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Abstract

In this dissertation we report on the first search for solar axions from atomic tran-

sitions in the solar core. A search for the 14.4 keV axion from the ground state

transition in 57Fe in the sun was also performed, via the axioelectric effect in TeO2

bolometers, in the CUORE-0 experiment. Both axion searches are performed in the

scope of the DSFZ invisible axion model. An upper bound on the axion-electron

coupling constant of gae ≤ 3.1 × 10−11 (95% CL) is obtained with 62.7 kg · days

of TeO2 exposure from the CUORICINO experiment. The CUORE-0 data results

in a upper bound on the product of the axion-electro and effective axion-nucleon of

|gae × geffaN | ≤ 1.33 × 10−17 (95% CL). Data from CUORE-0 was also used to place

a bound on the half live for zero and two neutrino double beta decay of 130Te. For

CUORE-0 the zero neutrino double beta decay half life bound is T0ν
ββ (130Te) > 2.7

× 1024 yr. When combined with the data from the earlier CUORICINO experiment

the bound is T0ν
ββ (130Te) > 4.0 × 1024 yr. The two neutrino double beta decay half

life of CUORE-0 was measured to be T2ν
ββ (130Te) = 8.2 ± 0.2 (stat.) ± 0.6 (syst.)

× 1020 yr.
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Chapter 1

Neutrino physics

1.1 The Standard Model

The Standard Model of particle physics is the best and most complete set of theories

to describe particle interactions from three of the four fundamental forces. These

forces are the electromagnetic, strong and the weak forces. The theory of Gravity

has not yet found its way into the standard model but that is not for lack of effort. The

Standard Model is composed of 17 known particles, including the newly discovered

Higgs boson; it is divided into three types of particles: quarks, leptons, and bosons.

A table of the current Standard Model of particle physics is shown in figure 1.1.

Figure 1.1: The current Standard Model of elementary particles [116].
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Of the 17 fundamental particles in the Standard Model, 12 are fermions (spin
1
2~) and 5 are bosons (spin 1~). Fermions constitute all of the normal matter in the

universe and are made up of two subgroups called quarks and leptons. Fermions

are grouped into three generations of matter, as shown in the first three columns of

figure 1.1. Each generation of matter has an “up”-type quark, a “down”-type quark,

an electrically neutral neutrino, and a charged particle analogous to the electron. The

three generations of matter share the same types of particles; the mass of each family

of particles increases with each generation of matter. The neutrino’s flavor in each

generation is denoted by the subscript, which corresponds to the charged lepton in the

same generation. In the first generation of matter, the charged lepton is the electron,

so the corresponding first generation neutrino is the electron neutrino. The second

and third generations contain the muon and tau neutrino respectively. Fermions

belonging to the first generation are by far the most common types of matter, while

the second and third generations make up the more exotic (short lived) particles. The

gauge bosons are the interaction particles or force carriers for the electromagnetic,

strong, and weak nuclear forces. The photon is the force carrier for electrodynamics,

the gluon that of the strong force, and the remaining two (Z0 and W±) are the force

carriers of the weak interaction.

In figure 1.1, the mass of each particle is given along with the electric charge and

spin. It should be pointed out that in the case of the three neutrino flavors only

upper bounds on the masses are given. Neutrino properties are still not completely

understood and for that reason there are several dedicated experiments with the aim

of further increasing our knowledge of neutrinos. The Standard Model is our best

theory of how particles interact but it is not without its flaws; originally it predicted

that neutrinos have no mass. Due to observed oscillations between flavor states,

which requires neutrinos to have mass, today it is known that at least two of the three

neutrinos have a non-zero mass. Evidence for solar neutrino oscillations dates back to

2



the 1960s with Ray Davis (Homestake experiment) [51] and to two additional chemical

experiments; SAGE [3] and GALLEX [20] in the late 1980s. In 2001 the Sudbury

Neutrino Observatory (SNO) [6] demonstrated that all the predicted 8B neutrinos

did arrive from the sun, but some oscillated to other flavors. Finally KAMLAND [59]

showed that the large mixing angle solution was strongly favored. The existence of

atmospheric neutrino oscillations was discovered by Super-Kamiokande in 1998 [67].

In addition, Quantum Chromodynamics (QCD), the part of the Standard Model

that describes the theory of strong interactions, also has an issue called the Strong CP

problem. The short explanation is that QCD predicts a value for the neutron electric

dipole moment (NEDM), many orders of magnitude (∼ 1010) larger than the current

experimental bound. The strong CP problem will be discussed in chapter 4. However

to its credit, the Standard Model is an amazing theory, correctly describing physical

processes over several orders of magnitude. It even predicted close to half (seven) of

the 16 particles prior to their discovery: charm, top, bottom, ντ , the gluon, Z0, and

W±. Despite a few known issues the Standard Model is a robust and well established

theory, and any modifications to this theory will not require massive changes.

1.2 Beta decay

Of all the types of radioactivity, beta decay is the most common. There are two ways

one can think about beta decay; at the nucleon level (protons and neutrons) and the

more fundamental quark level. The nucleon level is the easier to explain of the two

and the quark level includes a more in-depth explanation using elementary particles

from the Standard Model. Figure 1.2 is color coded to show the type of radioactive

decay for various isotopes. The number of neutrons is plotted as a function of the

number of protons. Beta decay is observed in isotopes of almost every element,

excluding heavy nuclei. The orange regions denote β+ decay and the blue regions

denote β− decay.
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Figure 1.2: Type of radioactive decay for various isotopes [44].

At the nucleon level, beta decay is the decay of neutron into a proton or vice versa.

For beta minus decay, the neutron decays into a proton, which changes the atomic

number, and emits an electron and an electron-antineutrino ((A,Z)→ (A,Z + 1) +

e− + ν̄). The mass of a neutron is 939.565378 MeV/c2, and the mass of a proton is

938.272046 MeV/c2. Since the neutron mass is larger by ∼ 1.3 MeV/c2, it requires

no additional energy to decay to a proton (beta minus decay). The electron and

the anti-neutrino are necessary to ensure that electrical charge, baryon number, and

lepton number are conserved throughout the reaction. On the left-hand side (LHS) of

the reaction there is only a neutron, an electrically neutral baryon, of baryon ‘charge’

+1, and no lepton charge. Therefore the right-hand side (RHS) of the equation must

have a total electrical charge of 0, a baryon number of +1, and lepton number of 0.

On the RHS there is a proton, electron and anti-electron neutrino. The proton is a
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baryon (+1) and has electrical charge +1. There must be an additional particle of

negative electrical charge to sum to a net electrical charge of zero; the electron. If

the electron was the only additional particle the electrical charge would be conserved

but the presence of the electron gives the RHS a lepton number of +1, while the LHS

has a lepton number of 0. This means that there needs to be a third particle with

lepton number of -1 (an anti-particle) and neutral electrical charge. The neutrino is

the only lepton with a neutral charge, so the third particle must be a anti-electron

neutrino to get the total lepton number on the RHS to equal zero.

The reverse case (beta plus decay) where a proton decays into a neutron, positron,

and electron neutrino is also possible ((A,Z) → (A,Z − 1) + e+ + ν). However

additional energy is required due to the difference in (rest) mass between the neutron

and the proton. In general, any reaction can be rearranged as long as the reaction

is energetically possible and charge is conserved. A particle on one side can be move

over to the other side of the reaction and replaced with its anti-particle. It should

be noted that "beta decay" is a bit ambiguous as to which process is being referred

to. From here on, we will use beta decay to refer to the process in which an electron

is emitted unless otherwise noted by a ± to indicate the charge of the emitted beta

particle (e+/e−). In addition to beta decay, another process that unstable atoms

can use to become more stable is electron capture (EC). During electron capture, an

electron in an atom’s inner shell is drawn into the nucleus where it combines with a

proton, forming a neutron and a neutrino; an electron neutrino is ejected from the

nucleus.

As mentioned above, the quark level of beta decay is the true process as it involves

only elementary particles. Nucleons, protons and neutrons, are composite particles

made up quarks and gluons and described by three valence quarks. Protons and

neutrons are combinations of the lightest quarks from the first generation of matter,

the up and the down quark. The up quark has an electrical charge of +2/3 while
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(a) (b)

Figure 1.3: Diagrams of (a) beta minus and (b) beta plus decay at the nucleon level
[94].

the the down quark has a charge of -1/3. The quark charge is fractional, mainly for

historical reasons, as the electron was discovered first and thought to be the smallest

amount of charge. It is the smallest amount of free charge so fractional charge is not

an issue. By considering charge units, it is easy to see that the neutron is composed

of two down quarks and an up quark for a net charge of zero, and that a proton is

two up quarks and a down quark for a net charge of +1.

One should notice that the sum of the masses of the quarks is only a fraction of

the (rest) mass of the proton and neutron (∼ 1 GeV). Much of the remaining mass

comes from the gluons of the strong force holding the quarks together. Beta decay

(β−) occurs when a down-quark decays into an up-quark; the process is mediated by

the W− vector boson. W− is very short lived and heavy, with half-life of ∼ 3x10−5 s,

and decays into an electron and electron anti-neutrino. In the case of β+ decay, W+

is the mediator.

1.3 The discovery of the neutrino

Historically, beta decay was thought to be a two body problem, with the decay of a

neutron into a proton and the emission of an electron ((A,Z) → (A,Z + 1) + e−).

Only the energy of the emitted electron (and recoil of the nucleus) can be measured

directly, as the neutrino is electrically neutral and only interacts via the weak force.
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(a) β− decay (b) β+ decay

Figure 1.4: Feynman diagrams for (a) beta minus and (b) beta plus decay [45].

At first there was no reason to postulate an additional “invisible” particle. And

for this reason it came as a surprise that the measured electron energy spectrum

was a continuum rather than the expected mono-energetic value, with the spectrum

dropping to zero just before the expected electron energy. The continuous beta

spectrum was confirmed by L. Meitner and W. Orthmann in 1930 [89]. Furthermore,

the expected spin did not match the theory. Beta decay appeared to violate the tried

and true theory of conservation of energy, momentum, and angular momentum.

In 1930, in an attempt to rectify the conservation of energy and momentum, Pauli

suggested a possible three body decay rather than the assumed two body decay. This

new particle would have to be electrically neutral, with a spin 1
2 ~, and have little to

no mass. Knowing that this would be very difficult to verify experimentally, Pauli was

famously quoted as saying “I have done a terrible thing. I have postulated a particle

that cannot be detected.” While there were many indirect proofs for the existence

of an additional particle, and despite the success of Fermi’s theory of nuclear beta

decay, the neutrino had not yet been confirmed directly. Over a quarter of a century

passed before the first experimental observation of the neutrino by Fredrick Reines

and Clyde Cowan in 1956 at the South Carolina Savannah River P-Reactor [48, 49]
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Figure 1.5: Continuous momentum and kinetic energy spectra of emitted beta parti-
cles (electron and positron) [114].

Reines and Cowan were able to directly detect the electron anti-neutrino through

inverse beta decay (ν̄e + p→ n+ e+). The emitted positron quickly finds an electron

from a nearby atom and annihilates, which results is two detectable∼ 511 keV photons

emitted back to back (e+ + e− → γ + γ). Shortly after (∼ 5 µs) the electron-

positron annihilation, the remaining neutron is captured by a cadmium atom and

emits a gamma ray (n + 108Cd → 109∗Cd → 109Cd + γ). The coincidence of the

pair annihilation and neutron capture provides a unique signature for inverse beta

decay. Reines and Cowan relied on the large flux of anti-neutrinos from the Savannah

River P-Reactor. The detector was placed a distance of 11 m from the reactor, and

12 m underground to better shield it from cosmic rays; high energy charged particles

consisting of mainly muons, but also electrons and even neutrons. The neutrino flux

from the reactor was calculated to be approximately 1013 cm−2 s−1 at the location of

the detector.

A diagram of the Reines and Cowan experimental setup is shown in figure 1.6.

It consisted of three large tanks of organic scintillator (I, II, and III) with fifty-five

5-inch photomultiplier tubes (PMTs) mounted to each end of each tank. Sandwiched
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Figure 1.6: A diagram of the experimental setup for the Cowan and Reines Savannah
River Experiment [95].

between these scintillators were two additional tanks (A and B), which contained

water and dissolved cadmium chloride (CdCl2), to served as the target for the ex-

pected reaction of inverse beta decay; where a neutrino interacted with a hydrogen

nucleus. In total these tanks contained approximately 200 L of water and roughly

40 kg of CdCl2. Since cadmium is a strong neutron absorber (used in control rods of

nuclear reactors) it was added to the water to promote neutron capture; resulting in

a detectable number of coincidence γ-rays. Following the 1956 experiment, a number

of other neutrino experiments were performed by Reines’ group.

1.4 Double beta decay

Double beta decay (DBD) is a rare spontaneous nuclear transition in which the nu-

clear charge changes by two units while the mass number remains constant. It was

long recognized as valuable tool to study lepton conservation in general and neutrino

properties specifically. A paper titled “Double Beta-Disintegration” [72] was pub-
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lished in 1935 by M. Goppert-Mayer. Soon after, in 1937, E. Majorana proposed that

the neutrino may be indistinguishable from the anti-neutrino [88]. In 1939, Wendell

Furry suggested that double beta decay could be used to test Majorana’s theory [68].

The observation of neutrino-less DBD would immediately establish that the neutrino

is it’s own antiparticle and that total lepton number is not a conserved quantity.

Only when (single) beta decay is energetically forbidden, or requires a large change

in momentum, can double beta decay be observed. The initial nucleus must be less

bound than the final nucleus, while the intermediate nucleus must be even less bound

than the initial nucleus so it is energetically unfavorable. That is not to say that

ββ-decay cannot occur in nuclei that do not meet these requirements. However one

would not expect to observe ββ-decay in such an isotope experimentally as the signal

would be overwhelmed by first order processes. Luckily these conditions are met

naturally in a number of nuclei. The natural suppression of beta decay occurs in some

elements, with an even mass number, A, due to the "pairing" interaction as described

in the semi-empirical mass formula. Figure 1.7 is a generic mass parabola for an

isobaric nuclei isobaric nuclei with an odd mass number and an even mass number,

respectively. The pairing term, which differs for nuclei with an even-even number of

neutrons and protons and an odd-odd number of neutrons and protons, naturally sets

up conditions where either β−β−-decay or β+β+-decay is the energetically preferred

decay mode.

m = Z ·mp +N ·mn −
EB
c2 (1.1)

The mass of the bound nucleus (and atom in general when neglecting the mass of

the electron) is the sum of protons and neutrons minus binding energy. The binding

energy is a function of mass number and proton number; it includes a volume term,

surface term, Coloumb term, asymmetry term and a pairing term.

EB = aV · A− aS · A2/3 − aC
(A− 2Z)2

A
+ δ(A,Z) (1.2)
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δ(A,Z) =



+δ0, Z, N even (A even)

0, A odd

−δ0, Z, N odd (A even)

(1.3)

(a) (b)

Figure 1.7: Generic mass parabola for isobaric nuclei with (a) an odd mass number
and (b) an even mass number.

Two neutrino double beta (2νββ) decay is allowed by the Standard Model and

has been observed experimentally in a number of isotopes. Table 1.1 gives the iso-

topic abundance and Q-value of various decay reactions double beta decay candidate

isotopes. In theory it is possible to observe two neutrino double beta decay in over

60 isotopes. All ββ-decay candidate nuclei are even-even and the process is not ob-

served for a nucleus with an odd number of protons or neutrons. As this is the

lepton number conserving mode of ββ-decay, it involves the simultaneous emission of

2β particles and two anti-neutrinos. It is extremely rare, occurring among isobaric

nuclei, with half-lives on the order of τ1/2 ∼ 1018 − 1022 years. The extremely long

lifetime of ββ-decay makes experimental detection challenging. This process imposes
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no requirements on neutrino properties and there are several decay modes possible

as shown in equation 1.4.

(A,Z)→ (A,Z + 2) + 2e− + 2ν̄e (ββ−)

(A,Z)→ (A,Z − 2) + 2e+ + 2νe (ββ+)

(A,Z) + 2e− → (A,Z − 2) + 2νe (ECEC)

(A,Z) + e− → (A,Z − 2) + e+ + 2νe (ECβ+)

(1.4)

Table 1.1: Isotopic abundance and Q-value of various double beta decay candidate
isotopes.

ββ Decay Reaction Isotopic Abundance Q-value
[atomic %] [keV]

48Ca→48Ti 0.2 4274
76Ge→76Se 7.6 2039
82Se→82Kr 8.7 2996
96Zr→96Mo 2.8 3348

100Mo→100Ru 9.6 3034
116Cd→116Sn 7.5 2814
124Sn→124Te 5.8 2288
128Te→128Xe 31.8 866
130Te→130Xe 34.2 2528
136Xe→136Ba 8.9 2458
150Nd→150Sm 5.6 3368

Neutrinoless double beta decay, on the other hand, does impose some conditions

on neutrino properties. It is not allowed in the standard model, as this process

does not conserve lepton number (∆ L = 2). In addition it requires that neutrinos

have a non-zero mass. This second constraint has to do with the handedness of the

neutrino and anti-neutrino in nature. Neutrinos are left handed while anti-neutrinos

are right handed. Handedness is defined by helicity, the projection of the spin onto

the particle’s momentum (helicity ≡ ~S · p̂). If helicity is positive, the particle is said

to be right-handed and if negative the particle is left-handed. Neutrino mass cannot

be zero in order for 0νββ to occur, this is so the helicity of one ν̄ emitted can contain

some component of opposite helicity and be absorbed as a ν. If the neutrino has
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mass there exists a reference frame, obtained through a Lorentz boost, in which the

helicity flips. Feynman diagrams for 0νββ and 2νββ-decay are shown in figure 1.8.

