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It was while gliding through these latter waters

that one serene and moonlight night, when all

the waves rolled by like scrolls of silver; and by

their soft, suffusing seethings, made what seemed

a silvery silence, not a solitude: on such a silent

night a silvery jet was seen far in advance of the

white bubbles, at the bow.

- Hermann Melville, Moby Dick

or the Whale
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Introduction

Double Beta Decay (ββ) is a rare transition between two isobars, involving the
change of the nuclear charge Z by two units. In Nature we have several even-
even nuclei for which this is the only allowed decay mode. While the transition
where 2 electrons and 2 neutrinos are emitted (2ν-DBD) does not imply ”spe-
cial” properties for the neutrinos (and has been observed for various isotopes),
this is not the case for the neutrinoless channel (0ν-DBD). Indeed, despite being
energetically possible, the neutrinoless transition violates the lepton number
by 2 units and is possible only if the neutrino is a massive Majorana parti-
cle [1, 2, 3]. 0ν-DBD searches have been pursued since more than half a century
and today they experience a renewed interest, thanks to the discovery of neu-
trino oscillations [4, 5, 6, 7]. However oscillations are not enough to investigate
the very heart of neutrino physics i.e. what is their nature and why neutrinos
are extraordinary light. Several theoretical speculations point toward a mass
generation mechanism that imply a Majorana character of neutrinos and that
indicates in the 0ν-DBD process the unique tool with a discovery potential. The
0ν-DBD transition can proceed through different mechanisms among which
the simplest and favourit one is the ”pure Majorana mass”. In that case the
0ν-DBD observation would not only provide evidence of lepton violation and
of the Majorana character of this particle, but would result in a measurement of
the Majorana mass mee = |

∑
miU

2
ei| (where mi are the three mass eigenstates

of neutrinos and Uei are the PNSM matrix elements) through the relation:

1

τ 0ν
1/2

= m2
eeFN = m2

eeG
0ν |M0ν |2 (1)

Here G0ν is the two-body phase-space factor and M0ν is the 0ν-DBD Nuclear
Matrix Element (NME) their product FN being called ”nuclear factor of merit”.
The name refers to the fact that, according to (1), FN directely influences the
experimental sensitivity to mee. The main uncertainty in deriving mee (or an
upper limit on it) from the experimental result on τ 0ν

1/2 comes from the NME ele-
ment which is a theoretical evaluation still affected by a large spread among the
adopted nuclear models and their implementation [8, 9, 10, 11]. As a practical
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solution to this uncertainty source, several isotopes candidates to 0ν-DBD have
been studied so far. Among them those that yielded the most stringent limits
on mee (within the NME spread) are 76Ge [12, 13, 14], 100Mo [15], 130Te [16] and
136Xe [17]. In all but one [18] case only upper bounds on the Majorana mass
have been reported. In this paper we discuss the final 0ν-DBD result of the
CUORICINO experiment, that yields the more stringent bound on mee based
on 130Te studies. In this thesis I will describe my contributions to the data anal-
ysis of CUORICINO data, giving at the same time the theoretical and experi-
mental context of this experiment.
This thesis is subdivided in two parts: the first three chapters should give an
idea of the CUORICINO, from its theoretical context up to the evaluation of the
0ν-DBD limit, while the last chapters are a description of my contributions to
the analysis of this experiments.
At first, I’ll summarize the Neutrinoless Double Beta Decay theory, describ-
ing why its observation would be so important in the Standard Model. In the
second chapter, I’ll give a description of the experimental technique used in
CUORICINO, the bolometric approach, which has been chosen to face the chal-
lenge of observing such a rare process. In the third chapter, a summary of the
main steps required to infere a limit on 0ν-DBD , from the detector’s DAQ to
the fit of the final spectrum will be given.
In the fourth chapter, I’ll focus on my contributions on Digital Signal Process-
ing, one of the core part of my thesis work, which consisted on the analysis
perfomed on bolometric signals used to gain in resolution and reduce the back-
ground. The fifth chapter gives a detailed description of the statistical studi-
esthat lead to the evaluation of the limit on the half-life of , while in the sixth
chapter I’ll describe a different way of proposing a scientific result when deal-
ing with quantities close to the experiment’s sensitivity as the CUORICINO
limit on 0ν-DBD .



