0.00017
9 0.018± 0.011 0.049± 0.019 0.1554± 0.0027 −0.00220± 0.00015

Continued on Next Page. . .
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Error Rise Slope Decay Slope Heater Res Heater Slope
(%) %/MeV %/MeV (%)

channel 3
-9 0.1836± 0.0024 −0.1430± 0.0050 0.1517± 0.0025 0.00773± 0.00018
-6 0.1711± 0.0023 −0.0882± 0.0049 0.1270± 0.0022 0.00507± 0.00018
-3 0.1684± 0.0026 −0.0433± 0.0053 0.1097± 0.0019 0.00259± 0.00018
0 0.1417± 0.0028 0.0070± 0.0051 0.1029± 0.0019 0.00041± 0.00018
3 0.1277± 0.0037 0.0551± 0.0052 0.1053± 0.0019 −0.00171± 0.00018
6 0.0796± 0.0040 0.0999± 0.0052 0.1154± 0.0019 −0.00377± 0.00018
9 0.0767± 0.0040 0.1429± 0.0053 0.1308± 0.0022 −0.00574± 0.00018

channel 4
-9 0.1012± 0.0044 −0.1060± 0.0072 0.1318± 0.0021 0.00608± 0.00017
-6 0.0957± 0.0043 −0.0688± 0.0070 0.1140± 0.0019 0.00392± 0.00017
-3 0.0913± 0.0045 −0.0391± 0.0073 0.1033± 0.0018 0.00194± 0.00017
0 0.0841± 0.0045 0.0028± 0.0072 0.0979± 0.0018 0.00009± 0.00017
3 0.0746± 0.0045 0.0358± 0.0073 0.1015± 0.0020 −0.00164± 0.00016
6 0.0583± 0.0042 0.0691± 0.0073 0.1106± 0.0021 −0.00332± 0.00017
9 0.0595± 0.0041 0.1013± 0.0073 0.1222± 0.0022 −0.00497± 0.00017

channel 5
-9 0.0264± 0.0059 −0.114± 0.014 0.1490± 0.0028 0.00733± 0.00025
-6 0.0248± 0.0057 −0.079± 0.014 0.1319± 0.0026 0.00490± 0.00025
-3 0.0271± 0.0061 −0.043± 0.014 0.1222± 0.0023 0.00264± 0.00025
0 0.0209± 0.0058 −0.022± 0.014 0.1167± 0.0025 0.00056± 0.00025
3 0.0180± 0.0058 0.008± 0.014 0.1177± 0.0026 −0.00131± 0.00025
6 0.0150± 0.0058 0.035± 0.014 0.1228± 0.0027 −0.00315± 0.00025
9 0.0108± 0.0058 0.060± 0.014 0.1311± 0.0029 −0.00492± 0.00025

channel 6
-9 0.0867± 0.0053 −0.1002± 0.0086 0.1066± 0.0019 0.00510± 0.00014
-6 0.0778± 0.0052 −0.0622± 0.0081 0.0912± 0.0017 0.00321± 0.00014
-3 0.0791± 0.0058 −0.0316± 0.0090 0.0814± 0.0015 0.00145± 0.00014
0 0.0631± 0.0058 −0.0057± 0.0086 0.0790± 0.0015 −0.00016± 0.00014
3 0.0506± 0.0060 0.0222± 0.0085 0.0833± 0.0016 −0.00158± 0.00014
6 0.0222± 0.0054 0.0493± 0.0086 0.0898± 0.0018 −0.00307± 0.00014
9 0.0219± 0.0051 0.0746± 0.0087 0.1017± 0.0019 −0.00449± 0.00014

channel 7
-9 0.2127± 0.0047 −0.1854± 0.0056 0.1203± 0.0021 0.00538± 0.00017
-6 0.1999± 0.0046 −0.1221± 0.0054 0.1062± 0.0019 0.00362± 0.00017
-3 0.1495± 0.0044 −0.0783± 0.0057 0.0985± 0.0018 0.00201± 0.00017
0 0.1098± 0.0039 −0.0276± 0.0057 0.0941± 0.0017 0.00050± 0.00017
3 0.1053± 0.0039 0.0190± 0.0057 0.0947± 0.0017 −0.00095± 0.00017
6 0.0992± 0.0039 0.0722± 0.0056 0.0995± 0.0017 −0.00238± 0.00017
9 0.0907± 0.0039 0.1206± 0.0057 0.1050± 0.0018 −0.00375± 0.00017

Table A.3. Shape parameters and resolution dependence on the error on m2, MonteCarlo
data.