Figure 1.8: Feynman diagram of 2νββ decay and 0νββ decay [107].

1.5 Neutrino properties and neutrinoless double beta decay

There are three important questions pertaining to neutrino physics, and 0νββ-decay

experiments are positioned to play a unique role in addressing them. First, are

neutrinos Majorana particles that differ from anti-neutrinos only by helicity? Second,

what is the neutrino mass-scale? Third, is lepton number conservation violated?

Neutrinoless double beta decay is a useful tool to study the properties of neutrinos,

specifically to determine the nature of the neutrino and the measurement of the

absolute mass scale. Detection of this rare nuclear process would confirm that the

neutrino is its own anti-particle (Majorana), and measure or place a upper bound

on the mass of the electron neutrino. In addition, lepton number violation would

demonstrate physics beyond the standard model and could have impact on cosmology.

Single beta decay experiments and cosmological data both place constraints on

the neutrino mass scale regardless of whether or not the the neutrino is a Dirac or

Majorana particle. The Troitsk [42] and Mainz [86] 3H (tritium) single beta decay

experiments have placed an upper limit of 2.2 eV on the mass of the electron neutrino.
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A scaled up 3H experiment, currently in development, called the KATRIN experiment,

is projected to have a sensitivity of 0.2 eV [58]. As for the importance of cosmological

data; an upper limit on the sum of neutrino mass eigenvalues, Σ ≡ m1 +m2 +m3 ≤

0.75 eV (90% CL), was derived by Barger el al. [39]. This limit was obtained using

the data from the Sloan Digital Sky Survey (SDSS) [118], the 2-degree FieldGalaxy

RedShift Survey (2dFGRS) [50] and the WMAP data [43].

The current picture of neutrinos, as implied by neutrino oscillation data, is that

there are three neutrino flavors, connected to three neutrino mass eigenstates by a

unitary transformation as shown in equation 1.5. Neutrino oscillations prove that at

least two out of three neutrino flavors have a non-zero mass and that lepton flavor

is not conserved. Flavor eigenstates are superpositions of the three neutrino mass

eigenstates; analogous to the QCD quark mixing matrix.

|νl〉 =
3∑
j

|UL
lj |eiδj |νi〉 (1.5)

In equation 1.5 the subscript l denotes the lepton flavor eigenstate (l = e, µ, τ) and

the subscript j denotes mass eigenstate (j = 1, 2, 3). The factor eiδj is a CP violating

phase, taking the value ±1 when CP is conserved. These transformations are written

in matrix form as follows:

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12s23s13e

iδ s23c13

 ,
(1.6)

where cij and sij are defined as the sine and cosine of the mixing angle between the

two mass eigenstates denoted in the subscript (e.g. c13 ≡ Cos(θ13)).
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The rate of decay for the 0νββ-decay mode, driven by the exchange of a massive

Majorana neutrino, is approximated by:

(T 0ν
1/2)−1 = G0ν(E0, Z)

∣∣∣∣mββ

me

∣∣∣∣2 ∣∣∣M0ν
f − (gA/gV )2M0ν

GT

∣∣∣2 , (1.7)

where G0ν is a phase space factor including couplings, me is the mass of an electron,

and mββ is the effective Majorana mass of the electron neutrino. In equation 1.7,

M0ν
f and M0ν

GT are the Fermi and Gamow-Teller nuclear matrix elements (NMEs),

respectively, and gA and gV are the relative axial-vector and vector weak coupling

constants, respectively. The phase space factor, NMEs, and coupling constants can

be expressed as a single nuclear structure factor FN defined as:

FN = G0ν
∣∣∣M0ν

f − (gA/gV )2M0ν
GT

∣∣∣2 , (1.8)

and equation 1.7 can be arranged to express the effective Majorana mass in terms of

the half-life to become:

mββ = me√
FNT 0ν

1/2
. (1.9)

After multiplication by a diagonal matrix of Majorana phases, mββ is expressed in

terms of the first row (electron flavor row) of the 3×3 matrix of equation 1.5 as given

by:

mββ ≡
∣∣∣∣(UL

e1

)2
m1 +

(
UL
e2

)2
m2 · eiφ2 +

(
UL
e3

)2
m3 · ei(φ3+δ)

∣∣∣∣ , (1.10)

where eiφ2 and eiφ3 are the Majorana CP phases. They take on the values ±1 in the

case that CP is conserved in the lepton sector.

Neutrino oscillation experiments have measured the mixing angles, which are di-

rectly related to the coefficients UL
lj as shown in equation 1.6. Knowing the experi-

mental values of these coefficients, one can express equation 1.10 solely in terms of

the neutrino masses and the CP and Majorana phases. Precise oscillation parame-

ter measurements are important, but there there are still two missing pieces to the
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neutrino puzzle, namely understanding of the nature of the mass term (Dirac or Ma-

jorana) and the measurement of the absolute mass scale. Majorana phases do not

appear in the neutrino oscillation expression and therefore have no bearing on this

process; it is only the phase δ that affects neutrino oscillations. The information

gained from solar and atmospheric neutrino experiments yields only the mass square

differences δ2
ij =

∣∣∣m2
i −m2

j

∣∣∣; it cannot distinguish between the two mass patterns,

or hierarchies, of the neutrino mass eigenstates. Solar neutrino experiments include

SNO and SuperKamioande, while the reactor neutrino experiments include CHOOZ

[21], Palo Verde [46], and KamLAND [22, 59, 60].

There are three possible hierarchies for neutrino masses: the quasi-degenerate,

the inverted, and the normal hierarchy. The quasi-degenerate mass hierarchy sce-

nario predicts that the three neutrino masses are all roughly the same compared

to the absolute mass scale. The quasi-degenerate mass hierarchy is currently be-

ing investigated by current ββ-decay experiments using different nuclei and varying

techniques. Figure 1.9 shows the normal and inverted mass hierarchy. The normal

hierarchy is the case in which δ2
solar = m2

2 −m2
1 and m1 ' m2 << m3, while for the

inverted hierarchy δ2
solar = m2

2−m2
1 and m2 ' m1 >> m3. In both cases the approx-

imation δ2
AT ' m2

3 −m2
1 is made. Oscillation experiments give only the difference of

the squared mass eigenvalues. The inverted and normal hierarchies allow for ranges

of effective Majorana mass of the electron neutrino of ∼ (10 - 50) meV and ∼ (0.1 -

5) meV respectively.

Three popular isotopes for 0νββ searches are 76Ge, 130Te, and 136Xe. The most

sensitive limits on 0νββ-decay, until very recently, came from germanium experiments

with detectors enriched with 76Ge. The two notable experiments are the Heidleberg-

Moscow experiment: (T 0ν
1/2(76Ge) ≥ 1.9×1025y)[41], and the IGEX 0νββ-decay exper-

iment: (T 0ν
1/2(76Ge) ≥ 1.6×1025y)[1]. These results imply that the upper bound on the

effective Majorana mass of the electron neutrino, mββ ranges from ∼0.3 to ∼1.0 eV.
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Figure 1.9: Normal and inverted neutrino mass hierarchy [121].

The effective mass depends on the choice of nuclear matrix elements used in the anal-

ysis. Figure 1.10 shows the spread in NME calculations for various ββ-decay isotopes

as they relate to the expected 0νββ half-life for neutrino of mass mββ = 50 meV .

There was a claim of 0νββ-decay by Klapdor-Kiengrothaus et al [81, 82, 83, 84], a

subset of the Heidleberg-Moscow collaboration, but it has not been confirmed [2, 64,

122] and is very much open to debate. The most recent 76Ge result from the GERDA

collaboration: T 0ν
1/2(76Ge) ≥ 2.1× 1025y (90% CL), was combined with the data from

IGEX and Heidelberg-Moscow data to obtain (T 0ν
1/2(76Ge) ≥ 3.0 × 1025y) [5]. The

xenon based ββ-decay experiments, EXO-200: (T 0ν
1/2(136Xe) ≥ 1.6× 1025y)[7, 33] and

KamLAND-Zen: (T 0ν
1/2(136Xe) ≥ 1.07 × 1026y) [32, 69, 70], claim stronger bounds

on the effective Majorana mass of the electron neutrino but, because of the large

uncertainties in the nuclear mixing elements, it is difficult to compare results from

different isotopes. The limits from EXO-200 imply that the effective Majorana mass

of the electron neutrino mββ is less than 0.38-eV. In the case of Te detectors, the

limit obtained from the combination of CUORICINO and CUORE-0 data on the

0νββ-decay of 130Te is T 0ν
1/2(130Te) ≥ 4.0× 1024 y [16].
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Figure 1.10: Expected 0νββ half-life for neutrino of mass mββ = 50 meV for common
DBD isotopes; several nuclear matrix element (NME) models are considered.

The CUORE experiment aims to probe the beginning of the inverted hierarchy

using TeO2 bolometric detectors. The TeO2 bolometric technique was developed and

studied over a long period of time and will play a crucial role in the next generation

experiments. The CUORE detector was successfully installed and is currently in the

(initial) phase of detector commissioning and is expected to begin taking data in early

2017. It will be the first ββ-decay experiment at the ∼ 1 ton scale (741 kg of TeO2).

The expected sensitivity in neutrino mass is supposed to be better than ∼ 50 meV.

The previous single tower TeO2 ββ-decay experiment, CUORICINO, was built in

2003 and ran through 2008. It demonstrated the feasibility of CUORE and set, at the

time, the best current limit for the neutrinoless double beta decay half-life in 130Te.

A final prototype of CUORE, CUORE-0 (a single CUORE tower) has just completed

data taking at the Gran Sasso National Laboratory of INFN (Istituto Nazionale di

Fisica Nucleare). This zeroth tower, hence the name, was built on the same tower

assembly line and was operated as a standalone 0νββ decay experiment while CUORE

was being built. The next generation experiment after CUORE, CUPID (CUORE
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Using Particle IDentification), is projected to cover the inverted neutrino hierarchy

mass region, and begin to probe the higher mass regions of the normal hierarchy.

The work reported in this dissertation has been performed in the framework of the

CUORE (Cryogenic Underground Observatory for Rare Events) project, a tellurium

dioxide array of 988 bolometers with the aim to search for neutrinoless double beta

decay. In the last 6 years, significant time was spent onsite at LNGS; roughly 2-3

months each summer while taking classes then the better part of two years after pass-

ing the PhD qualifying exam. This included assisting with the assembly, instillation,

and commissioning of CUORE-0, along with R&D for future projects. After being

sent to LNGS full time, my research activity focused mainly on the construction and

commissioning of the CUORE cryostat. At that time, CUORE-0 was taking data

and CUORE was under construction. The plan was to help get CUORE running and

then use the CUORE-0 data to search for interesting physics.
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Chapter 2

Bolometers and the bolometric technique

2.1 Development of TeO2 Bolometers

A bolometer is a low temperature detector that converts the energy of particle inter-

actions into a measurable increase of the detector’s baseline operating temperature.

The idea to use large bolometric detectors for rare event physics, e.g. neutrinoless

double beta (0νββ) decay searches, was first suggested by Fiorini and Niinikoski [65]

in 1984. Ettore Fiorini and his group at the University of Milano Bicocca pioneered

the bolometric technique; making considerable advancements in a short period of

time. They started with single 73 g TeO2 detector in 1992 [9]; first increasing in

size to ∼340 g [10] and then successfully mounting them into a 4-detector array [11].

Building on the idea of a 4-detector array, literally and figuratively, the Mi-Beta ex-

periment [98] was constructed; a five level array consisting of 20 TeO2 detectors for

a total mass of 6.8 kg. Following Mi-Beta, techniques for increasing the individual

size of TeO2 crystals were developed. The mass of individual crystals were more than

doubled to 790 g with dimensions of 5×5×5 cm3. These advancements in research

and development culminated in 2003 with the CUORICINO experiment [17, 28], a

62 TeO2 array with at total mass of 40.7 kg. It is impressive that in roughly a decade

the detector mass achievable with TeO2 bolometers had increased over two orders of

magnitude, as seen in figure 2.1.
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Figure 2.1: Advancements in TeO2 detector mass over the last 25 years.

2.2 The bolometric technique

A bolometer is a thermal detector used to measure energy of particle interactions and

acts like a calorimeter. This type of detector consists of two main components: the

energy absorber and the sensor. The energy absorber, as the name implies, is the part

of the detector where interaction energy is deposited. In general, the absorber has a

heat capacity C and is connected to a heat sink, held at constant temperature T0,

through a weak thermal conductance G. A temperature sensor is attached directly

to the crystal that converts the heat from phonon excitations from the deposited

energy in the detector into an electrical signal. Figure 2.2 shows a sketch of a single

TeO2 crystal as well as a photo of a mounted CUORE bolometer, with important

components labeled.

The bolometric technique relies on thermal physics of phonons (vibrational modes)

in pure single crystals. When a particle interaction takes place inside the energy

absorber athermal phonons (out of equilibrium) are produced. Athermal phonons
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Figure 2.2: TeO2 bolometer diagram (left) and picture (right) with components la-
beled.

interact and degrade in energy, eventually relaxing to a new equilibrium, resulting

in an increase in the absorber’s temperature. These degraded/relaxed phonons are

called thermal phonons. As they are sensitive to phonons, bolometers can be broadly

categorized as phonon mediated particle detectors (PMDs). There are two types of

PMDs which are classified as fast or slow, depending on the response time of the

thermal sensor. Fast detectors, have a response time on the order of microseconds

and are sensitive to athermal phonons. If the phonon sensor response time is larger

than the time needed for athermal phonons to thermalize (100s of milliseconds), the

PMD is considered slow. Bolometers belong to the latter of the two PMD types and

are therefore only sensitive to thermal phonons. The sensor simply takes the role of

a thermometer and the bolometer works like a perfect calorimeter; losing no energy

to undetectable channels.

Other low temperature detectors (which are not sensitive to phonons) rely on

techniques like scintillation and ionization to measure energy deposition. However

the measured energy through these channels is only a fraction of the total energy

deposited in the absorber so the energy loss is high. Much of the energy deposited

remains in the absorber, converted into phonon excitations, which are not detectable

in ionization detectors, such as germanium detectors operated at ∼80 K. This en-
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ergy loss, together with the comparatively high-energy value necessary for an atomic

excitation or ionization (the elementary detected event), increases the statistical fluc-

tuations of the number of elementary excitations, thus making the intrinsic energy

resolution of such detecting techniques poor [73]. Since bolometers measure phonon

excitations, in addition to ionization, which results in phonons, these detectors have

a low energy loss and excellent energy resolution.

Both the thermal signal amplitude and the signal decay constant depend on the

heat capacity, C, of the absorber material. The temperature increase of the bolometer

is given by ∆T = T −T0 = E
cV (T ) the ratio of the energy E deposited, and the specific

heat cV (T ) of the absorber material. Of course, since the absorber is coupled to a

heat sink, its temperature increase will decay exponentially with time. The time

constant τ = C
G
of the signal is given by the ratio of heat capacity C of the absorber

and the thermal conductance G of the thermal link to the heat sink. The smaller

the heat capacity, the larger the amplitude, and the faster the signal becomes. It is

for this reason that bolometers are operated at very low temperatures, and dedicated

cryogenic setups are required. The heat capacity contains all the contribution of

the elements that comprise the detector; lattice heat capacity of the absorber and

electronic and lattice heat capacity of the sensor. The heat capacity of the thermal

conductance is considered to be negligible. When the difference between the absorber

temperature and the heat sink is much less than the thermal bath, C and G can

be treated as constants. Requiring that the absorber have a low heat capacity at

its operating temperature was previously thought allow a wide range in absorber

materials [73]. However producing absorbers, which means in most cases reproducibly

growing crystals with the same properties, is easier said than done.

At low temperature (T << TD) the specific heat of the absorber material follows

the Debye model:

cV (T ) = α
(
T

TD

)3
+ γ

(
T

TD

)
(2.1)
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where T is the absorber temperature and TD is the Debye temperature of the absorber

material. The first term with a ∼ T 3 dependence is due to lattice vibrations and the

second term with the ∼ T dependence is due conduction electrons. In the case of

CUORE bolometers, the absorber material is TeO2, which is both a dielectric and

diamagnetic material. Being a dielectric, the second term of equation 2.1 can be

ignored and the absorber specific heat has only a ∼ T 3 dependence. The fact that

the absorber is diamagnetic means that there is no temperature dependence on the

the magnetic susceptibility. Therefore the specific heat can be expressed as:

cV (T ) ∝
(
T

TD

)3
. (2.2)

2.3 CUORE bolometers

A CUORE bolometer is a TeO2 absorber, with a neutron transmutation doped (NTD)

germanium thermistor coupled to it. CUORE bolometers are slow PMDs and are op-

erated as calorimeters, allowing for energy deposited in the crystals to be sensed

through measurable increases in temperature. The NTD measures the temperature

rise of the TeO2 crystal when energy is released in the absorber. The PTFE mounts

hold the TeO2 crystals in place, and act as a weak thermal couplings, with con-

ductance G, between the crystals and the copper frame. The copper frame of the

tower acts as both the support of the detectors and the thermal-heat bath main-

tained at a temperature of ∼10 mK. For a typical CUORE TeO2 bolometer of mass

750 g, at a temperature of 10 mK, the time constant is on the order of one second.

The heat capacity is roughly C ≈ 2 × 10−9 J/K, and the conductance is roughly

G ≈ 2× 10−9 W/K. For a deposited energy on the order of 1 MeV the temperature

increase in on the order of 100 µK. A signal pulse of the voltage verses time is shown

in figure 2.3.
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Figure 2.3: Signal for ∼ 1 MeV deposited energy in CUORE TeO2 bolometer.