Chapter 1

Neutrinoless Double Beta Decay

Neutrino properties are well described by the standard electroweak theory that
was finally formulated in the late 60’s in the works of S. Glashow, A. Salam,
and S. Weinberg. Together with quantum chromodynamics (QCD), this theory
forms the so called Minimal Standard Model (MSM) of particle physics. All
the existing experimental data are in good agreement with MSM, except for
observed anomalies in neutrino processes. Small neutrino masses can not be
explained by the Standard Higgs mechanism used to describe fermion masses.
The most simple extention of the MSM that could explain the neutrino mass
generation (the “see-saw” mechanism) is based on the assumption of the vio-
lation of the total lepton number and a Majorana nature of the neutrino, which
means that it can be considered as its own anti-particle.
The succesfull results of the oscillation experiments did prove that at least one
neutrino has a mass different to zero but they are not sufficient to solve the
neutrino puzzle.
A probe which is very sensitive to the neutrino nature is the Neutrinoless Dou-
ble Beta decay.
In this chapter the theoretical context of this rare process is summarized. Few
details will be given concerning the Standard Model, the neutrino oscillations
theory and the standard see-saw mechanism. This will give a feeling of how
many informations can be extracted by the study of a single phenomenon and,
finally, a description of this rare process will show why it represents such an
impressive challenge.

1.1 The Standard Model

The Standard Model is the most complete description of weak, strong and elec-
tromagnetic interactions that we posses. Since its birth in the 70’s it proved to
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be extremely resistent to every experimental test.
The founding principle of this model is based, as many of the most elegant ax-
ioms, on strong requirements, or desire, of symmetry: the differential equations
that describe the evolution of fields that reprent particles are bound to be invari-
ant under a particular kind of transformations called “local gauge group”. The
term gauge refers to a class of operations that act on internal degrees of freedom
of a theory.
In Field Theory, the simplest gauge transformation takes the form:

ψ(x, t)→ eiθ(x)ψ(x, t) (1.1)

where θ is a scalar (but can also be a vector or even a tensor), called the gen-
erator of a generic group of transformations (in this case, phase shifts). If θ
is constant these trasformations are called “global” and are indeed important,
since it is from them that, by means of Noether’s theorem, we can derive im-
portant conservation laws (i.e. energy, momentum or charge conservation). If
θ has instead an explicit dependence from a coordinate, equation (1.1) will de-
scribe a “local” gauge.
Imposing a simmetry under this kind of transformation is not trivial. The La-
grangian L that describes the evolution a particle field ψ is:

L = iψ̄γµ∂µψ −mψ̄ψ (1.2)

and it can’t be invariant under a local gauge, since dependence of θ by the
position will add a term, proportional to ∂µ θ.
The covariance of this equation will be guaranteed if we choose an more gen-
eral definition for the operator ∂µ that can absorb the term ∂µθ(x). The new
form for this operator contains new fields that satisfy specific transformation
laws.
A possible functional form of this operator is a generalization of the derivative,
called “covariant derivative”. To form this operator we must include a new
vector field with proper trasformation properties under (1.1) so that the addi-
tional term in the lagrangian can be canceled. A possible choice is a vector field
Aµ that transforms as:

Aµ → Aµ − ∂µθ. (1.3)

This field can be included in the new operator, which will be defined as:

Dµ ≡ ∂µ − iAµ (1.4)

The price we must pay, to guarantee the symmetry, is that the lagrangian of
free particle becomes:

L = iψ̄γµDµψ −mψ̄ψ = = ψ̄(iγµ∂µ −m)ψ + ψ̄γµψAµ (1.5)
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The last term has exactly the form of an interaction term: the electromagnetic
interaction is in fact expressed as the product of a term like ψ̄γµψ (which is a
density current) times a vector field [19].
In order to guarantee the symmetry, an interaction field must to appear.
In this case, θ(x) is a scalar field depending on the position and can be consid-
ered a potential. This symmetry belongs to the group of phase shifts, generally
labelled asU(1) , and it is an Abelian group. Weak and Strong forces are derived
by extending this procedure to non-Abelian groups. As an example, weak in-
teractions can be considered as rotations (whose generator is the group SU(2))
in a bidimentional space on vectors whose components are fermions with the
same flavour:

leptons

(
e
νe

)(
µ
νµ

)(
τ
ντ

)
(1.6)

quarks

(
u
d

)(
s
c

)(
t
b

)
(1.7)