Error Rise Slope Decay Slope Heater Res Heater Slope
(%) %/MeV %/MeV (%)

channel 1
Continued on Next Page. . .
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Error Rise Slope Decay Slope Heater Res Heater Slope
(%) %/MeV %/MeV (%)
-20 −0.0248± 0.0096 −0.031± 0.030 0.1495± 0.0035 0.00047± 0.00018
-10 −0.0172± 0.0091 −0.032± 0.030 0.1489± 0.0035 0.00037± 0.00018
-05 −0.0065± 0.0090 −0.037± 0.030 0.1490± 0.0035 0.00033± 0.00018
00 0.0034± 0.0090 −0.033± 0.030 0.1487± 0.0035 0.00024± 0.00018
05 0.0099± 0.0090 −0.033± 0.030 0.1480± 0.0034 0.00017± 0.00018
10 0.0156± 0.0091 −0.032± 0.030 0.1488± 0.0036 0.00010± 0.00018
20 0.017± 0.010 −0.031± 0.030 0.1488± 0.0035 −0.00001± 0.00018

channel 2
-20 −0.034± 0.010 0.010± 0.020 0.1529± 0.0031 0.00075± 0.00017
-10 0.021± 0.011 0.013± 0.020 0.1515± 0.0031 0.00050± 0.00017
-05 0.032± 0.011 0.014± 0.020 0.1502± 0.0030 0.00036± 0.00017
00 0.040± 0.011 0.015± 0.020 0.1497± 0.0030 0.00022± 0.00017
05 0.031± 0.011 0.014± 0.020 0.1481± 0.0029 0.00006± 0.00017
10 0.038± 0.011 0.013± 0.020 0.1487± 0.0030 −0.00009± 0.00017
20 0.095± 0.058 −0.09± 0.11 0.1470± 0.0025 −0.00040± 0.00015

channel 3
-20 0.0293± 0.0024 0.0183± 0.0052 0.1107± 0.0019 0.00270± 0.00017
-10 0.0809± 0.0024 0.0104± 0.0051 0.1064± 0.0019 0.00153± 0.00018
-05 0.250± 0.012 0.026± 0.027 0.1049± 0.0019 0.00103± 0.00017
00 0.1417± 0.0028 0.0070± 0.0051 0.1029± 0.0019 0.00041± 0.00018
05 0.397± 0.021 0.021± 0.027 0.1017± 0.0019 −0.00019± 0.00018
10 0.1265± 0.0039 0.0098± 0.0052 0.1022± 0.0019 −0.00082± 0.00018
20 0.1778± 0.0038 0.0188± 0.0050 0.1069± 0.0020 −0.00207± 0.00018

channel 4
-20 0.0330± 0.0048 −0.0026± 0.0073 0.1034± 0.0018 0.00192± 0.00016
-10 0.0517± 0.0044 −0.0078± 0.0073 0.1003± 0.0018 0.00099± 0.00016
-05 0.0675± 0.0044 −0.0029± 0.0072 0.0989± 0.0018 0.00057± 0.00016
00 0.0841± 0.0045 0.0028± 0.0072 0.0979± 0.0018 0.00009± 0.00017
05 0.0994± 0.0044 0.0114± 0.0073 0.0981± 0.0018 −0.00037± 0.00017
10 0.1006± 0.0041 0.0149± 0.0073 0.0994± 0.0019 −0.00087± 0.00017
20 0.1281± 0.0042 0.0440± 0.0072 0.1028± 0.0020 −0.00189± 0.00017