The temperature is read out using a biased temperature sensor made from a Neu-

tron Transmutation Doped Germanium (NTD-Ge) wafer. The energy heats up the

bolometer which is coupled directly to the NTD thermistor. At very low tempera-

tures the NTD resistance changes very dramatically, so that even small amounts of

energy deposited change the resistance by a measurable amount. In the thermistor

model, the resistance is a function of temperature given by eq 2.3:

R(T ) = R0 exp

√T0

T

 . (2.3)

The NTDs are produced in batches and have similar characteristics. Common values

for the NTD resistance at T ≈ 10 mK, where T0 ≈ 3− 4 K and R0 ∼ 0.9− 1.2 Ω, is

R ≈ 100 MΩ.

Using a biased temperature sensor the voltage read out can be directly related

to the temperature, and therefore the energy deposited in the crystal. The thermal

links which connect the absorber crystal to the copper frame are the PTFE (Teflon)

supports and 25 µm diameter gold wire connecting the NTD to the wire strips, which
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are also connected to the tower frame. The copper supports of each tower are coupled

directly to the cryostat mixing chamber plate and are heat sinks for the deposited

energy. As the absorber is weakly coupled thermally to the 10 mK heat bath, the

temperature increases and therefore the voltage increases rapidly as the NTD and

absorber are directly coupled, which then decays over the next few seconds back to

the detector operating temperature of 10 mK. The time delay is due to the weak-

thermal coupling. As the detector response time is very slow, the bolometric technique

is not applicable when there are frequent events in each crystal; which would cause

pile up in the detector.

CUORE-style bolometers are low temperature TeO2 detectors in which the source

and detector are one and the same. The absorber material, TeO2, was chosen to

exploit the “source = detector” technique to search for 0νββ decay in 130Te. This

technique ensures a high detector efficiency which is useful when searching for rare

events. Tellurium is selected for both element specific and isotope specific reasons.

Not only does it have (figure 2.4) a large natural abundance of the double beta decay

isotope 130Te (∼34%) [63] with high ββ-decay Q-value of 2527.518(13) keV [103, 106,

110], it also has a favorable nuclear factor of merit (figure 1.10). Having a large natural

isotropic abundance (the largest in fact) means that, for the present generation DBD

experiments, no enrichment is necessary. Enrichment is a costly process that is a

necessity for all other candidate DBD nuclei. These reasons, along with the fact that

large mass, high purity, and highly reproducible detectors can be made with TeO2,

makes tellurium a good choice when searching for 0νββ decay. As a side note, 128Te

has a large natural isotopic abundance as well, so natural tellurium is some what of

a 2-for-1 DBD candidate, but 128Te possesses a relatively low Q-value which makes
130Te the preferred isotope of the two.
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Figure 2.4: Expected Q-values for common 0νββ decay candidate isotopes versus
isotopic abundance.

2.4 Going from CUORICINO to CUORE

The CUORICINO detector was a thirteen level modular array of 62 TeO2 bolometers

of varying size and levels of enrichment. There were 44 crystals with a mass of 790

g and dimensions of 5×5×5 cm3, and 18 smaller crystals with a mass of 330 g and

dimensions of 3×3×6 cm3. The tower height was approximately 85 cm. The small

crystals were repurposed Mi-DBD crystals whose surfaces had been lapped, so the

masses were reduced. The larger crystals were all produced with natural tellurium

and mounted in 11 modules of four crystals each. The smaller crystals were mounted

in a three by three modular array of nine crystals each. Most of the smaller crystals

(14) were made with natural tellurium, but of the remaining four, two were enriched

in 128Te to an isotopic abundance of 82.3% and two were enriched in 130Te to an

isotopic abundance of 75%. The total mass of 130Te in the detector was 11.3 kg.

The CUORE experiment [23], or Cryogenic Underground Observatory for Rare

Events, is the next step after the success of the CUORICINO experiment. It utilizes
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Figure 2.5: Photographs of the CUORICINO tower (left), a single plane of four
5×5×5 cm3 TeO2 bolometers (upper right) and one plane of 3×3×6 cm3 bolometers
[75].

multiple CUORICINO-sized towers to further increase detector mass by a factor of

nineteen. A single CUORE tower will consist of 13 planes of the 5×5×5 cm3 bolome-

ters. The geometry of the CUORE detector array is a tightly packed, approximately

cylindrical, structure of 19 towers as seen in figure 2.6. There are 13 modules in each

tower, consisting of four 5×5×5 cm3 TeO2 crystals (750 g each). In total there are

988 crystals with a total mass of 741 kg of TeO2 (206 kg of 130Te). An entirely new

building, the CUORE hut, was constructed to assemble and operate the detector.

As a first step, and to demonstrate the feasibility of this ambitious project, a single

CUORE tower named CUORE-0, was constructed according to the exact same pro-

cedure. This single tower contained 52, 5×5×5 cm3 TeO2 crystals for a total mass

of 11 kg of 130Te. After assembly, CUORE-0 was transported from the CUORE hut

to the adjacent CUORICINO hut and installed in the CUORICINO cryostat. Some

some modifications were made to the cryostat to make it more CUORE-like.
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Figure 2.6: Artist rendering of the CUORE detector.

The experimental sensitivity to detect 0νββ-decay as it relates to the experimental

parameters is given by equation 2.4,

T 0ν
1/2 ∝ a · ε

√
M · t
b ·∆E , b 6= 0, (2.4)

were ε is the detector efficiency, a is the isotopic abundance, M is the total active

mass (in kg), t is the time in years, b is the background (counts/kg/keV/y) and

∆E is the energy resolution (keV) in the 0νββ decay region of interest (ROI). The

parameters under the square root are crucial to the design of the CUORE experiment

to maximize experimental sensitivity.

One way to increase experimental sensitivity is to build a larger detector to in-

crease the number of 130Te nuclei. The CUORE detector is 741 kg of TeO2 (206 kg
130Te). The dimensions of the experimental space required is 0.9 m in diameter and

1.385 m high. In order to contain such a large detector, a dedicated cryostat was

constructed with the outermost (300 K) vessel 3.1 m high and 1.687 m in diameter.

The cryostat is required to be powerful enough to cool down a large mass to a stable
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temperature of 10 mK and account for the thermal radiation of the shields.

The background, especially in the 0νββ decay ROI, should be as low as possible.

The CUORE target background is < 0.01 counts/keV/kg/year. Hall A of LNGS has

an average depth of 3650 m.w.e with a µ flux of (2.85 ± 0.3) x 10−8 µ/s/cm2, a

neutron flux (< 10 MeV) of 4x10−6 n/s/cm2 and a γ-ray flux (< 3 meV): of 0.73

γ/s/cm2. In addition to operating CUORE underground, a strict selection of low-

radioactive materials is used for cryostat construction. To protect the detector from

radioactive contamination of materials within the cryostat that cannot be excluded,

∼10 tons of lead shielding (Lead + Copper OFE supports) are contained inside the

cryogenic space and maintained at temperatures of 4 K or less.

Detector-energy resolution is crucial in order to see the 0ν peak over the 2ν con-

tinuum. Bolometers have very good energy resolution of ∼5 keV FWHM at the 208Tl

peak (2615 keV) [31]. This peak is less than 100 keV away from the 0νββ decay Q

value of 130Te (∼2527 keV). In order to maintain this energy resolution in CUORE,

the cryostat will need to have a stable operating temperature of 10 mK to ensure

optimal performance of the TeO2 crystals and the NTDs. In addition, NTDs have a

very high impedance so the level of vibrations transmitted to the detector must be on

the order of the energy resolution, roughly 1 keV ( ∼10−16 J), to avoid micro-phonic

noise. Sources of vibrational noise include pumps, compressors, pulse tubes and the

dilution unit.

CUORE will run for at least 5 years, and during this time the cryostat must

be stable and relatively service-free to maximize live time. The CUORE-0 cryostat

has a main bath that needs to be refilled every two days with liquid helium; this

reduces live time by ∼7% (roughly 3 hours every 2 days). The CUORE-0 cryostat

also contained a 1 K pot which introduced noise in the baseline of the detectors from

the evaporation of helium. In light of this past experience, the CUORE cryostat was

designed to be cryogen free, to improve live time and reduce noise.
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Chapter 3

The CUORE-0 experiment and results

3.1 The CUORE Project

The CUORE experiment is in the final stages of construction at LNGS of INFN,

with the detector installation completed August 26th, 2016. Its primary purpose is to

search for 0νββ decay in 130Te using an, approximately one tonne, array of 988 TeO2

bolometers operated near absolute zero (∼ 10 mK). So far 0νββ decay has not been

observed in 130Te or any other double beta decay candidate isotopes. Searching for

this hypothetical process has become the focus of intense experimental effort utilizing

a broad range of technologies [8]. A number of experiments, using different isotopes,

have placed experimental upper limits on the 0νββ half-life for 76Ge [5] and 136Xe [33,

69]. The candidate isotope 130Te was chosen due to the large and accurately known

Q-value [103, 106, 110] as well as the large natural abundance (34.2 %) [63].

The detector is composed of 19 towers, for a total detector mass is 741 kg of

TeO2. Since the bolometers are made with natural Te this translates to a total

mass of 206 kg of 130Te. Each tower contains 52 TeO2 5×5×5 cm3 crystals (∼750 g

each), with four TeO2 crystals (2× 2 configuration) per floor supported by a copper

frame. Crystals are mounted directly to the copper frame using carefully designed

PTFE brackets, which also serve as a weak thermal link between the crystals and the

copper frame. A single neutron transmutation doped (NTD) germanium thermistor

is attached to each crystal for the signal readout. A silicon resistor (joule heater) is

also fixed to each crystal, to deliver a reference energy pulse which is used to stabilize
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gain of bolometers to correct for temperature variations. The CUORE project builds

on experience gained from CUORICINO, a previous single tower experiment made

up of 62 bolometers for a mass of ∼40 kg of TeO2. CUORICINO collected data from

2003 to 2008 and until recently held the best lower limits of the 0νββ decay half-life

of 130Te at T0ν
1/2 > 3.0× 1024 y (90% C.L.) [28].

In progressing from CUORICINO to CUORE, to increase the sensitivity to observe

0νββ decay, the active mass of the detector was increased by a factor of 19 and the

experimental background decreased by an order of magnitude. Rather than proceed

directly from CUORICINO to CUORE, an intermediate experiment called CUORE-0

was proposed as a way to validate background reduction techniques. It was designed

to run as a standalone experiment, but also serve as a crucial test to validate the

CUORE detector design, to commission the tower assembly line, as well as to develop

and test DAQ and analysis framework (on a smaller scale); all while CUORE was

being built. CUORE-0 was the first tower to be produced with the CUORE tower

assembly procedure, and has an active mass comparable to CUORICINO; TeO2 mass

of 39.1 kg, which translates to 10.9 kg of 130Te.

The selection and handling of the detector materials was done with the objective

of minimizing the background contamination in CUORE-0. TeO2 crystals were grown

by the Shanghai Institute of Ceramics of the Chinese Academy of Sciences (SICCAS).

A radio-purity control protocol [27] was developed in collaboration with SICCAS to

limit the bulk and surface crystal contamination as a result of the production process.

Only materials certified for radio-purity were used to grow the crystals. To limit the

the cosmogenic activation of the crystals, each batch was transported to LNGS by sea.

Upon arrival, each crystal shipment was stored underground in the parts storage area

(PSA) where they were vacuum sealed and stored in a nitrogen flushed environment

until tower assembly. To minimize the exposure of the detector to radon, tower

construction was carried out inside nitrogen-flushed glove boxes, within the CUORE

32



(class 1000) clean room.

As a quality assurance test for each batch, referred to as a CUORE Crystal Vali-

dation Run (CCVR), four crystals were selected at random and operated as bolome-

ters in a R&D cryostat located in Hall C of LNGS. For the 238U decay chain, the

measured bulk and surface contaminations were less than 6.7 × 10−7 Bq/kg and

8.9 × 10−9 Bq/cm2 at 90% C.L., respectively [12]. Similarly, for the 232Th decay

chain the measured bulk and surface contaminations were less than 8.4×10−7 Bq/kg

and 2.0 × 10−9 Bq/cm2 at 90% C.L., respectively [12]. Material screening data of

the small parts indicate that their radioactive content contributes less than 10% of

the total background in the 0νββ region of interest (ROI). The definition of small

parts includes the NTD thermistors and silicon heaters that are glued directly to the

surface of the TeO2 crystals.

From the experience gained from the CUORICINO experiment, the most signif-

icant background contributions are expected to be from the radiopure electrolytic

tough-pitch copper (Cu-ETP) of both the tower frame and surrounding thermal

shields. To reduce the background contribution from the frame, the copper pieces

were redesigned to reduced the total mass and surface area by a factor of 2.3 and 1.8,

respectively. To further mitigate the surface contamination of the copper structure,

three surface treatment techniques [15] were tested; a series of tumbling, electropol-

ishing, chemical etching, and magnetron plasma etching were chosen for the surface

treatment. The upper limit on of the surface contamination of the cleaned copper

was measured in R&D bolometers to be 1.3× 10−7 Bq/cm2 (90% C.L.) for both 238U

and 232Th [15].

To house a tonne scale bolometric detector a very large experimental volume (on

the order of a cubic meter) is needed, which translates to an even larger cryostat. A

three story building, called the CUORE hut (figure 3.1), was constructed underground

at LNGS to house the cryostat (figure 3.2) and to construct the detector. The ground
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Figure 3.1: Photograph of (left) the CUORE hut and (right) the
CUORICINO/CUORE-0 hut.

floor of the CUORE hut is divided in to two parts. One half is dedicated to the

cryostat vessel storage and external lead shield. The other half is where all the

pumps, compressors, and the dilution unit gas handling system are located. The hut

was designed in this way to remove vibrational noise of pumps by placing them far

from the cryostat. The test cryostat was also located at the ground flood during

independent commissioning of the dilution unit. The fast cooling system is also

located on the ground floor. The entire first floor is the CUORE clean room (CR),

a class 1000 clean room made up of five distinct rooms. The detector assembly

procedure is designed to minimize the recontamination of clean components, and

every step of detector assembly took place in a nitrogen flushed glovebox to minimize

the exposure to radon. In the initial (4 K) cryostat commissioning phase, the section

of the clean room containing the cryostat was isolated from the rest of the clean

room. It was not a clean room during this part of cryostat commissioning. Once
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Figure 3.2: Sketch of CUORE cryostat from the top (left) top view and (right) side
view, with relevant components labeled.

the dilution unit (DU) and cryostat were merged and vessels closed, this area (CR5)

was throughly cleaned and regained its cleanroom status. The second floor allows for

access to the top 300 K flange of the cryostat, as well as access to the suspensions

and hoist system. Additionally the electronic racks, data acquisition system (DAQ),

cryostat control programs and shifter workspace are on the second floor.

3.2 The CUORE tower assembly line

The detector assembly procedure is designed to minimize the recontamination of

clean components and took place underground in the class 1000 clean room inside

the CUORE hut (figure 3.3). The CUORE clean room (CCR) is located on the first

floor of the hut, but after assembly the CUORE-0 detector had to be transported to

the nearby CUORICINO hut. Every step of detector assembly took place in nitrogen
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flushed glove boxes, to minimize the exposure to radon, and all tools used inside these

glove boxes were cleaned and certified for radio purity. The rooms of the CR are in-

tuitively numbered in the order that detector components enter the clean room, are

assembled, stored, and installed in the cryostat. The first room, with access to the

outside, is divided into two sections separated by a metal bench and a clear plastic

sheet. The area that one enters first, from outside, is called CR0, and contains lock-

ers and shelves with the required clean room attire. This includes clean room suits,

hoods/hairnets, foot covers, as well as clean room safety shoes for cryostat work.

Dressing takes place in the CR0; clean room attire was required in all areas beyond

the clear plastic sheet. Cleanroom cleaning supplies, rubber gloves, important phone

numbers, the LNGS shuttle schedule, and containers for the disposal of clean room

refuse are found in CR1.

Figure 3.3: Sketch of the first floor (clean room) of the CUORE hut, with relevant
tower assembly activities for each room labeled. Note: the entrance/dressing room is
not shown in this figure.
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The first step in the CUORE tower assembly line (CTAL), carried out in CR2, is

the gluing of the NTD-Ge thermistor and heater to each TeO2 crystal. This operation

is done in a nitrogen flushed glove box, (figure 3.4) to reduce the radon contamination.

The constant flow of nitrogen prevents radon from settling on to the surface of the

crystals, which results in a higher α-decay background. The actual gluing process is

fully automated, which minimizes human interaction with parts, and results in highly

reproducible glue spot deposition. Knowledgeable technicians and shift personnel

(shifters) were needed to oversee the gluing procedure to ensure correct procedure and

operation, as well as load/unload the naked/glued crystals from the glove box. Glued

crystals were placed back in rubber vacuum boxes and returned to the parts storage

area (PSA) where they were stored under nitrogen, with all remaining unassembled

detector components, until needed.

(a) (b)

Figure 3.4: View inside the glovebox in CR2 (a), used to glue a NTD-Ge thermistor
and heater to each of the TeO2 crystals, and (b) a close up view of glued crystals
drying in the glovebox.

The next step of the CUORE tower assembly line, tower construction and wire

bonding, was performed in CR3. Glued crystals and detector components, such as the

ultra-cleaned copper and PTFE parts, were transferred under vacuum to the tower

37



assembly glove box in CR3, where they were unpacked and inspected. Following

this quality assurance check, tower construction could proceed. Towers were built

from the ground up, in a modular floor-by-floor fashion, with the crystals mounted

in the PTFE holders as the frame was assembled. As each module was completed,

the tower was lowered in to a sealable, nitrogen-flushed, storage garage; this allowed

the assembly team to work at the same height inside the glovebox. Additionally, the

tower garage was designed to safely store the tower being assembled in the event that

the top of glove box needed to be removed, or in the event of contamination.