Actually, in order to include the experimental evidence of parity violation in
weak interaction fenomenology, the requirement of invariance under SU(2)
is imposed only between left-handed projections of these doublets (or right-
handed if we are dealing with anti-particles). This is the main reason why, in
the β− decay, only right-handed anti-neutrino can be produced.
In a similar way, the strong interactions will emerge by imposing a symmetry
of the Lagrangian under SU(3) (the group of rotations in a three dimentional
space) that will act on the three components of color space in which the quarks
are grouped.
Gathering together all these symmetry information, the MSM can be simply
defined by the combined symmetry group:

U(1)× SU(2)L × SU(3) (1.8)

The fields that emerges for the symmetry of this group are called “gauge fields”,
and each has a corresponding particle, called “boson”. Example of these bosons
are the photon for the electromagnetism, or the W+,W− and Z0 for the weak
interactions.

1.2 Particle masses

The symmetries of the Lagrangian summarized in (1.8) have an important re-
quirement: the bosons describing the interactions have to be massless. While
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this is true for the photon, this is not true for the bosons that mediates weak
interactions.
The problem is that the most general term that can give a mass to a free particle
has the form mψ̄ψ, which explicitly violates the required simmetry.
This problem is overcome by the mechanism of “spontaneus simmetry break-
ing” [19] that, in a similar way that was followed for the forces, introduces in
the Lagrangian a new scalar field, the Higgs field, that interacts with the bosons
giving the required mass term for the particlesW+,W− and Z0. The Higgs field
gives mass also to the fermions by their coupling with this scalar field.
Anyhow, in this description of the Standard Model, there are still many open
questions concerning neutrinos.
If we express the term in the Lagrangian that gives mass to the fermions on
chirality eigenstates we obtain:

Lm = mννν = mν(νLνR + νRνL) (1.9)

but the Standard Model can’t include the existance of right-handed neutrinos,
thus it is not possible to build a massive term like this: within its contest we
are not able to explain simoultaneousely the fact that neutrinos have a defined
elicity but do have a mass, as shown by the phenomenon of oscillation that will
be described in the next section.

1.3 Neutrino Oscillation

The most astonishing evidence of the massive character of neutrinos has come
from oscillation experiments.
In quantum mechanics, there is an oscillation phenomenon whenever the prob-
ability of measuring the flavour eigenstate of a particle has a periodic behaviour
which is a function of the travelled distance. The base assumption needed to
explain this quantum effect is linked to the possibility that the flavour eigen-
states |να〉 (or eigenstates of the interactions) are linear superposition of mass
eigenstates |νi〉:

|να〉 =
n∑
i=1

U?
αi|νi〉 (1.10)

here n is the number of eigenstates and U?
αi the generic matrix element (the

“mixing” matrix) that gives the weights of the linear combination.
In case of two neutrinos generations, it can be shown [4] that the matrix U
(in this case 2 × 2) can be parametrized only by an angle θ. By studying the
projection of a flavour eigenstate on the other, expressed as mass eigenstate
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Figure 1.1: Possible neutrino spectra: inverted (left), normal (right)

Best fit 99% CL range
∆m2

12 = (7.58± 0.21) 10−5eV2 (7.1÷ 8.1) 10−5eV2

|∆m2
23| = (2.40± 0.15) 10−3eV2 (2.1÷ 2.8) 10−3eV2

tan2 θ12 = 0.484± 0.048 31◦ < θ12 < 39◦

sin2 2θ23 = 1.02± 0.04 37◦ < θ23 < 53◦

sin2 2θ13 = 0.07± 0.04 0◦ < θ13 < 13◦

Table 1.1: Summary of present information on neutrino masses and mixings from os-
cillation data.

superpositions, it will be possible to obtain the transition probability by the
formula:

P (να → νβ) ' sin22θ sin2

(
1.27

L[Km]

Eν [GeV ]
∆m2

12

)
(1.11)

where L ed E are, respectively, the distance from the origin and energy of the
particle, while ∆m2

12 = |m2
1 −m2

2| .
By measuring the disappearance probability, as the ratio between the observed
and expected flux of a certain flavour, one can link this information to this
squared mass differences. If an experiment finds that this probability is dif-
ferent from zero, it means that at least one neutrino has a mass eigenvalue
different from zero.