channel 5
-20 −0.0576± 0.0061 −0.010± 0.014 0.1200± 0.0024 0.00194± 0.00025
-10 −0.0181± 0.0059 −0.016± 0.014 0.1171± 0.0024 0.00126± 0.00025
-05 0.0003± 0.0059 −0.020± 0.014 0.1163± 0.0024 0.00092± 0.00025
00 0.0209± 0.0058 −0.022± 0.014 0.1167± 0.0025 0.00056± 0.00025
05 0.0436± 0.0057 −0.021± 0.014 0.1164± 0.0025 0.00023± 0.00025
10 0.0684± 0.0057 −0.023± 0.014 0.1164± 0.0025 −0.00015± 0.00025
20 0.1260± 0.0057 −0.029± 0.014 0.1161± 0.0025 −0.00090± 0.00025

channel 6
-20 −0.0535± 0.0053 0.0099± 0.0085 0.0806± 0.0015 0.00118± 0.00014
-10 0.0136± 0.0053 0.0019± 0.0086 0.0790± 0.0015 0.00052± 0.00014
-05 0.0371± 0.0055 −0.0030± 0.0087 0.0785± 0.0015 0.00018± 0.00014
00 0.0631± 0.0058 −0.0057± 0.0086 0.0790± 0.0015 −0.00016± 0.00014
05 0.0893± 0.0060 −0.0050± 0.0086 0.0796± 0.0016 −0.00048± 0.00014
10 0.0813± 0.0051 −0.0063± 0.0086 0.0796± 0.0016 −0.00082± 0.00014
20 0.1249± 0.0054 −0.0057± 0.0088 0.0817± 0.0015 −0.00153± 0.00014

channel 7
-20 0.1010± 0.0047 −0.1330± 0.0055 0.1026± 0.0018 0.00285± 0.00016
-10 0.1330± 0.0047 −0.0918± 0.0057 0.0974± 0.0018 0.00167± 0.00017

Continued on Next Page. . .
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Error Rise Slope Decay Slope Heater Res Heater Slope
(%) %/MeV %/MeV (%)
-05 0.1505± 0.0048 −0.0589± 0.0055 0.0950± 0.0018 0.00110± 0.00017
00 0.1098± 0.0039 −0.0276± 0.0057 0.0941± 0.0017 0.00050± 0.00017
05 0.1159± 0.0039 0.0093± 0.0056 0.0939± 0.0017 −0.00011± 0.00017
10 0.1234± 0.0039 0.0599± 0.0057 0.0940± 0.0017 −0.00073± 0.00017
20 0.1400± 0.0040 0.1744± 0.0059 0.0973± 0.0017 −0.00209± 0.00018
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98 B. Precision measurements on the Three Towers detector

Table B.1. Bolometers setup of the Three Towers detector. The biasing circuit parameters
(VB , G, GS , RL) are nominal.

Ch Tower Crystal VB G GS RL
(V) V/V V/V G Ω

1 1 B10 4.940 4133 448 54
3 1 B49 6.787 7520 448 54
4 1 B34 8.631 10009 448 54
5 2 B15 2.164 1942 448 54
6 2 B15 3.628 10009 448 54
7 2 B35 3.005 2938 448 54
11 3 B39 4.940 6324 448 54
13 1 B53 8.631 10009 448 54
14 1 B52 7.121 10009 448 54
16 1 B55 4.628 10009 448 54
17 1 B41 7.998 10009 448 54
18 2 B25 4.284 10009 448 54
19 2 B25 7.685 10009 448 54
20 2 B46 7.998 10009 448 54
21 2 B46 7.998 10009 448 54
24 3 B7 4.284 4731 448 54
26 1 B12 7.685 10009 448 54
27 1 B12 4.940 5428 448 54
28 1 B49 6.787 10009 448 54
30 1 B10 8.962 10009 448 54
31 1 B51 4.628 10009 448 54
32 1 B23 5.250 10009 448 54
35 2 B64 4.940 5030 448 54
40 2 B24 6.152 10009 448 54
43 1 B53 7.998 10009 448 54
44 1 B38 9.636 10009 448 54
45 1 B52 5.873 7918 448 54
46 1 B55 5.873 10009 448 54
47 1 B41 1.519 2241 448 54
48 1 B57 6.472 6922 448 54
49 1 B57 4.628 6922 448 54
51 2 B68 3.337 7520 448 54
57 3 B2 1.199 2241 448 54
58 3 B7 7.364 10009 448 54
59 3 B13 3.628 4731 448 54
61 3 B39 4.628 5030 448 54
62 3 B40 4.940 4432 448 54
63 3 B8 3.337 2540 448 54
64 3 B20 3.337 2540 448 54
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Table B.2. Measured thermistor parameters of the Three Towers detector