Once all 13 levels of the tower were complete, the next step was to attach a set of

flexible printed circuit boards (PCBs) with copper traces [18, 47] to the copper frame

of the tower; starting at the base of the frame and ending at the top (figure 3.5).

The remaining length of the PBCs remained carefully rolled up inside a cylindrical

Figure 3.5: Photograph of the top of the CUORE-0 tower, zoomed in to see one of
the flexible PCB strips that runs along the length of the tower.

PTFE container, that resembles a hair roller. There are two per tower, one for each

side of the tower with the flexible PCBs attached, and they remained at the top of

the frame until detector installation. Once installed, the upper length of the flexible

PCBs were removed from the container, unrolled after which they were connected
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to another custom made flexible PCB on the 10 mK plate of the cryostat. Next, a

vertical bonding machine (figure 3.6) with auxiliary X-Y motion was used to connect

thermistors and heaters to the crystals, and to the copper pads of the PCB strips

fixed to the frame, via 25 µm diameter gold wires. After bonding, the final step in

tower assembly is to place protective covers over the detector wire strips, to prevent

damaging the 25 µm diameter gold wire connections.

(a) (b)

Figure 3.6: Close up photograph (a) taken during wiring bonding, and photograph
of a bonding shifter (b) operating the bonding machine.

Once the assembly of CUORE-0 was complete (figure 3.7), the tower was placed

into a cylindrical 10 mK thermal shield, made of copper, and then into and a storage

container. From there the detector was transported, from the first floor of the CUORE

hut to the first floor of the CUORICINO hut, for installation in the CUORICINO

cryostat. The detector was transported from CR3, by four people, through CR4

to the external doors in CR5, where it was securely fastened to the tines of a fully

extended fork lift. The forklift slowly backed out of the CR5 doorway and proceeded

to carefully lower the detector to the ground. The tower was then transported a

short distance, maybe 10 meters, to the front of the CUORICINO hut, where it

was raised up and placed onto the first floor of the CUORICINO hut, then finally

moved into the CUORICINO clean room. Mounting of the tower to the cryostat was
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done in the CUORICINO clean room to minimize environmental exposure, and was

flushed with nitrogen for as long as possible. The successful operation of CUORE-0

demonstrated the validity of the CUORE tower assembly line and of the CUORE

cleaning procedures.

(a) (b) (c) (d)

Figure 3.7: Photographs of the CUORE-0 tower (a) in glove box after completion, (b)
closed inside the 10 mK thermal shield, (c) being transported to the CUORICINO
hut, and (d) mounted to the CUORE-0 cryostat.

After assembly, the 19 CUORE towers were placed in a clear, cylindrical, container

and moved into CR4 for storage (figure 3.8). Towers were continuously flushed with

nitrogen, until they were needed for installation. Once the cryostat commissioning

was completed the towers were moved from CR4, the storage area, to CR5 which

houses the inner part of the cryostat. During detector installation, a custom-built

cart was used to position the tower under the cryostat for mounting (figure 3.9).

When a tower was not being installed, the detectors were stored in a nitrogen-filled

protective bag and monitored remotely by off-site shifters, in contact with people
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onsite, in the event anything goes awry. Figure 3.10 is a photograph of all 19 CUORE

towers suspended from the CUORE cryostat.

Figure 3.8: Completed CUORE towers were stored in CR4, in special containers
constantly flushed with nitrogen, until they were ready to be mounted to the cryostat.

(a) (b)

Figure 3.9: During detector installation, a custom-built cart (a) was used to position
CUORE towers under the cryostat for mounting/installation. When tower installa-
tion was not taking place, the mounted towers were stored (b) in a nitrogen-filled
protective bag.

3.3 CUORE-0 experimental setup and infrastructure

As mentioned previously, CUORE-0 was built in the CUORE clean room using the

new tower assembly approach, but relied entirely on the existing infrastructure and

resources of the CUORICINO experiment. This includes the cryostat, the external

lead and borated-polyethylene neutron shielding, and the faraday cage [17, 28]. A
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(a) (b)

Figure 3.10: Side view (a) and bottom view (b) of all 19 towers of CUORE suspended
from the cryostat.

sketch of the cryostat and shielding used for CUORE-0 and CUORICINO (not to

scale) is shown in figure 3.11(b), along with photos of both detectors. The indicated

radioactivities of the lead shields refer to the decay of 210Pb. Since CUORE-0 used

the same infrastructure, and was operated in the same cryostat as its predecessor,

the contribution to the background from these components was expected to remain

unchanged.

Unlike the previous experiment, both CUORE-0 and CUORE use flexible PCB

cables and in situ wire bonding for the electrical wiring of each tower. This is one of

the major upgrades to improved the robustness of the bolometer readout wiring over

the previous design. A set of flexible PCB cables with copper traces [18, 47] were

attached to the copper frame of the tower starting at the base of the tower to the top.

Thermistors and heaters are connected to the PCB via 25 µm diameter gold wires.

The upper end of the PCB cables are connected to another custom made flexible PCB

on the 10 mK plate; from there a set of Manganin twisted pair flat ribbon cables run

uninterrupted through feedthrough tubes on the top plate of the cryostat. The front

end electronics [26, 29, 30] and data acquisition hardware were also identical to the

ones used for CUORICINO.
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Figure 3.11: Diagram of the (b) cryostat used to operate the (a) CUORICINO and
(c) CUORE-0 detectors; located in Hall A of the LNGS underground facility.

3.4 Data collection

The CUORE-0 detector construction was completed in March 2012 and was cooled

down for the first time in August 2012. Following detector installation and commis-

sioning, data collection began the following year in March 2013. Out of the 52 total

bolometers, CUORE-0 only had three (6%) that were not fully operational. In the

assembly of CUORE-0, one NTD and one heater could not be bonded. When the

detector was cooled down, a second heater was lost. Once a bolometer loses the con-

nection to the thermistor, it is a dead channel and is of no use. The two remaining

heater-less bolometers that lost the connection to the heater, but still have a work-

ing thermistor, can still potentially be of some use in future non-standard analysis

without thermal gain correction.
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NTDs are biased using two low noise load resistors. The output voltage is mea-

sured with a specially designed low-noise (room temperature) preamplifier, a pro-

grammable gain amplifier, and a six-pole Thomson-Bessel low pass filter with a pro-

grammable cutoff frequency set to 12 Hz. The data acquisition (DAQ) continuously

sampled each waveform at 125 Hz with ±10.5 V dynamic range and 18 bit resolution

[8]. Software was used to scan the continuous data stream. Triggered events were

stored in a 5 second window; one second before the signal. Typical rise times of pulses

from particles depositing energy in the crystal are 0.05 seconds. The signal had two

decay components, one fast and one slow. The fast decay time is determined from

heat capacity of crystal and thermal conductivity to the tower frame that acts as a

heat sink and is roughly 0.2 seconds. The slow decay time is determined by the heat

capacity of the PTFE spacers and other auxiliary components and is 1.5 seconds. The

rise time is determined primarily by the roll-off of the Bessel filter[8]. Typical trigger

threshold energies of bolometers vary between 30 keV to 120 keV. To study the noise

behavior, the detector waveforms were recorded for 5 seconds at intervals of 200s.

Detector noise sampling was done without the signal trigger and simultaneously for

every channel (so the 5 second interval was the same time for every channel).
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Figure 3.12: Plot of the accumulated CUORE-0 data over time. The left vertical axis
refer to total TeO2 exposure, while the right refers to 130Te exposure.
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Figure 3.13: Timeline break down of the CUORE-0 data taking. The blue intervals
represent physics data taking, red/pink intervals represent calibration data taking,
and white represents detector down time.

Data collection is broken into two phases, separated by a roughly three month

period of cryostat maintenance (see figure 3.13). Phase I was the data collected

between March 2013 - September 2013, resulting in 8.5 kg yr of TeO2 exposure (2.0

kg · yr of 130Te). Phase II was the data collected between November 2013 - March

2015, resulting 26.7 kg · yr of TeO2 exposure (7.8 kg · yr of 130Te). Combining the

data of Phase I and Phase II, a total exposure of 35.2 kg · yr of TeO2 (9.8 kg · yr of
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130Te) was obtained. A visual representation of periods when CUORE-0 was taking

data is shown in figure 3.13. The blue shaded regions represent periods where the

detector was collecting useful physics data, while the red/pink shaded regions were

intervals when detector was being calibrated. White sections represent periods of

detector down time. The reoccurring, short, intervals of down time was when the
4He in main bath of the cryostat needed to be refilled, which occurred roughly every

two days. It takes roughly an hour to preform the refill and wait for the detector

baselines to return to their previous values. For the prolonged periods of detector

down time, comments summarizing the various reason are recorded; typically these

fall into two categories: cryostat maintenance and accidental warms.

50.4 %

21.3 %

13.4 %

13.1 %

1.7 %

Physics Down Time

Test Calibration

Other

CUORE-0 Dataset Run Time Breakdown

Figure 3.14: Breakdown of CUORE-0 measurement types, including down time.

The data acquired with CUORE-0 are grouped into 20 data sets; each data set

consists of a set of initial calibration runs, a series of physics runs, and a set of final

calibration runs. Calibration data refer to the sum of all calibration runs, while

physics data refer to the sum of all physics runs to search for 0νββ decay. The signal

rates of each bolometer for the calibration and physics data are 60-70 and 0.5-1.0

mHz, respectively. Physics data were collected in intervals of roughly one day, called

runs, which are interrupted for 2 - 3 hours every 48 hours in order to refill the main

bath of the cryostat with liquid helium. During calibration runs, the detector was
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irradiated with two thoriated tungsten wires, each with a 232Th activity of 50 Bq. The

wires were inserted into two vertical tubes, on opposite sides of the tower that run

between the outer vacuum chamber and the external lead shielding. Each channel was

calibrated using γ-rays from daughter nuclei of 232Th in the energy range from 511

to 2615 keV, as shown in figure 3.15. Data collected in between calibration runs are

combined into datasets. A data set is roughly three weeks of physics data sandwiched

between calibration runs.
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Figure 3.15: Energy spectra of physics (blue) and calibration (red) data; the latter
is normalized relative to the former at 2615 keV. The peaks are identified as (1)
electron-positron annihilation, (2) 214Bi, (3) 40K, (4) 208Tl, (5) 60Co, and (6) 228Ac.

3.5 Data processing and analysis techniques

Data processing and analysis techniques are focused on the correct reconstruction

of each triggered event energy (optimum filtering technique) and eventually to the

creation of a calibrated energy spectrum that will be used in higher level analysis.

To account for temporary degraded performances on each individual bolometer due

to large baseline excursions, or elevated noise levels, low-quality data intervals are

rejected on a channel-by-channel basis (reject bad intervals filter). The total expo-
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sure is obtained by summing the individual exposures of each bolometer. CUORE-0

data analysis follows the same procedure that was used for CUORICINO [17]. This

includes the amplitude evaluation, gain correction, energy calibration, and time co-

incidence analysis among the bolometers.

Pulse amplitude is evaluated by first maximizing the signal-to-noise ratio (SNR)

with an optimum filter. Fourier components of each pulse are weighted at each

frequency by the expected SNR, which is calculated for each channel with an average

pulse of 2615 keV γ rays, and the average power spectra of the noise events. For the

gain correction of each bolometer, the amplitudes of pulser events are compared to

their baseline voltages to determine the gain dependence on temperature. The gain

due to the temperature dependence is removed for each signal pulse. For the energy

calibration a third order polynomial fit was used in the energy range form 0 to 3.9

MeV since the relationship between energy and stabilized amplitude is found to be

slightly nonlinear. The deviation from a linear fit is less than 10 keV at the 2615 keV

peak. If any two or more crystals register signal pulses within 100 ms of each other,

the events are tagged as coincidence events. These multi-crystal events are mostly

attributed to backgrounds such as Compton-scattered γ rays or an α decay near the

surface of one crystal that is facing an adjacent crystal.

The event selection criteria can be categorized as follows: basic data quality,

pile-up, pulse shape, and anti-coincidence. The basic data quality cut rejects events

within low-quality data intervals that occur when the detectors are too noisy, there

are DAQ timing problems or the baselines of the detectors change too dramatically.

The pile-up cut requires that only one pulse exists in a 7.1 second window around

the measured trigger time. Due to the relativity long rise and decay times of a pulse,

and the negligible pulse shape dependence on energy at energies above 1 MeV, the

pulse shape of the possible 130Te 0νββ decay signal is expected to be similar to that

obtained from the 2615 keV γ-ray peaks. Therefore, the pulse shape cut requires
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that the signal shape is comparable to that obtained from the average pulse recorded

with 2615 keV γ-ray events, and that the pre-trigger baseline slope is smaller that

0.1mV/Sample. The anti-coincidence cut requires that no other pulse is recorded

anywhere else in the tower within a 100 ms interval. The obtained 0νββ decay

detection efficiency is 92.9±1.8%. The efficiency after all cuts, except for the anti-

coincidence cut, was obtained from the 2615 keV γ-ray peak. This efficiency was then

multiplied by the efficiency of the anti-coincidence cut; obtained from the 1462 keV

peak after applying the other cuts.

When considering only single crystal events, the confinement efficiency must be

included. Confinement efficiency is the probability that both 0νββ decay electrons

are contained inside a single crystal, and has been computed by MC simulation to be

87.4±1.1% [17]. Taking into account the 99.00±0.01% signal trigger efficiency, which

is evaluated with pulsar events, the total 0νββ decay detection efficiency of CUORE-0

is 80.4±1.9%. This result is compatible with the value obtained from CUORICINO,

which was found to be 82.8±1.1% [17].

A new automated bias voltage scanning algorithm was implemented to locate

the optimal working point that maximizes the signal-to-noise ratio. The bolometer

signals are amplified and then filtered with six-pole Bessel low-pass filters. Signals

were digitized by two 32-channel National Instrument PXI analog-to digital converters

with a 125 S/s sampling rate, 18-bit resolution, and 21 V full scale. All samples are

stored continuously on disk. Afterwards, a constant fraction analysis trigger identifies

triggered pulses with 626 sampling points (5.008 s), including a pre-trigger segment of

125 samples. Each bolometer had an independent trigger threshold ranging from 50

to 100 keV. In addition to the signal triggers, each bolometer was pulsed periodically

at 300 second intervals with a fixed and known energy through the heater. The

“pulser” events are used to monitor and correct the gain of the bolometers [25].

The event energy is estimated by modeling the time-waveform vi(t) = Bi · si(t) +
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ni(t), of each bolometer, i, as sum of known detector response function si(t) and

unknown noise term ni(t); Bi is the signal response amplitude. To a close approxi-

mation, the signal response amplitude can be separated in to a temperature depen-

dent bolometer gain factor and an energy dependent factor: Bi = Gi(T ) · Ai(E).

The following steps were performed on each wave form to get the deposited energy.

First, measure Bi, while minimizing the effect of the noise term. This is done to

maximize the energy resolution (pulse amplitude evaluation). Second, stabilize the

temperature dependent gain term Gi(T ) versus the temperature drifts of the detector

(thermal gain stabilization). Third, determine an energy calibration that models the

form of Ai(E). From these steps, the event energy can be extracted (energy calibra-

tion). Finally, blind the energy spectrum in the 0νββ region of interest. See reference

[8] for a more detailed explanation of the CUORE-0 data processing procedure.

While CUORE-0 was running, a method of data blinding was implemented for the

data in the 0νββ decay ROI. The blinding method was a form of data salting; where

we randomly exchange a blinded fraction of events within ±10 keV of the 2615 keV

γ-ray peak with events within ±10 keV of the 0νββ decay Q-value. The exchange

probability varies between 1 and 3% and is randomized on a run by run basis. Since

the number of 2615 keV γ-ray events is much larger than that of possible 0νββ-decay

events, the blinding algorithm produces an artificial peak at the decay Q-value and

blinds the real 0νββ decay rate of 130Te. This method of blinding the data preserves

the integrity of the possible 0νββ decay events while maintaining the spectral char-

acteristics with measured energy resolution and introducing no discontinuities in the

spectrum.

The procedure of data blinding and unblinding was established prior to unblinding

of real data. In order to get a head start on analysis, data from CUORE-0 was

unblinded in two stages. Initially the first 17 (of 20 total) datasets were unblinded

for ββ-decay analysis, while the remaining three datasets were collected. The last
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three datasets followed the same procedure as the previous 17 datasets, only they

were unblinded as each dataset was processed. That is not to say that these data

did not go through the same blinding procedure during collection. Even though the

blinding/unblinding procedure was checked with mock data prior to ensure it could

correctly reconstruct the true energy spectrum, a cross check to the blinding procedure

was done with the real CUORE-0 data. All CUORE-0 data were reprocessed without

the added step of blinding to show no changes in the final spectrum (when compared

to the blinded and then unblinded energy spectrum). This validates the technique of

blinding which will be used for CUORE.

3.6 CUORE-0 background and 130Te 0νββ decay search results

The background rate in the neutrinoless double beta decay region of interest (ROI),

2.47 to 2.57MeV , was measured to be 0.071±0.011 counts/(keV ·kg ·y). In the 2.70

to 3.90MeV region, where the background is dominated by α particles, the measured

background rate was 0.019± 0.002 counts/(keV · kg · y) [31]. It is important to note

that the background rate in the α dominated region has been reduced by a factor of

6 from that of CUORICINO[31]. This result appears to verify our understanding of

background sources present in CUORE-0. Understanding the background sources in

the detector is important because a similar background model is used to extrapolate

the expected background in CUORE.

The background rate in the region of interest was evaluated using the blinded

spectrum in the energy range 2470-2570 keV. This region includes the 60Co sum-

peak at 2506 keV and the salted peak at the 0νββ decay Q-value. An unbinned

maximum likelihood fit was used to estimate the background rate in the region of

interest. The likelihood function consists of the sum of a 60Co gaussian peak, a salted

0νββ-decay peak, and a flat background. In the fit, the mean of the 60Co sum peak is

initialized to 2506 keV and the mean of the salted 0νββ decay peak at 2528 keV. The

51



FWHM of both peaks is fixed to the detector resolution of 5.7 keV. The fit reveals

that the overall background rate in the ROI is 0.071±0.011 (stat) counts/keV/kg/y.

For comparison, the background rate of the CUORICINO crystals with the same

dimension is 0.153±0.006 counts/keV/kg/y. Systematic uncertainties arising from

background shape are studied by comparing constant and linear background models,

and are found to be less than 3%. The systematic contribution from the uncertainty

in energy calibration is less than 1%.
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Figure 3.16: Spectrum of events with energy between 300 keV and 7500 keV measured
in CUORICINO (blue/line) and CUORE-0 (red/solid).

The two major sources of background in the region of interest are degraded α

particles from surface contamination on the detector components and γ-rays that

originate from the cryostat. Degraded α particles with a decay energy of 4 to 8

MeV can deposit part of their energy in the 0νββ-decay region of interest. These

α events form a continuous energy spectrum extending from their decay energy to

well below 0νββ decay region. The α background rate in the ROI is estimated

by counting events in the α flat continuum region, defined to be from 2.7 to 3.9

MeV (excluding the 190Pt peak region from 3.1 to 3.4 MeV). This energy range is

above almost all naturally occurring γ-rays from 208Tl decay. The measured rate for

CUORE-0 is 0.019±0.002 counts/keV/kg/y, which improves on the CUORICINO
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result of (0.110±0.001counts/keV/kg/y) by a factor of 6. The γ-ray background

in the region of interest is predominantly from Compton-scattered 2615 keV γ-rays

originating from 232Th in the cryostat. Since CUORE-0 is hosted in the same cryostat

used for CUORICINO, the γ-ray background is expected to be similar. The γ-ray

background is estimated as the difference between overall background in the region

of interest and the degraded α background in the continuum. The measured γ-ray

backgrounds of CUORE-0 and CUORICINO are indeed comparable [17], consistent

with the hypothesis that the background in the region of interest is composed of

γ-rays from the cryostat and degraded α particles.
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Figure 3.17: Profile negative log-likelihood (NLL) curves for CUORE-0, CUORI-
CINO, and their combination [16].

After unblinding the data, the number of candidate events, in the 0νββ ROI

(2470-2570 keV) were determined using an un-binned extended maximum likelihood

(UEML) fit. A total of 223 candidate events were found with an experimental ex-

posure of 35.2 kg · yr of natural TeO2 (9.8 kg · yr of 130Te). The best fit of the

0νββ decay rate is Γ0ν = 0.01 ± 0.12(stat.) ± 0.01(syst.) × 10−24 yr−1. The best
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fit of the background in the 0νββ ROI is: B = 0.058 ± 0.004(stat.) ± 0.002(syst.)

c/keV/kg/y. No evidence was found for a signal and a 90% CL lower limit set from

the profile likelihood: T0ν
1/2 > 2.7 × 1024 yr. Combining the CUORE-0 result with

the existing 19.75 kg · yr of 130Te exposure from CUORICINO: T0ν
1/2 > 4.0 × 1024

yr. This is the most stringent limit on this half life. Combined half-life limits yield a

limit on the effective Majorana neutrino mass: mββ < (270-650) meV.
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Figure 3.18: Bottom: The best-fit model from the UEML fit (solid blue line) overlaid
on the spectrum of 0νββ decay candidates in CUORE-0 (data points). The dashed
black line is the continuum background component of the best-fit model. Top: The
normalized residuals of the best-fit model and the binned data. The vertical dot-
dashed black line indicates the position of Qββ of 130Te.

3.7 Conclusion

Projected sensitivity of CUORE: Using the measured background rate and energy

resolution of the 2615 keV γ-ray peak, we obtain the CUORE-0 sensitivity with

the approach outlined in [14]. With the excellent energy resolution, we construct a
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single-bin counting experiment with a 5.7 keV bin centered at the 0νββ decay Q-

value. The sensitivity is obtained by comparing the expected number of signal events

with Poisson fluctuations from the expected background rate in this bin.

Summary and outlook: The measured 5.7 keV FWHM in the 0νββ decay re-

gion of interest represents a slight improvement over CUORICINO and validates

the CUORE-0 wiring scheme and assembly procedure. The background rates have

been measured to be 0.071±0.011 counts/(keV·kg·y) in the ROI and 0.019±0.002

counts/(keV·kg·y) in the α continuum region, respectively. These results are a fac-

tor of 2 and 6 improvement, respectively, when compared to CUORICINO and were

achieved through a more rigorous copper surface treatment, improved crystal pro-

duction and treatment protocols, and more stringent assembly procedure in the clean

environment.
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As a technical prototype for CUORE, CUORE-0 demonstrates the feasibility of

instrumenting an ultra pure ton scale bolometer array with 988 channels. By en-

hancing the procedure of the on-going CUORE assembly, we have improved assembly

success rate close to 100%, which is a crucial achievement for large arrays such as

CUORE. We have started implementing the noise decorrelation algorithms into the

CUORE-0/CUORE data analysis package, with the aim of further improving energy

resolution. CUORE-0 reconfirms the effectiveness of the copper cleaning technique

and clean assembly procedure developed for CUORE. Compared to CUORE-0, the

large array of CUORE affords more powerful time coincidence analysis and more effec-

tive self-shielding from external backgrounds, particularly those originating from the

copper thermal shields or cryostat. With this stronger background rejection and the

already demonstrated reduction of surface contamination, the CUORE background

goal of 0.01counts/(keV·kg·y) is expected to be within reach. The projected half life

sensitivity to 130Te 0νββ is 9.5 × 1025 y (90% C.L.) with 5 years live time [14], reach-

ing an effective Majorana neutrino mass sensitivity of 0.05 to 0.13 eV [38, 61, 62, 85,

90, 104, 109, 117]. Combining the 9.8 kg years of exposure of CUORE-0 with the

19.75 kg year of exposure from CUORICINO we obtain a bound of 4.0 >1024 (90%

CL bayesian). This is the most stringent limit to date on this half life. Using a range

of nuclear matrix element estimates we interpret this limit on the efficiency Majorana

mββ mass of 270-760 meV.
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Chapter 4

Axion phenomenology

Apart from rare event searches involving neutrino-less double beta decay, experimen-

tal searches for axions and axion-like particles (ALPs) are also of current interest.

The most concise explanation of what an axion is, but perhaps not the simplest,

is that it is a hypothetical pseudo-Nambu Goldstone boson that comes about from

the Peccei-Quinn solution to the strong CP problem in quantum chromodynamics

(QCD).

4.1 The strong CP problem

The theory of Quantum Chromodynamics (QCD) is the best and most widely ac-

cepted theory of strong interactions. The strong force is responsible for the confine-

ment of quarks into particles called hadrons; composite particles containing gluons

and quarks. According to the quark model, the properties of hadrons are primar-

ily determined by their valence quarks. The two families of hadrons are mesons

and baryons. Mesons are composed of one quark and one anti-quark (e.g. pion) and

baryons (e.g neutron) contain three valence quarks. There are also anti-baryons made

up of three anti-quarks. Hadrons contain more than just valence quarks as is evident

when comparing the mass of a hadron compared to the sum of the composite valence

quarks. In fact, the mass of a hadron has little to do with the mass of its valence

quarks. The majority of mass comes from the large amount of energy associated with

the strong interaction; gluons morph into quark antiquark pairs and back to gluons

making up a (virtual) sea of quarks and gluons.
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QCD can predict with amazing accuracy physical processes over a large energy

range, but contains a flaw known as the strong CP problem. The strong CP problem

involves a discrepancy of many orders of magnitude between the theoretically pre-

dicted value for the neutron electric-dipole moment (NEDM) and its experimental

upper bound. The full explanation is a bit more complicated and involves symmetries

of charge conjugation, parity, and time reversal. Charge conjugation (C) is described

as the reversal of electric charge and all internal quantum numbers. Parity (P) space

inversion is the reversal of spacial coordinates, but of not time, and Time reversal (T)

replaces t with -t, which also reverses time-derivatives like translation and angular

momentum. More often than not, these individual symmetries (table 4.1) are con-

served, but there are occasions when one or more of these symmetries do not hold.

While the individual symmetries may not always be conserved, the product of CPT

remains unchanged for any physically observable process (H = H∗). In other words,

by simultaneously inverting charge, parity and time, physical laws retain their initial

form. Typically these symmetries are discussed in terms of CP and T, so that if CP

is conserved in some physical process then T is also conserved.

Table 4.1: Properties of C, P, and T symmetry.

Symmetry Properties
Charge conjugation (C) C → C∗

Parity inversion (P) r → -r, t → t
Time reversal (T) r → r, t → -t

The QCD Lagrangian naturally contains the following term that violates CP:

LΘ = Θ g2
s

32π2G
µν
a G̃aµν , (4.1)

where Gµν
a is the gluon field strength tensor, G̃aµν is the dual tensor, gs is the strong

force coupling constant, and Θ is the QCD vacuum angle parameter. Since Θ is

a strong interaction parameter it would naturally be of order unity. The neutron

consists of three valance quarks, two down quarks (qd = −1/3) and an up quark
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(qu = +2/3) for a net charge of zero. The displacement of these charged quarks results

in a non-zero neutron electric dipole moment which violates both Parity (P) and

Time reversal (T) symmetry (and therefore CP) as shown in figure 4.1. The neutron

electron dipole moment as predicted by QCD is approximately: |dn| ≈ Θ×10−16 e·cm.

Figure 4.1: The neutron electric dipole moment (NEDM) violates both Parity (P)
and Time reversal (T) symmetry (and therefore CP) [93].

The first experiment to measure the NEDM was preformed by Smith, Purcell,

and Ramsey in 1951 (published 1957) in which they obtained a limit of |dn| < 5 ×

10−20 e · cm [113]. These results clearly showed that the NEDM, and therefore Θ, is

several orders of magnitude less than predicted by QCD, something Frank Wilczek

called the strong CP problem. Over the next 50 years, the experimental bound on

the NEDM has continued to decrease, roughly six orders of magnitude, as seen in

figure 4.2. The current bound on the NEDM is |dn| ≤ 1.9× 10−26e · cm [37]. In order

for the theoretical predictions to match the current experimental upper limit on the

NEDM, the value of Θ must be fine-tuned to an extremely small value Θ ≤ 10−10.

59



The question then becomes, why exactly is this value so unnaturally small? Just to

reiterate, the issue is not that the strong force violates CP, but rather the degree to

which CP is violated in QCD.

Figure 4.2: Experimental bounds on the neutron EDM verses publication year [93].

4.2 The Peccei-Qiunn solution and the axion

While there are a handful of proposed solutions to the strong CP problem, the one

proposed by Roberto Peccei and Helen Quinn remains the most appealing to date.

Their solution assumes an additional global U(1) chiral symmetry, U(1)PQ, in the

QCD Lagrangian, that is spontaneously broken at large energy scale fa [96, 97]. This

mechanism generates an additional term that cancels the CP violating term, but also

requires the existence of a new pseudo-scalar Goldstone boson; the axion (see eq 4.2).

An interesting historical note, Frank Wilczek called the new Goldstone boson the

axion after a dish soap that shares the same name because the PQ approach “cleans

up” the strong CP problem [108].
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After U(1)PQ is spontaneously broken, the CP violating part of the QCD La-

grangian becomes:

LΘ =
(

Θ− a

fa

)
g2
s

32π2G
µν
a G̃aµν , (4.2)

where a is a pseudo-scalar field and fa is the Peccei-Quinn symmetry breaking scale.

Non-perturbative effects induce a potential on the field a, with a minimum at a = faΘ,

causing the two CP violating terms to exactly cancel. Accordingly, the Peccei-Quinn

solution leads to the existence of a pseudo-scalar particle with nonzero mass [54].

The spontaneous symmetry breaking generates a pseudo-Nambu Goldstone boson

(pNGB), the axion, as pointed out independently by Weinberg [119] and Wilczek

[120] in 1978.

In addition to spontaneous symmetry breaking, U(1)PQ is also explicitly broken

at low energy by instanton effects, which results in the axion acquiring a mass. The

axion’s mass is inversely proportional to the Peccei-Quinn symmetry breaking scale

fa, and is given in terms of π0 properties as follows:

ma =
(

z

(1 + z + w)(1 + z)

)1/2
fπmπ

fa
= 6[eV ]

(
106

fa[GeV ]

)
, (4.3)

where z = mu

md
' 0.56 is the ratio of up quark and down quark masses, w = mu

ms
'

0.029 is the ratio of up quark and strange quark masses. The mass of the pion is mπ

= 135 MeV, and the pion decay constant is fπ ≈ 92 MeV.

In general, the axion couples to hadrons, photons, and leptons with interaction

strengths inversely proportional to fa. For the Peccei-Quinn (PQ) axion model, there

are theoretical predictions for axion couplings with photons, electrons and nucleons

gaγ, gae, and gaN [54]. Note that the mass and coupling are related by equation

4.3; once the PQ symmetry breaking scale is fixed the axion mass is also fixed. The

Standard Model PQ axion, in which fa ≈ fEW ≈ 250 GeV , was excluded by a series

of early experiments (radioactive sources, reactors, and accelerators) [108]. We are
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motivated to search for axions because their discovery would validate the Peccei-

Quinn solution to the strong CP problem.

4.3 Invisible axion models

After the Standard Model Peccei-Quinn axion was ruled out experimentally, invisible

(or very light-mass) axion models were formulated where the global U(1)PQ symmetry

is broken at a much higher energy (fa >> 250 GeV ) [57, 79, 80, 111, 123]. Invisible

axion models are appealing because they maintain the theoretically elegant solution

to the strong CP problem but the trade-off is that, because of the higher symmetry

breaking scale, the axion mass and couplings become extremely small; much weaker

than the weak scale. The couplings are so small that detection will be very challeng-

ing; implying that these particles are effectively ‘invisible”. These models are still

relevant because they can also account for some the dark matter in the universe [4,

52, 56, 99]. The axion mass for invisible axion models is also given in terms of π0

properties just like the standard PQ axion; however, fa is no longer a fixed value.

Invisible axion models have no predicted values for fa, and therefore no restrictions

on the axion mass or couplings, except that they do obey equation 4.3. The mass

remains inversely proportional to fa but the parameters of axion couplings to leptons,

photons, and nucleons (quarks and gluons) are now model dependent.

There are two (benchmark) invisible axion models that keep the axion in the

form required for the solution of the strong CP-violation problem while suppressing

its interaction with matter: the Kim, Shiftman, Vainstein and Zakharov (KSVZ)

model and the Dine, Fischler, Sredniki and Zhitnitski (DFSZ) model. The KSVZ

model is called the hadronic axion model [80, 111] and the axion-electron coupling

does not exist at tree level. In this particular model the axion couples to quarks

and photons at the tree level while the axion-electron coupling is through a higher

loop. The DFSZ model is a grand unified theory axion model [57, 123]. It is a
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more generic/non-hadronic axion model where axions couple to quarks, photons, and

electrons at tree level. In the context of axion phenomenology both the KSVZ and

DFSZ models will be discussed.

4.4 The axion-photon interaction

The axion has a generic property of a two photon interaction because its properties

are closely related to those of neutral pions. Particles such as pions and axions, via

a two-photon vertex, can transform into photons in an external electric or magnetic

field via the Primakoff effect [100]. This two photon interaction is often exploited to

search for axions. The Lagrangian describing the axion photon interaction is given

by the following equation:

Laγ = 1
4gaγFνµF̃

νµa = −gaγ ~E · ~Ba, (4.4)

where F is the electromagnetic field strength tensor, F̃ is the duel of the field strength

tensor, gaγ is the axion-photon coupling constant, a is the axion field and the electric

and magnetic fields are ~E and ~B, respectively. The coupling constant gaγ is given by:

gaγ = α

2πfa

(
E

N
− 2

3
4 + z

1 + z

)
= α

2π

(
E

N
− 2

3
4 + z

1 + z

) 1 + z√
z

ma

mπfπ
, (4.5)

where E and N are the electromagnetic and color anomaly parameters of the axial

current associated with the axion field. In the DFSZ model [123, 57], E/N = 8/3,

and in KSVZ [80, 111] E/N = 0, but in general the value of E/N is not known and

the so there is a range of values that gaγ can take once the PQ symmetry breaking

scale fa is fixed. The axion line in the ma-gaγ plane is defined by taking the taking

the model-dependent factors to be of order unity.
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Figure 4.3: Exclusion plot for axion-photon coupling vs axion mass [77].

4.5 Axion-electron interaction

Apart from the more generic interaction of axions with photons, axions also interact

with fermions, Ψ, by a derivative interaction of the form:

L = C

2fa
Ψ̄γ5γµΨ∂µa, (4.6)

or the pseudoscalar form:

L = −iCm
fa

Ψ̄γ5Ψa, (4.7)

where C is a model dependent numerical factor and m is the mass of the fermion being

considered. The derivative and pseudo scalar forms of the Lagrangian are equivalent

only when a single axion is attached to the fermion line in a Feynman diagram. The

pseudo scalar form expresses the axion-fermion interaction in terms of a dimensionless

Yukawa coupling g = C m/fa and associated axion fine structure constant αa =
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g2/4π = C2m2

f2
a4π . From astrophysical bounds αa . 1.0 × 10−22 [102]. Specifically, for

the coupling of axions to electrons, the dimensionless coupling constant is related to

the electron mass and the PQ symmetry breaking scale:

gae = Ce ·me

fa
. (4.8)

In the KSVZ model the axion does not couple to the electron at tree level. How-

ever, there is an induced coupling between the axion and electron at the one loop

level. The axion electron coupling in the KSVZ is given by the following expression:

gae = 3α2Nme

2πfa

(
E

N
ln fa
me

− 2
3

4 + z + w

1 + z + w
ln Λ
me

)
(4.9)

where Λ ' 1GeV is the QCD confinement scale cutoff [115].