Ch VS V G
RS

σV GRS
RS

(mV) (mV) (mV) (M Ω)
1 5166.91± 0.57 4023.80± 0.29 0.66 98.359
3 −4944.55± 0.83 3045.685± 0.073 0.14 54.145
4 −4821.75± 0.11 2489.145± 0.020 0.62 34.7844
5 −4989.200± 0.096 5683.035± 0.037 0.31 318.414
6 −5239.0± 1.1 3121.685± 0.086 0.30 103.914
7 −4872.920± 0.091 4404.645± 0.023 1.8 177.2578
11 −4803.76± 0.25 3546.100± 0.015 1.1 86.6635
13 −4805.56± 0.38 2225.005± 0.013 0.98 31.0910
14 −4896.57± 0.37 2297.565± 0.013 0.92 38.9184
16 −4730.64± 0.43 2473.125± 0.046 2.2 64.489
17 −4710.26± 0.54 2666.815± 0.023 1.6 40.2208
18 −4778.45± 0.24 3603.862± 0.071 1.3 101.590
19 −5129.62± 0.17 2764.795± 0.015 0.45 43.3994
20 −4507.79± 0.42 2328.135± 0.024 0.32 35.1096
21 −4695.86± 0.26 2919.3150± 0.0065 1.5 44.03214
24 −5083.21± 0.97 3576.19± 0.15 0.83 100.809
26 −4816.90± 0.34 2249.780± 0.017 1.3 34.5604
27 −5013.23± 0.35 3407.750± 0.018 0.97 82.8221
28 −4929.6± 1.0 2982.440± 0.063 0.92 50.003
30 −4923.82± 0.49 2249.88± 0.18 0.087 29.206
31 −4975.9± 5.2 2619.93± 0.94 4.0 68.11
32 −4952.2± 1.1 3335.095± 0.017 0.31 82.3535
35 −5028.47± 0.33 3597.025± 0.016 0.27 87.7890
40 −4871.47± 0.61 2841.785± 0.032 0.28 54.7916
43 −5012.83± 0.26 2391.6850± 0.0090 0.19 38.7590
44 −5007.14± 0.38 1752.245± 0.026 1.5 23.7096
45 −4984.29± 0.41 3479.720± 0.013 0.91 70.2485
46 −5199.14± 0.90 3341.415± 0.040 0.27 63.7081
47 −5019.66± 0.23 6632.500± 0.052 2.6 509.519
48 −5350.27± 0.47 3978.535± 0.025 0.25 77.3896
49 −5208.87± 0.35 3573.580± 0.023 0.76 90.8930
51 −5303.80± 0.72 3360.225± 0.027 0.44 128.071
57 −4956.82± 0.69 5329.895± 0.045 2.2 536.575
58 −4580.59± 0.58 2369.320± 0.069 0.80 38.829
59 −5014.77± 0.36 4644.570± 0.051 0.50 162.184
61 −4872.25± 0.36 3383.415± 0.043 0.069 92.376
62 −4949.21± 0.40 3211.795± 0.041 0.59 80.010
63 −5084.62± 0.45 6816.00± 0.13 1.2 253.543
64 −4570.3± 1.2 7430.72± 0.35 12 285.37
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Table B.3. Measured FE boards parameters of the Three Towers detector.