In the DFSZ axion model the axion-electron coupling depends on a parameter

cos β2, defined as the ratio of two Higgs vacuum expectation values (VEVs) [78, 115].

The parameter Ce is expressed as:

Ce = cos β2

3 , (4.10)

assuming there are three families of fermions. Often, the value cos β = 1 is used,

since β is an arbitrary angle, the expression for the axion electron coupling becomes:

gae = me

3 · fa
. (4.11)

4.6 Axion-nucleon coupling

The formalism for axion production, as a branch competing with M1 electromagnetic

transitions, was developed by Haxton to analyze data from a laboratory search for

axions from an M1 transition from a 35 kCi source of 65Zn [35]. The axion-nucleon

interaction Lagrangian is as follows:

L = aψ̄γ5
(
g0
aNβ + g3

aNτ3
)
, (4.12)
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and contains two axion-nucleon coupling constants g0
aN and g3

aN , the iso-scalar and iso-

vector axion-nucleon coupling strengths respectively, β which is a nuclear structure

dependent ratio, and τ3 a Pauli matrix. When considering the flux of solar axions

produced via the 14.4 keV M1 transition from the first excited state of 57Fe in the

sun; the branching ratio of the decay is given by [35, 74]:

Γa
Γγ

=
(
ka
kγ

)3 1
2πα

1
1 + δ2

[
g0
aNβ + g3

aN

(µ0 − 1/2)β + µ3 − η

]2

, (4.13)

where µ0 and µ3 are the iso-scalar and iso-vector nuclear magnetic moments, δ is the

E2/M1 multipole mixing ratio, and η is another nuclear structure dependent ratio.

The nuclear structure-dependent quantities parameters η and β are calculated in [35];

β ≈ +1 for an unpaired proton and β ≈ −1 for an unpaired neutron.

In the case of the 14.4 keV de-excitation process of thermally excited 57Fe in the

solar core, these values are: µ0 = 0.88, µ3 = 4.71, δ = 0.002, β = −1.19 and η = 0.8

[74]. The branching ratio at 14.4 keV then becomes:

Γa
Γγ

=
(
ka
kγ

)3

1.82
(
−1.19g0

aN + g3
aN

)
, (4.14)

where an effective axion nucleon coupling constant can be defined as:

geffaN ≡ −1.19g0
aN + g3

aN . (4.15)

The iso-scalar and iso-vector axion-nucleon coupling constants, and therefore the ef-

fective axion-nucleon coupling, depends on the invisible axion model being considered.

The effective axion nucleon coupling depends on ratios of u-, d-, and s-quark masses,

invariant matrix elements for the axial currents of the pion-nucleon couplings, F and

D, and a poorly constrained flavor singlet coupling S. The effective axion-nucleon

coupling constant, geffaN , is considered within the constraints of the DFSZ and KSVZ

invisible axion models for the standard values: F = 0.48, D = 0.77, S = 0.5, and z =

0.56.
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For the KSVZ model, the iso-scalar and iso-vector axion-nucleon couplings are

given by eq 4.16 and eq 4.17, respectively. The effective axion-nucleon coupling in

the KSVZ model is given in eq 4.18.

g0
aN = −7.8× 10−8

(
6.2× 106 GeV

fa

)(3F −D + 2S
3

)
(4.16)

g3
aN = −7.8× 10−8

(
6.2× 106 GeV

fa

)(
(D + F )1− z

1 + z

)
(4.17)

geffaN = −1.19
(
−2.69× 10−1 GeV

fa

)
+
(
−1.71× 10−1 GeV

fa

)

=
(

1.49× 10−1 GeV

fa

)
(4.18)

In the DFSZ axion model, the axion-nucleon couplings are given by equation

4.19 and equation 4.20, where Xu and Xd are the Peccei-Quinn charges of the up

and down quark. These charges have the constraint that the charge values must be

positive and obey the relation: Xu +Xd = 1. For the qualitative analysis the values

of the Peccei-Quinn quark charges are usually taken to be Xd = 1 and Xu = 0. The

effective axion-nucleon coupling in the DFSZ model is given in equation 4.21.

g0
aN = 5.2× 10−8

(
6.2× 106 GeV

fa

)

×
(

(3F −D)(Xu −Xd − 3)
6 + S(Xu + 2Xd − 3)

3

)
(4.19)

g3
aN = 5.2× 10−8

(
6.2× 106 GeV

fa

)(
D + F

2

)(
Xu −Xd − 3

(1− z
1 + z

))
(4.20)

geffaN = −1.19
(
−1.98× 10−1 GeV

fa

)
+
(
−3.72× 10−1 GeV

fa

)

geffaN =
(
−1.36× 10−1 GeV

fa

)
(4.21)
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4.7 Solar axions

If axions exist, they are copiously produced in the solar plasma through a number of

processes. These processes include Primakoff, axio-deexcitation, axio-recombination

(in atoms), Bremstrahlung, Compton, and low-lying nuclear magnetic dipole transi-

tions. The Feynman diagrams for the Primakoff and Atomic-Bremstrahlung-Compton

(ABC) reactions, from reference [105], are shown in figure 4.4.

The Primakoff process depends on the strength of axion-photon coupling gaγ,

while the ABC reactions depend on the strength of the axion-electron coupling gae.

The probability to generate and detect axions depends on the degree to which axions

couple to normal matter; namely the coupling to photons, electrons, and nucleons

(quarks and gluons). The rate at which axions are produced is proportional to the

square of the axion coupling involved in the process. In other words, the flux of the

axions created from ABC reactions a proportional to g2
ae while the flux of the axions

generated from the Primakoff process in proportional to g2
aγ.

Figure 4.4: Feynman diagrams of Primakoff and Atomic-Bremstrahlung-Compton
(ABC) reactions [105].

68



The axion flux on the surface of the Earth from the Primakoff process is based on

a standard solar model, and approximated in [102]:

dφa
dE

= g2
10 · 6.0× 1010 cm−2 s−1 keV −1 E2.481e−E/1.205 (4.22)

where E is the energy in keV and g10 ≡ gaγ/(10−10 GeV −1). The distribution of the

Primakoff flux has a maximum value at 3.0 keV and an average energy of 4.2 keV.

Often solar axions produced via the Primakoff process are searched for using

the axion helioscope technique [112]. This technique relies on the inverse Primakoff

technique where an axion converts into a photon in a macroscopic magnetic field,

and is detected at the far end of the detector (out of the magnetic field). Early

helioscope searches were performed in Brookhaven [87] and Tokyo [76, 91], but the

best experimental bound on axion and axion like particles (ALPs) coupling to photons

is provided by the results of the CAST experiment [34].

Figure 4.5: Solar axion flux calculated from Primakoff and Atomic-Bremstrahlung-
Compton (ABC) reactions [105].
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Table 4.2: Relevant X-ray energies for solar axions.

Element Kα2 [eV] Kα1 [eV]
Si 1739.394(34) 1739.985(19)
P 2012.70(48) 2013.68(48)
S 2306.700(38) 2307.885(34)
Cl 2620.846(39) 2622.440(39)
K 3311.1956(60) 3313.9476(50)
Ca 3688.128(49) 3691.719(49)
Fe 6391.0264(99) 6404.0062(99)

The expected flux of solar axions produced via ABC reactions were calculated

by Javier Redondo [105] from available libraries of monochromatic photon radiative

opacities. His calculated fluxes are ∼30% larger than previous estimates due to

atomic re-combination and de-excitation. Figure 4.5 shows the total expected flux of

axions in the 0 - 10 keV range for an assumed dimensionless axion-electron coupling

of gae = 10−13 and an assumed axion-photon coupling of gaγ = 10−12 GeV −1. The

predicted solar axion flux is only significant at low energies, on the order of a few keV.

The flux rises quickly, peaking at ∼ 1 keV, and then drops rapidly over the following 2

-3 keV interval. While the total flux from all production mechanisms is considerable,

the axio-deexcitation and axio-recombination contribution is of particular interest as

it adds structure in the otherwise smooth spectrum. The most relevant X-ray energies

that contribute to the solar axion flux are given in table 4.2.

4.8 Axioelectric effect and absorption cross section

The axioelectric effect is the analog of the photoelectric effect in which an axion

interacts with an electron and is absorbed (axioelectric absorption), A+Z → Z∗ +e−.

In our case, the interaction energy of this process is absorbed by, and measured

with, a TeO2 bolometer. As the process is analogous to the photoelectric effect,

the axioelectric absorption cross section σae(E) is not only a function of energy E,

but proportional to photoelectric cross section σpe(E), and described by the general

70



formula in equation 4.23 [53, 54]:

σae(E) = g2
ae

β

3E2

16παm2
ec

4

(
1− β2/3

3

)
σpe(E), (4.23)

where gae is the axion-electron coupling constant, α is the fine-structure constant,

β is the axion velocity relative to the speed of light c, and me is the mass of an

electron. In the relativistic limit (β → 1), the axioelectric cross section, equation

(4.24) becomes:

σae(E) = g2
aeE

2(2.09× 10−5)σpe(E). (4.24)

Figure 4.6: Diagram of the axio-electric effect (analog of the photoelectric effect)
where an axion interacts with a bound electron, is absorbed, and ejects an electron
[36].
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Chapter 5

Experimental search for solar axions

5.1 Introduction

In the following analysis, CUORE style TeO2 bolometers are used to search for a

solar axion signal at an energy of 6.4 keV, via the axioelectric effect, produced from

the atomic de-excitation of Fe atoms in the sun. The energy of this X-ray is given in

table 4.2. The axioelectric effect is also used to search for an axion signal generated

from the 14.4 keV M1 transition of thermally excited 57Fe atom in the solar plasma.

Unfortunately, CUORE-0 has a higher energy threshold than expected, around 10

keV, so data from the CUORICINO experiment, as well as CUORE Crystal Validation

Run 2 (CCVR2), were analyzed in the search for solar axion at 6.4 keV while the data

from CUORE-0 was used to search for the 14.4 keV axion. As the detection technique

for both axion searches relies on the axion-electron coupling, only the DFSZ axion

model will be considered, since in this model the axion couples to electron at the tree

level.

The motivation of the work discussed in this chapter was to study the interaction of

axions produced in the sun, using an array of TeO2 bolometers operated underground

at a temperature of ∼ 10 mK. Two different mechanisms of solar axion production

are considered; both axion searches rely on the axioelectric effect in TeO2 bolometers

for detection. These bolometers are 5 × 5 × 5 cm3 in dimension and operated in
3He/4He dilution refrigerator at ∼ 10 mK. It should be pointed out, however, that

a few of the CUORICINO crystals were of smaller dimensions. Each of the CUORE
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crystal validation runs (CCVR) were operated in the CUORE R&D cryostat in Hall

C of LNGS. The other two experiments, CUORICINO and CUORE-0, were operated

in a similar dilution refrigerator with a slightly larger experimental chamber in Hall

A of LNGS. A total of 43.65 kg · days of CCVR2 data were analyzed using the newly

developed (at the time) low-energy trigger optimized to lower the energy threshold

of the experiment [13]. A peak of unknown origin was observed in the low-energy

CCVR2 spectrum at 4.7 keV. This peak has not yet been identified as one from a

known decay. Since CCVR2 was the first experiment implementing the optimum

trigger, the final month or so of raw data from the CUORICINO experiment was

reprocessed with the optimum trigger to check if the unidentified 4.7 keV peak was

also present. It was, and the event rate was observed to be constant with time.

Two different axion searches were carried out using three different sets of low-

energy data. What makes these data different from the standard data is that they are

processed by an additional software trigger, called CUORE Optimum Trigger (OT),

developed to lower the energy threshold [55]. The trigger is based on the matched

filter algorithm [71, 101] and also provides a pulse shape parameter to suppress false

signals generated by detector vibrations and noise from the electronics. The general

idea was to search the available experimental data for a peak at expected solar axion

energies of 6.4 keV and 14.4 keV. While the physical processes that produce these two

axion lines are very different, as discussed in chapter 4, the analysis is rather straight

forward and essentially identical. The procedure is as follows: determine the local

detector energy resolution, fit each spectrum with a background function, and then

search for a gaussian peak at the expected axion energy.

5.2 Low-Energy Spectra

The low-energy data from three experiments were used to search for solar axions:

CUORE Crystal Validation Run (CCVR) 2, CUORICINO, and CUORE-0. Each
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CCVR experiment was a short-time, four bolometer experiment performed as a qual-

ity assurance test for each shipment of TeO2 crystals delivered to LNGS. The four

crystals were selected at random, mounted, and tested in the CUORE R&D cryostat

in Hall C. The total TeO2 exposure of the CCVR2 experiment was 43.65 kg · days,

while the CUORICINO data had a total TeO2 exposure of 62.7 kg · days. The total

exposure and detector threshold, for each experiment, is given in table 5.1.

Table 5.1: Total exposure of TeO2 in [kg · d] and detector energy threshold in [keV ]
by experiment.

Data set Exposure [kg d] Threshold [keV]
CCVR2 43.65 3.0

CUORICINO 62.7 3.0
Combined 106.35 3.0

CUORE-0 (11 Chs.) 1825.0 10.0
CUORE-0 (22 Chs.) 3376.25 10.0

The low energy spectra of CCVR2 and CUORICINO are very similar from the

threshold of the detector (∼3 keV) to ∼28 keV. The number of counts is substantial

near the detector threshold energy (∼3 keV) but decreases rapidly over the next few

keV. A physical peak in both spectra can be seen from approximately 4 keV to 5.5

keV, with the peak centered at approximately 4.7 keV. Above the peak at 4.7 keV,

both spectra continue to slowly and smoothly decrease from 5.5 keV to 40 keV. Over

the entire energy range, (3 - 40)-keV, both the CCVR2 (figure 5.1) and CUORICINO

(5.2) spectra appear to follow an exponentially decreasing function with a gaussian

peak at approximately 4.7 keV. The peak at 30.49 keV in the CCVR2 spectrum

is an Sb X-ray due to cosmogenic activation of tellurium atoms during shipment

to LNGS. The region between detector threshold and this peak is a window large

enough to search for solar axions at the expected energies of 6.4 keV and 14.4 keV.

The low energy detector threshold for CUORE-0 is 10 keV, higher than CCVR2

and CUORICINO, making the 6.4 keV axion search impossible. Therefore, since

the exposure is low compared to CUORE-0, to obtain the best possible bound on
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the 6.4 keV axion peak, the CCVR2 and CUORICINO spectra are combined for a

total TeO2 exposure of 106.35 kg · days. The CCVR2, CUORICINO, and combined

CCVR2 and CUORICINO spectra are shown in figure 5.3. In figure 5.4 all three

spectra are plotted together for comparison.
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Figure 5.1: CCVR2 low-energy spectrum from 0 - 40 keV in [c/d/kg/keV].
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Figure 5.2: CUORICINO low-energy spectrum from 0 - 40 keV in [c/d/kg/keV].
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Figure 5.3: Combined CCVR2 and CUORICINO low-energy spectra from 0 - 40 keV
in [c/d/kg/keV].
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Figure 5.4: CCVR2, CUORICINO, and the combined low-energy spectra from 0 - 40
keV in [c/d/kg/keV].

For CUORE-0, two different data sets are used, one with 22 channels and one with

11 channels, the only difference being the total exposure of TeO2. The CUORE-0

low energy spectra, shown in figure 5.5, have exposures of 9.25 kg · y of TeO2 and

5.0 kg · y of TeO2 for the 22-channel and 11-channel data sets respectively. Above

10 keV, the background rate of CUORE-0 was lower than that of CUORICINO and

CCVR2. Below this energy, the event rate of CUORE-0 increases and over takes the

rates of the previous experiments, hiding the peak at 4.7 keV.
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Figure 5.5: CUORE-0 11-channel and 22-channel low-energy spectra from 0 - 28 keV
in [c/d/kg/keV].

5.3 The determination of the local energy resolution

The first step of the analysis was to determine the local energy resolution for each

spectrum. As mentioned previously, the 4.7 keV peak is the most prominent feature

in the low-energy spectra of the CCVR2 and CUORICINO data. While the origin of

this peak is still unknown, we take advantage of its existence by using it to establish

the (local) energy resolution of the detector. An exponential function and a gaussian,

with mean energy at approximately 4.7 keV, are used to fit the spectrum in the

range of 4.7 ± 1 keV. This model is used for all experimental data to obtain the exact

location of the gaussian, E4.7keV , and the standard deviation, σ. A common method to

compare the energy resolutions of two different detectors is to measure the full width

of the gaussian at half the maximum amplitude, also known as full width at half max

(FWHM). The full width at half max is directly related to the standard deviation σ of

the gaussian fit given by the following expression: FWHM = 2
√

2 ln 2 σ ≈ 2.355 σ.

The fit of the 4.7 keV peak for both the CCVR2 and CUORICINO spectra is shown

in figures 5.6 and 5.7 respectively. The combined CCVR2 and CUORICINO fit of the

4.7 keV peak is shown in figure 5.8. Table 5.2 contains the energy, standard deviation,

and the FWHM of the 4.7 keV peak for each data set.
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Table 5.2: Results of the fits of the 4.7 keV peak for CCVR2, CUORICINO, and their
combined spectra

Data set Energy [keV] Std. Dev. [keV] FWHM [keV]
CCVR2 4.73373 0.33152 0.780729

CUORICINO 4.72948 0.212171 0.499662
Combined 4.73358 0.261139 0.614983
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Figure 5.6: Result of the fit of the 4.7 keV peak in the CCVR2 spectrum.
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Figure 5.7: Result of the fit of the 4.7 keV peak in the CUORICINO spectrum.
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Figure 5.8: Result of the fit of the 4.7 keV peak in the combined CCVR2 & CUORI-
CINO spectrum.

The procedure to determine local energy resolution for the CUORE-0 low-energy

data differs from the one used for the previous experiments. Since the CUORE-

0 low energy data are “noisier” than those of previous experiments, and with an

energy threshold at ∼10 keV, we are unable to see the 4.7 keV peak, which requires

another method to determine the local energy resolution of the detector. Instead,

the CUORE-0 low-energy (M2) calibration data (figure 5.9 and 5.10) are used to fit

the X-ray peak at 27.38 keV. The term M2 refers to multiplicity 2 events, when two

bolometers trigger events within a narrow time frame (100 ms). A flat background

and a gaussian, with mean energy at approximately 27.38 keV, are used to fit the

spectrum in the 25 - 30 keV range, as shown in figure 5.11. For the 22 channel

spectrum, it is possible to fit the two nearby peaks, at 27.38 keV and 31.11 keV, with

two gaussian functions with the same variance and with a flat background in the

22 to 36 keV region (figure 5.12) to obtain the local energy resolution. However the

second peak is not as well defined as the first, so the energy resolution obtained when

fitting the double peak is larger (2.26 keV compared to 1.93 keV FWHM) than that

obtained by fitting only the single peak at 27 keV. The energy resolution used from
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this point on, for both the 11 channel and 22 channel CUORE-0 spectra, will be those

obtained with a single peak fit. Table 5.3 contains the energy, standard deviation,

and the FWHM of the 27.38 keV peak for each CUORE-0 data set.

Table 5.3: CUORE-0 calibration (M2) spectrum fit results of 27.38 keV peak.

Data set Energy [keV] Std. Dev. [keV] FWHM [keV]
CUORE-0 (11 Chan.) 27.6222 0.682734 1.60784
CUORE-0 (22 Chan.) 27.5137 0.818378 1.92728
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Figure 5.9: CUORE-0 (M2) low-energy calibration data from 0 - 40 keV for the 11
channel data set.
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Figure 5.10: CUORE-0 (M2) low-energy calibration data from 0 - 40 keV for the 22
channel data set.
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Figure 5.11: CUORE-0 (M2) 27.38 keV peak for (a) the 11 channel and (b) the 22
channel spectra.
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Figure 5.12: Result of the fits to 27.38 and 31.11 keV peaks in CUORE-0 (M2)
calibration spectrum.

5.4 Background Models

Once the detector energy resolution was established, a background fit was preformed

in the axion-energy region of interest. In the case of CCVR2 and CUORICINO, a

single background function was used for both the 6.4 and 14.4 keV axion searches

searches. A function composed of an exponential and a gaussian were used to fit the

CCVR2 and CUORICINO data, as well as the combined CCVR2 & CUORICINO
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spectra in the (5-18)-keV range. For the most part, the background in this region

is fit by an exponential function; however, since the 6.4 keV axion peak is so close

to the tail of the 4.7 keV peak, a gaussian is also included in the fit. The energy,

standard deviation, and amplitude of the gaussian are fixed using the fit parameters

from the aforementioned local 4.7 keV peak, and only the exponential parameters are

free. This leads to a better fit in the nearby 6.4 keV region, and affects very little

the fit in the 14.4 keV region. Previously, the CCVR2 and CUORICINO background

(5-18)-keV function was composed of two exponential functions as well as the fixed

gaussian functions, but the results of the fit are almost identical to the fit using a

single exponential function and a fixed gaussian function. Therefore, for simplicity,

only one exponential was used to model the background. Since CUORE-0 is only

sensitive to the 14.4 keV axion due to a higher detector energy threshold, a single

exponential is used to fit the background in the (11-18)-keV range.

5.5 Experimental search for solar axions at 6.4 and 14.4 keV

To determine the number of axion events that could be hidden in the background, a

likelihood function was computed comprising the previously established background

function (with all parameters fixed), along with an assumed gaussian function at an

energy of 6.4 keV or 14.4 keV. In the case of CCVR2 and CUORICINO, the standard

deviation of the axion signal was determined from the fit of the 4.7 keV peak. For

CUORE-0, the standard deviation of the axion signal is determined from the fit of

the 27.38 keV peak in the M2 spectrum of the calibration data. These axion searches

were preformed independently of one another, and in both cases only the amplitude

of the assumed axion peak is free. The counts in the 6.4 keV peak were used to

place a bound on the dimensionless axion electron coupling constant gae. The counts

in the 14.4 keV peak were used to place a bound on the product of the effective

axion-nucleon coupling and axion-electron coupling constant |geffaN × gae|.
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The likelihood analysis used in this work is based on a Monte-Carlo procedure. A

series of new spectra is generated by choosing new values for each experimental data

point by fluctuating its value using its Poisson probability distribution. This was

repeated typically 10,000 times. The best-fit values from fitting each of the 10,000

trial spectra were computed. The plot of the number of times a best fit value occurs

versus the best-fit values, is in fact a numerically computed maximum-likelihood

(MLH) function. From this function one can compute the most probable value under

a peak, for example, and confidence levels on central values as well as the confidence

values of the limits. For each random “experiment,” a fit of the simulated axion

peak was performed, while the background function remained identical to the fit of

the original spectrum. For each random background iteration, after the fit of the

axion peak, the gaussian amplitude and the axion rate are added to their respective

histograms. The axion rate is found by integrating both the axion likelihood function

and the fitted background, about the axion peak energy, and taking the difference.

At the end of each Monte Carlo cycle, the signal amplitude and axion rate distri-

butions are then fit with gaussians to extract the mean and standard deviation. The

mean value from the gaussian fit is the estimated maximum likelihood value, and the

standard deviation is used to place upper bounds on the amplitude and rate to a

desired confidence level. In this analysis a 90% CL and 95% CL upper bounds are

established for comparison with other experiments. Using the gaussian amplitudes

from the MLH functions, 90% CL, and 95% CL, bounds are plotted together with

the original energy spectrum and the background fit. The results of the Monte Carlo

analysis are shown in the tables below.
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6.4 keV axion search
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Figure 5.13: Monte Carlo likelihood distribution of the 6.4 keV axion amplitude and
rate [c/d/kg] for CCVR2. See the spectrum in figure 5.14.
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Figure 5.14: CCVR2 best fit (MLH) of the assumed 6.4 keV peak with 90% CL and
95% CL gaussian peaks.
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Figure 5.15: Monte Carlo likelihood distribution of the 6.4 keV axion amplitude and
rate [c/d/kg] for CUORICINO. See the spectrum in figure 5.16.
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Figure 5.16: CUORICINO best fit (MLH) of the assumed 6.4 keV peak with 90% CL
and 95% CL gaussian peaks.
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Figure 5.17: Monte Carlo likelihood distribution of the 6.4 keV axion amplitude and
rate [c/d/kg] for CUORICINO & CCVR2. See the spectrum in figure 5.18.
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Figure 5.18: Combined CCVR2 and CUORICINO best fit (MLH) of the assumed 6.4
keV peak with 90% and 95% gaussian peaks.

Table 5.4: Monte Carlo MLH bounds for gaussian amplitude of the 6.4 keV axion.

Data set Mean CL 90% CL 95% Std. Dev.
CCVR2 0.794765 1.63662 1.79783 0.511767

CUORICINO -0.467318 0.192639 0.319013 0.401189
Combined 0.064768 0.592899 0.694031 0.321052
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Table 5.5: Monte Carlo MLH bounds for the 6.4 keV axion rate [c/kg/d].

Data set Mean CL 90% CL 95% Std. Dev.
CCVR2 0.659918 1.36488 1.49987 0.428548

CUORICINO -0.248128 0.104633 0.172183 0.214444
Combined 0.043151 0.389399 0.455702 0.210485
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Figure 5.19: Monte Carlo likelihood distribution of the 14.4 keV axion amplitude and
rate [c/d/kg] for CCVR2. See the spectrum in figure 5.20.
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Figure 5.20: CCVR2 best fit of the assumed 14.4 keV peak with 90% CL and 95%
CL gaussian peaks.
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Figure 5.21: Monte Carlo likelihood distribution of the 14.4 keV axion amplitude and
rate [c/d/kg] for CUORICINO. See the spectrum in figure 5.22.
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Figure 5.22: CUORICINO best fit of the assumed 14.4 keV peak with 90% CL and
95% CL gaussian peaks.
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Figure 5.23: Monte Carlo likelihood distribution of the 14.4 keV axion amplitude and
rate [c/d/kg] for CUORICINO & CCVR2. See the spectrum in figure 5.24.
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Figure 5.24: Combined CCVR2 and CUORICINO best fit of the assumed 14.4 keV
peak with 90% CL and 95% CL gaussian peaks.
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Figure 5.25: Monte Carlo likelihood distribution of the 14.4 keV axion amplitude and
rate [c/d/kg] for CUORE-0 (11-channels).
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Figure 5.26: CUORE-0 (11-Ch) best fit of the assumed 14.4 keV peak with 90% CL
and 95% CL gaussian peaks.
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Figure 5.27: Monte Carlo likelihood distribution of the 14.4 keV axion amplitude and
rate [c/d/kg] for CUORE-0 (22-channels).
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Figure 5.28: CUORE-0 (22-Ch) best fit of the assumed 14.4 keV peak with 90% CL
and 95% CL gaussian peaks.

Table 5.6: Monte Carlo MLH bounds for the 14.4 keV axion gaussian amplitude.

Data set Mean 90% CL 95% CL Std. Dev.
CCVR2 -0.166183 0.479429 0.603056 0.392469

CUORICINO -0.0792775 0.445467 0.54595 0.318994
Combined 0.00519769 0.387843 0.461115 0.232611

CUORE-0 (11-Ch) 0.00804026 0.0479025 0.0555357 0.0242324
CUORE-0 (22-Ch) -0.0326892 -0.00461656 0.000759053 0.0170654

91



Table 5.7: Monte Carlo MLH bounds on the 14.4 keV axion rate [c/kg/d].

Data set Mean 90% CL 95% CL Std. Dev.
CCVR2 -0.139488 0.395826 0.498333 0.325419

CUORICINO -0.0420365 0.237476 0.291 0.169917
Combined 0.00337636 0.2541 0.302111 0.152416

CUORE-0 (11-Ch) 0.0136453 0.0818636 0.0949267 0.0414701
CUORE-0 (22-Ch) -0.0669917 -0.00927506 0.00177706 0.0350861

5.6 Axion search results

The expected number axioelectric of absorption events is given by:

counts = ε N t Φa σae, (5.1)

where ε is the efficiency of the detector, N is the number of target nuclei, t is the

live time of the experiment, Φa is the solar axion flux, and σae is the axioelectric

absorption cross section. The detector efficiency for CUORE-TeO2 bolometers is

ε ' 1. Since each experiment considered deals with the same detector material

(TeO2) it is advantageous to express the product of the target nuclei and live time

in terms of the number of target nuclei per kg, n, and experimental exposure, η, in

kg · d. In this way the target nuclei per kg is the same for all TeO2 detectors and

only the exposure changes depending on the experiment being analyzed. Making the

substitution, N · t = n · η, equation 5.1 becomes:

counts = ε n η Φa σae. (5.2)

The flux at 6.4 keV due to ABC reactions was specifically calculated for this

analysis by Javier Redondo [66] and is given in equation 5.3. The 14.4 keV solar

axion flux, of relativistic axions, from the M1 transition of 57Fe was given by the

CAST collaboration [19], and is given in equation 5.4.

φa(6.4 keV ) = g2
ae

(
4.7× 1033 cm−2s−1

)
= g2

ae

(
4.06× 1038 cm−2d−1

)
(5.3)
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φa(14.4 keV ) =
(
geffaN

)2
(4.56× 1023 cm−2s−1)

=
(
geffaN

)2
(3.94× 1028 cm−2d−1) (5.4)

In this section, the axioelectric absorption cross section of TeO2 is calculated using

equation 4.24 for relativistic solar axions with an energy of 6.4 keV and 14.4 keV

respectively. For relativistic axions with energies of 6.4 keV and 14.4 keV interacting

with a TeO2 detector via the axioelectric effect, the absorption cross sections are:

σae(6.4 keV ) = g2
ae (8.55× 10−4) σpe(6.4 keV ) (5.5)

σae(14.4 keV ) = g2
ae (4.33× 10−3) σpe(14.4 keV ) (5.6)

At the energy of 6.4 keV, the photo-electric cross section of tellurium is 493.868622

cm2g−1 and the cross section of oxygen is 21.6770248 cm2g−1. The photo-electric cross

section of tellurium, at an energy of 14.4 keV, is 55.3361 cm2 g−1 and the cross section

of oxygen is 1.6252 cm2 g−1 [92]. The total photo-electric cross sections of TeO2 at

6.4 keV and 14.4 keV are therefore 537.223 cm2g−1 and 58.5865 cm2g−1 respectively.

Even though the cross section of oxygen is considerably smaller than that of tellurium,

at both of the considered energies (∼ 25 and ∼ 35 times smaller, respectively), it is

included in the cross section calculations for completeness. The cross sections are

then converted from units of cm2g−1 to cm2 (TeO2)−1, using the molar mass M of

TeO2 (159.6 g/mol) and Avogadro’s number NA (6.022 × 1023 mol−1).

σpe(6.4keV ) = 537.223 cm2g−1
(
M

NA

)
= 1.42× 10−19cm2(TeO2)−1 (5.7)

σpe(14.4keV ) = 58.5865 cm2g−1
(
M

NA

)
= 1.55× 10−20cm2(TeO2)−1 (5.8)

Inserting the value from equation 5.7 into equation 5.5, and the value from equation

5.8 into equation 5.6, the axioelectric cross section of a TeO2 molecule, at 6.4 keV
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and 14.4 keV respectively, can be expressed in terms of a numerical factor and the

axion-electron coupling constant gae.

σae(6.4keV ) = g2
ae(1.22× 10−22)cm2(TeO2)−1 (5.9)

σae(14.4keV ) = g2
ae(6.72× 10−23)cm2(TeO2)−1 (5.10)

The two remaining values needed are: the number of TeO2 molecules per kilogram,

and the exposure of the experiment being analyzed. The number of TeO2 nuclei per

kilogram is n = 3.77× 1024 TeO2 kg
−1 and the total exposure for each experiment in

kg · d is given in table 5.1. At this point we can use the axion rates (per unit mass)

to some desired CL, that were established with the Monte Carlo code, in terms of

the relevant axion couplings, and in the context of the DFSZ axion model, the PQ

symmetry breaking scale and the axion mass. First, the results for the 6.4 keV axion

search are discussed followed by those of the 14.4 keV search.

Comparing the expected number of axion absorption events in equation 5.2 to

the experimental bound on the actual number of counts, we place upper bounds on

axion coupling to normal matter. In particular, from the 6.4 keV axion search, we

place an upper bound on the axion-electron coupling (gae) alone, because both the

production and detection methods each involve a factor of the axion-electron coupling

squared. By comparing the fourth root of the ratio of the bound on experimental

counts to theoretically expected number of counts at 6.4 keV, we place a bound on

the axion-electron coupling constant. This equation was used for both CUORICINO

and CCVR2, simply by changing the exposure and experimental upper limits of axion

candidate events, and by leaving the constants as one numerical value. The upper

bound on gae is then:

gae ≤
[

counts(CL)
ε · η × 1.87× 1041 (c · kg−1 · d−1)

]1/4

, (5.11)

where η represents exposure in [kg ·d] and counts(CL) is the maximum experimental

number of candidate events at a the desired CL. Using equation (5.11), bounds on
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the axion-electron coupling constant were derived from CCVR2, CUORICINO, and

the combined CCVR2 and CUORICINO data.

Table 5.8: Experimental bounds on the axion-electron coupling constant (ε =1).

Data set gae(90%CL) ≤ gae(95%CL) ≤
CCVR2 5.20× 10−11 5.32× 10−11

CUORICINO 2.73× 10−11 3.10× 10−11

Combined 3.80× 10−11 3.95× 10−11

The upper limit on the 6.4 keV axion rate can also be used to derive a bound

on the PQ-scale, fa (equation 5.12), or the axion mass ma (equation 5.13). These

bounds are considered in the DFSZ invisible axion model for S = 0.5 and z = 0.56.

fa ≥
[
ε · η × 1.56× 1026 (c · kg−1 · d−1)

counts(CL)

]1/4

GeV (5.12)

ma ≤
[

9.4× counts(CL)
ε · η (c · kg−1 · d−1)

]1/4

eV (5.13)

The CUORICINO spectrum yields the best upper bound on gae, and therefore also

gives the best bounds on fa (table 5.9) and ma (table 5.10). To avoid rounding errors

in obtaining the numerical factor in eq 5.12, the bound on fa was computed directly

using the bound on the axion electron coupling constant:

gae ≡
me(GeV )

3 · fa
= 1.7× 10−4 GeV

fa
. (5.14)

The conversion between the PQ symmetry breaking scale and the axion mass is

straightforward (equation 4.3).

Table 5.9: Experimental bounds on the PQ-scale (fa [GeV]) from the 6.4 keV axion
rates (ε =1).

Data set fa(90%CL)[GeV] ≥ fa(95%CL)[GeV] ≥
CCVR2 3.27 ×106 3.20 ×106

CUORICINO 6.23 × 106 5.48× 106

Combined 4.47× 106 4.30× 106
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Table 5.10: Experimental bounds on the axion mass (ma [eV]) from the 6.4 keV axion
rates (ε =1).