Ch VBGS G/GS RL
(V) (V/V) (±1 G Ω)

1 N/A 9.1931± 0.0041 N/A
3 N/A 16.747± 0.014 N/A
4 N/A 22.236± 0.012 N/A
5 N/A 4.30459± 0.00073 N/A
6 N/A 22.297± 0.021 N/A
7 N/A 6.5527± 0.0047 N/A
11 N/A 13.931± 0.021 N/A
13 N/A 22.149± 0.010 N/A
14 N/A 22.173± 0.011 N/A
16 N/A 22.208± 0.013 N/A
17 N/A 22.195± 0.015 N/A
18 N/A 22.2493± 0.0092 N/A
19 N/A 22.1620± 0.0094 N/A
20 N/A 22.124± 0.022 N/A
21 N/A 22.187± 0.020 N/A
24 N/A 10.5237± 0.0061 N/A
26 3394± 68 22.193± 0.019 52.1
27 2180± 44 12.0247± 0.0070 52.9
28 3003± 60 22.220± 0.015 50.3
30 3970± 79 22.230± 0.014 51.5
31 2072± 41 22.137± 0.037 53.8
32 2356± 47 22.423± 0.049 58.1
35 2196± 44 11.1967± 0.0091 53.5
40 2731± 55 22.174± 0.022 52.6
43 3532± 71 22.288± 0.015 57.2
44 4296± 86 22.172± 0.017 58.1
45 2639± 53 17.5822± 0.0095 53.2
46 2600± 52 22.240± 0.013 49.5
47 674± 13 4.9728± 0.0027 51.3
48 2878± 58 15.374± 0.015 55.9
49 2064± 41 15.3380± 0.0091 52.4
51 1486± 30 16.641± 0.016 56.5
57 528± 11 4.9720± 0.0049 52.6
58 3267± 65 22.160± 0.012 53.5
59 1597± 32 10.5142± 0.0070 55.6
61 2062± 41 11.192± 0.012 56.2
62 2183± 44 9.8640± 0.0046 54.3
63 1475± 29 5.6412± 0.0023 54.6
64 1486± 30 5.6371± 0.0021 56.8
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Table B.4. Measured capacitances of the wires of the Three Towers detector. The cp
parameter is the sum of all contributions.

ch Rt ctp ccp cfp cFEp cp
( Ω) (±2 pF) (±2 pF) (±2 pF) (±2 pF) ( pF)

1 100 10.3 118 0 0 128± 3
3 125 13.4 118 0 0 131± 3
4 105 10.9 116 0 0 127± 3
5 170 19.0 118 0 0 137± 3
6 180 20.3 118 0 0 138± 3
7 190 21.5 116 0 0 138± 3
11 293 34.4 116 0 0 150± 3
13 103 10.7 112 0 0 123± 3
14 128 13.8 111 0 0 125± 3
16 137 14.9 112 0 0 127± 3
17 105 10.9 111 0 0 122± 3
18 180 20.3 111 0 0 131± 3
19 174 19.5 110 0 0 130± 3
20 187 21.2 111 0 0 132± 3
21 202 23.1 111 0 0 134± 3
24 292 34.3 111 0 0 145± 3
26 108 11.3 250 83 15 359± 4
27 108 11.3 249 83 15 358± 4
28 126 13.5 250 83 15 362± 4
30 96 9.8 250 83 15 358± 4
31 127 13.7 251 70 15 350± 4
32 96 9.8 253 70 15 348± 4
35 222 25.6 252 70 15 363± 4
40 168 18.8 258 70 15 362± 4
43 100 10.3 263 86 15 374± 4
44 109 11.4 260 86 15 372± 4
45 130 14.0 259 86 15 374± 4
46 133 14.4 258 86 15 373± 4
47 102 10.5 259 86 15 371± 4
48 92 9.3 259 86 15 369± 4
49 96 9.8 267 83 15 375± 4
51 222 25.6 268 83 15 392± 4
57 260 30.3 272 86 15 403± 4
58 284 33.3 271 86 15 405± 4
59 294 34.6 270 86 15 406± 4
61 288 33.8 268 73 15 390± 4
62 293 34.4 267 73 15 389± 4
63 273 31.9 277 73 15 397± 4
64 253 29.4 274 73 15 391± 4
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