Data set ma(90%CL)[eV] ≤ ma[eV](95%CL) ≤
CCVR2 1.83 1.88

CUORICINO 0.963 1.09
Combined 1.34 1.40

For the 14.4 keV solar axion search from the M1 transition of 57Fe, the axion is

produced via a nuclear process which involves the square of an effective axion-nucleon

coupling constant. The detection method also relies on the axio-electric effect, so there

is also a factor of the square of the axion-electron coupling constant. By comparing

the expected ratio of the number of candidate events at 14.4 keV, to the experimental

upper limit (at some confidence level), we are able to place an experimental bound on

the product of the axion-electron coupling and the effective axion-nucleon coupling

|gae × geffaN |:

|gae × geffaN | ≤
[

counts(CL)
ε · η × 9.98× 1030 (c · kg−1 · d−1)

]1/2

. (5.15)

This is the general formula that we apply to various experimental data sets to obtain

a bound, where the number of experimental counts and exposure differ. In some

cases, the detector efficiencies may also vary, but for the following results the value

ε = 1 is assumed.

Table 5.11: Experimental bounds on the product of the effective axion-nucleon and
axion-electron coupling by experiment (ε =1).

Data set |gae × geffaN | (90%CL) ≤ |gae × geffaN | (95%CL) ≤
CCVR2 1.99 × 10−16 2.23 × 10−16

CUORICINO 1.54 × 10−16 1.71 × 10−16

Combined 1.60 × 10−16 1.74 × 10−16

CUORE-0 (11-Ch) 9.06 × 10−17 9.75 × 10−17

CUORE-0 (22-Ch) 1.33 × 10−17

The upper limit on the 14.4 keV axion rate can be used to derive a bound on the
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PQ-scale fa (eq 5.16) or on the axion mass ma (eq 5.17).

fa ≥
[
ε · η × 5.35× 1021 (c · kg−1 · d−1)

counts(CL)

]1/4

GeV (5.16)

ma ≤
[

2.77× 105 × counts(CL)
ε · η (c · kg−1 · d−1)

]1/4

eV (5.17)

Again, to avoid rounding errors in obtaining the numerical factor in eq 5.16, the bound

on fa was computed directly by using the bound on the product of the axion-electron

and effective axion-nucleon coupling constants:

fa ≥
[

2.31× 10−5

|gae × geffaN |

]1/2

GeV (5.18)

Table 5.12: Experimental bounds on the PQ-scale (fa [GeV]) from the 14.4 keV axion
rate (ε =1).

Data set fa(90%CL)[GeV] ≥ fa(95%CL)[GeV] ≥
CCVR2 3.41 ×105 3.22 ×105

CUORICINO 3.87 × 105 3.68× 105

Combined 3.80 × 105 3.64× 105

CUORE-0 (11-Ch) 5.05 × 105 4.87 × 105

CUORE-0 (22-Ch) 1.31 × 106

Table 5.13: Experimental bounds on the axion mass (ma [eV]) from the 14.4 keV
axion rate (ε =1).

Data set ma(90%CL)[eV] ≤ ma[eV](95%CL) ≤
CCVR2 17.6 18.6

CUORICINO 16.0 16.8
Combined 15.8 16.5

CUORE-0 (11-Ch) 11.9 12.3
CUORE-0 (22-Ch) 4.58

5.7 Projection to CUORE

To determine the sensitivity that CUORE would have to observe an axion signal

at 6.4keV the null result of the axion search was projected to the scale of CUORE
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after five years of live time using the CUORICINO data set. Since the CUORE-0

threshold is above 6.4 keV, a conservative estimate is made with CUORICINO data.

The assumed exposures for CUORE at 6.4 keV is that half of the total 988 TeO2

bolometers (494) would have energy thresholds of 5 keV or lower. Additionally, the

scaled CUORE spectra are reduced by an additional factor, defined as the ratio of the

expected CUORE background in the 0νββ decay ROI, to the measured background in

the 0νββ decay ROI for CUORICINO. The expected DBD background for CUORE

is 0.01 c/kg/y/keV, and the DBD background for CUORICINO was 0.2 c/kg/y/keV.

For the projected 6.4 keV solar axion search with CUORE, an upper limit of

8.02×10−4 c/kg/d was determined at 90 % CL. This translates in to an upper bound

of gae ≤ 8.09× 10−12 (90% CL) for the axion-electron coupling constant, and a lower

bound of fa ≥ 2.10 × 107 GeV (90% CL) for the axion decay constant in the DFSZ

axion model. As mentioned previously, a value of S = 0.5 was used for the flavor-

singlet axial vector matrix element. A summary of the results is given in table 5.14.

Table 5.14: Projected sensitivity of CUORE to observe 6.4 keV solar axions from the
results of CUORICINO

90% CL 95% CL
Rate [c/kg/d] ≤ 8.02063 × 10−4 9.55973 × 10−4

gae ≤ 8.09 × 10−12 8.46 × 10−12

fa [GeV ] ≥ 2.1 × 107 2.01× 107

ma [eV ] ≤ 0.286 0.299

Fake events were added to the scaled up CUORE background spectra in the axion-

energy region of interest. These events were smeared by a gaussian distribution about

the axion energy with the established detector energy resolution of the experiment.

The background spectra of the CUORICINO experiment, scaled to CUORE, with fake

axion signal corresponding to an assumed value of fa are shown in figure 5.30. The

projected spectrum with no events added is also shown, for a side-by-side comparison.
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Figure 5.29: Monte Carlo likelihood function of the 6.4 keV axion amplitude and rate
[c/d/kg] for CUORE-0 projected to CUORE.
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Figure 5.30: Random CUORICINO background spectra scaled to CUORE, with fake
axion signal corresponding to an assumed value of fa. The projected spectrum with
no events is also shown.
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Figure 5.31: Limits on axion mass and decay constant of this work (in the DFSZ
axion model) and the projection to CUORE.

To put the final results of the axion search in perspective, results from other

experiments are given below in terms of fa:

• The previously published analysis of the CCVR2 experiment [13] gives an upper

bound for the 14.4 keV axion rate as ≤ 0.58 c/d/kg (95% CL). In the DFSZ

axion model, the PQ symmetry breaking scale bound is then fa ≥ 3.12 × 105

GeV (95% CL), corresponding to an axion mass of ma ≤ 19.2 eV. These bounds

are comparable to the bounds on CCVR2 from the present analysis.

• The CAST collaboration also considered the product of the axion-electron and

axion photon couplings [40], from bremsstrahlung, Compton scattering, and

axio-recombination (ABC) processes. This resulted in a bound of |gaγ × gae| ≤

8.1 × 10−23 GeV−1 at a 95% CL. In DFSZ axion model this corresponds to

fa ≥ 4.16× 107 GeV (95% CL).
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• The EDELWEISS-II [24] bound on the axion-electron coupling constant is gae ≤

2.56× 10−11 (95% CL), which corresponds to a fa ≥ 6.64× 106 GeV at a 95%

CL (DFSZ).

• The best bound on the axion decay constant (DFSZ model), from this present

analysis, is obtained with the CUORICINO experiment; fa ≥ 5.48 × 106 GeV

at a 95% CL (DFSZ).

Experimental results in terms of axion coupling constants:

• Edelweiss: gae ≤ 2.56 ×10−11 (95% CL)

• Edelweiss: |gaγ × gae| ≤ 4.70 ×10−17 (95% CL)

• CUORICINO: gae ≤ 3.1 ×10−11 (95% CL)

• CUORE-0: |gaγ × gae| ≤ 6.75 ×10−18 (95% CL)

• XMASS: gae ≤ 5.40 ×10−11 (90% CL)

• XENON100: gae ≤ 7.7 ×10−12 (90% CL)

• CUORE projection: gae ≤ 8.5 ×10−12 (95% CL)

5.8 Conclusion

In this dissertation we report on the first search for solar axions from atomic transi-

tions in the solar core. In addition, a search for the 14.4 keV axion from the ground

state transition in 57Fe in the sun was also performed using the axioelectric effect in

TeO2 bolometers in the CUORE-0 experiment. Both axion searches are performed in

the scope of the DSFZ invisible-axion model. The detectors are 5×5×5 cm3 crystals

operated at about 10 mK at the Laboratori Nazionali del Gran Sasso in Assergi, Italy.

Analyses of CCVR2, CUORICINO and CUORE-0 data were preformed using a low
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energy trigger, optimized to reduce the energy threshold of the detector. For the

search of the 6.4 keV axion, from the atomic K-shell transition in Fe, an upper limit

of 1.72×10−1 c · kg−1 · d−1 is established at 95% C.L. with the CUORICINO data,

which translates into lower bounds fa ≥ 5.48× 106 GeV 95% C.L. (DFSZ model) on

the Peccei-Quinn symmetry-breaking scale, for a value of S = 0.5 for the flavor-singlet

axial vector matrix element. This bound can be expressed in terms of axion mass as

ma ≤ 1.09 eV at 95% C.L. (DFSZ).

For the search of the 14.4 keV axion, from the M1 transition of thermally excited
57Fe in the solar core, an upper limit of 9.49×10−2 c · kg−1 · d−1 is established at

95% C.L., with the 11-channel CUORE-0 data, which translates into lower bounds

fa ≥ 4.87×105 GeV 95% C.L. (DFSZ) on the Peccei-Quinn symmetry-breaking scale,

for a value of S = 0.5 of the flavor-singlet axial vector matrix element. Again, this

bound can be expressed in terms of axion mass as ma ≤ 12.3 eV at 95% C.L. (DFSZ).

When considering the 22-channel CUORE-0 data a lower bound of fa ≥ 1.31 × 106

GeV 95% C.L. (DFSZ) on the Peccei-Quinn symmetry-breaking scale, is established.

This bound can be expressed in terms of axion mass as ma ≤ 4.58 eV at 95% C.L.

(DFSZ).

Regardless of which of the two CUORE-0 data sets are considered the CUORI-

CINO bound on the 6.4 keV axion rate gives a much stronger constraint since it relies

on only one axion coupling constant. For the CUORE experiment, it is imperative

that every effort is made to reduce the detector low-energy threshold to allow for

a 6.4 keV axion search. Conservative projections of the CUORE sensitivity, from

CUORICINO, gives fa ≥ 2.01 × 107 GeV in the DFSZ axion model (95% CL).
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der primären /beta-Strahlen von Radium E”. In: 60 (1930), p. 143.

109



[90] J. Menendez et al. “Disassembling the nuclear matrix Elements of the neutri-
noless ββ decay”. In: Nuclear Physics A 818 (2009), p. 139.

[91] Shigetaka Moriyama et al. “Direct search for solar axions by using strong
magnetic field and X-ray detectors”. In: Physics Letters B 434 (1998), p. 147.

[92] Mucal on the web. url: http://www.csrri.iit.edu/mucal.html.

[93] Neutron electric dipole moment. url: https://en.wikipedia.org/wiki/
Neutron_electric_dipole_moment.

[94] Nuclear Decay and Conservation Laws. url: http : / / philschatz . com /
physics-book/contents/m42633.html.

[95] Odkrycie neutrina. url: http://www.fuw.edu.pl/~neutrina/neutrino_
elektr.html.

[96] R. D. Peccei and Helen R. Quinn. “Constraints imposed by CP conservation
in the presence of pseudoparticles”. In: Phys. Rev. D 16 (1977), p. 1791.

[97] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Pseu-
doparticles”. In: Phys. Rev. Lett. 38 (1977), p. 1440.

[98] S Pirro et al. “Present status of MI-BETA cryogenic experiment and pre-
liminary results for CUORICINO”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment 444 (2000), p. 71.

[99] John Preskill, Mark B. Wise, and Frank Wilczek. “Cosmology of the invisible
axion”. In: Physics Letters B 120 (1983), p. 127.

[100] H. Primakoff. “Photo-Production of Neutral Mesons in Nuclear Electric Fields
and the Mean Life of the Neutral Meson”. In: Phys. Rev. 81 (1951), p. 899.

[101] V. Radeka and N. Karlovac. “Least-square-error amplitude measurement of
pulse signals in presence of noise”. In: Nuclear Instruments and Methods 52
(1967), p. 86.

[102] G G Raffelt. “Axions-motivation, limits and searches”. In: Journal of Physics
A: Mathematical and Theoretical 40 (2007), p. 6607.

[103] S. Rahaman et al. “Double-beta decay Q values of 116Cd and 130Te”. In: Physics
Letters B 703 (2011), p. 412.

110

http://www.csrri.iit.edu/mucal.html
https://en.wikipedia.org/wiki/Neutron_electric_dipole_moment
https://en.wikipedia.org/wiki/Neutron_electric_dipole_moment
http://philschatz.com/physics-book/contents/m42633.html
http://philschatz.com/physics-book/contents/m42633.html
http://www.fuw.edu.pl/~neutrina/neutrino_elektr.html
http://www.fuw.edu.pl/~neutrina/neutrino_elektr.html


[104] P. K. Rath et al. “Uncertainties in nuclear transition matrix elements for β+β+

and εβ+ modes of neutrinoless positron double-β decay within the projected
Hartree-Fock-Bogoliubov model”. In: Phys. Rev. C 87 (2013), p. 014301.

[105] Javier Redondo. “Solar axion flux from the axion-electron coupling”. In: JCAP
1312 (2013), p. 008.

[106] Matthew Redshaw et al. “Masses of 130Te and 130Xe and Double-β-Decay Q
Value of 130Te”. In: Phys. Rev. Lett. 102 (2009), p. 212502.

[107] Research: Neutrinoless Double Beta Decay. url: http://www.ecap.physik.
uni-erlangen.de/nexo/research.shtml.

[108] A. Ringwald. “Axions and Axion-Like Particles”. In: Proceedings, 49th Ren-
contres de Moriond on Electroweak Interactions and Unified Theories. 2014,
p. 223.

[109] Tomás R. Rodríguez and Gabriel Martínez-Pinedo. “Energy Density Func-
tional Study of Nuclear Matrix Elements for Neutrinoless ββ Decay”. In: Phys.
Rev. Lett. 105 (2010), p. 252503.

[110] N. D. Scielzo et al. “Double-β-decay Q values of 130Te, 128Te, and 120Te”. In:
Phys. Rev. C 80 (2009), p. 025501.

[111] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. “Can confinement ensure
natural CP invariance of strong interactions?” In: Nuclear Physics B 166
(1980), p. 493.

[112] P. Sikivie. “Experimental Tests of the "Invisible" Axion”. In: Phys. Rev. Lett.
51 (1983), p. 1415.

[113] J. H. Smith, E. M. Purcell, and N. F. Ramsey. “Experimental Limit to the
Electric Dipole Moment of the Neutron”. In: Phys. Rev. 108 (1957), p. 120.

[114] Spontaneous Decay of Nuclei. url: http://physics-database.group.shef.
ac.uk/phy303/phy303-4.html.

[115] Mark Srednicki. “Axion couplings to matter: (I). CP-conserving parts”. In:
Nuclear Physics B 260 (1985), p. 689.

[116] Standard Model. url: https://en.wikipedia.org/wiki/standard_model.

[117] Jouni Suhonen and Osvaldo Civitarese. “Review of the properties of the 0νβ−β−

nuclear matrix elements”. In: Journal of Physics G: Nuclear and Particle
Physics 39 (2012), p. 124005.

111

http://www.ecap.physik.uni-erlangen.de/nexo/research.shtml
http://www.ecap.physik.uni-erlangen.de/nexo/research.shtml
http://physics-database.group.shef.ac.uk/phy303/phy303-4.html
http://physics-database.group.shef.ac.uk/phy303/phy303-4.html
https://en.wikipedia.org/wiki/standard_model


[118] Max Tegmark et al. “Cosmological parameters from SDSS and WMAP”. In:
Phys. Rev. D 69 (2004), p. 103501.

[119] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (1978), p. 223.

[120] F. Wilczek. “Problem of Strong P and T Invariance in the Presence of Instan-
tons”. In: Phys. Rev. Lett. 40 (1978), p. 279.

[121] Guang Yang. “Neutrino mass hierarchy determination at reactor antineutrino
experiments”. In: Proceedings, 12th Conference on the Intersections of Particle
and Nuclear Physics (CIPANP 2015): Vail, Colorado, USA, May 19-24, 2015.
2015.

[122] Yu.G Zdesenko, F.A Danevich, and V.I Tretyak. “Has neutrinoless double β
decay of 76Ge been really observed?” In: Physics Letters B 546 (2002), p. 206.

[123] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions.
(In Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260.

112


	Dedication
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Neutrino physics
	The Standard Model
	Beta decay
	The discovery of the neutrino
	Double beta decay
	Neutrino properties and neutrinoless double beta decay

	Bolometers and the bolometric technique
	Development of TeO2 Bolometers
	The bolometric technique
	CUORE bolometers
	Going from CUORICINO to CUORE

	The CUORE-0 experiment and results
	The CUORE Project
	The CUORE tower assembly line
	CUORE-0 experimental setup and infrastructure
	Data collection
	Data processing and analysis techniques
	CUORE-0 background and 130Te 0 decay search results
	Conclusion

	Axion phenomenology
	The strong CP problem
	The Peccei-Qiunn solution and the axion
	Invisible axion models
	The axion-photon interaction
	Axion-electron interaction
	Axion-nucleon coupling
	Solar axions
	Axioelectric effect and absorption cross section

	Experimental search for solar axions
	Introduction
	Low-Energy Spectra
	The determination of the local energy resolution
	Background Models
	Experimental search for solar axions at 6.4 and 14.4 keV
	Axion search results
	Projection to CUORE
	Conclusion

	Bibliography