The most important experiments deal with the disappearance of electronic
neutrinos (solar) and muonic neutrinos (atmospheric). The standard notation is
that the three neutrino masses mi are ordered such that m3 is the most splitted
state and m2 > m1. With this choice ∆m2

23 and θ23 are the “atmospheric param-
eters” and ∆m2

12 and θ12 are the “solar parameters”. Whatever the spectrum of
neutrino masses (“normal hierarchy” so that ∆m2

23 > 0 or “inverted hierarchy”
so that ∆m2

23 < 0, see figure 1.1), the two neutrino mixing is a valid description
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of oscillation experiments. This is a consequence of the experimental evidence
for a hierarchical ordering of the mass splittings:∣∣∆m2

12

∣∣� ∣∣∆m2
13

∣∣ ' ∣∣∆m2
23

∣∣ (1.12)

Figure 1.1 shows the possible scenarios for the neutrino mixings and mass
spectrum, while table 1.1 summarizes the oscillation interpretation of the two
established neutrino anomalies (a further and detailed discussion on this re-
sults can be found in [4].
As already stated, oscillation experiments gave many informations concerning
many properties and aspects of neutrino physics but are blind to their Dirac or
Majorana nature or to their absolute mass scale.

1.4 Dirac or Majorana

While an experimental set-up whose purpose is the discrimination between
electrons and positrons would be trivial, thanks to their coupling with an elec-
tromagnetic field, an experiment designed to distinguish a neutral lepton by its
own anti-particle would be a non obvious challenge.
Suppose that, in a generic frame of reference a left-handed neutrino νL is mov-
ing with negative elicity; since it is proved that neutrinos do have a mass, there
will be an appropriate Lorentz boost that will identify another frame of refer-
ence in which the neutrino will have an opposite helicity: as it will be moving in
the opposite direction,with a simple change of reference frame, we have trans-
formed a left-handed neutrino νL into a right-handed νR. If we assume the
validity of CPT theorem, there must exist the CPT-coniugate of this particle: an
anti-neutrino with positive helicity ν̄R.
At this point, we could ask ourselves if there is a quantum number that would
allow us to distiguish between νR and ν̄R. If this number exists, there would be
four different eigenstates with the same mass: νL, νR, ν̄R and ν̄L. Their physics
would be described by a Dirac field, exactly as for the charged leptons. If no
such quantum number exists, the neutrino eigenstates would be only two, dis-
tiguished by their helicity and it would become impossible to distinguish be-
tween ν̄R and νR. In this case, where no distinction bewtween particle and anti-
particle is possible, the neutrino will be described by a Majorana field. These
fields can be simply obtained by means of simple linear combinations of Dirac
fields, for example:

ν =
1√
2

(ψL + (ψL)c), or N =
1√
2

(ψR + (ψR)c) (1.13)
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where ψR and ψL are the generic projection of a Dirac spinor on its two chirality
components, defined as ψL,R = [(1 ∓ γ5)/2]ψ, while ψc is the charge-conjugate
of ψ.
It is straighforward to see that these fields are invariant under charge conju-
gation and they are constitued only by left-handed and right-handed spinors
respectively.
To summarize: in the Dirac situation neutrinos are described by a single field,
used to describe its four degenerate mass eigenstates (left-handed, right-handed,
particle, antiparticle); in the Majorana case, light neutrinos are defined by a sin-
gle field, with only two components: left-handed or right-handed.
The Majorana picture would be ruled out if the quantum number to distin-
guish between νR and ν̄R exists, but in the Standard Model such a number is
included: it’s the lepton number. Nevertheless, there is nothing sacred about
lepton number whose conservation is not a requirement arising from a higher
principle, it is rather an experimental fact. If an experiment proves that its con-
servation can be violated, there is thus no reason why νL or ν̄R cannot be the
same counterpart of the same object.

1.5 The see-saw mechanism

Another open puzzle of the Standard Model is the huge different mass scale
between neutrinos and the corresponding charged leptons.
In order to build up a theoretical context that would include this feature we
must extend the gauge mechanism to a more general symmetry group.
The main insight is the extention of the symmetry group of the MSM defined
in equation (1.8) to a more general one is:

SU(3)× SU(2)L × SU(2)R × U(1). (1.14)

In this equation, SU(2)R could be seen as the symmetry group connected to a
weak interaction similar to the standard one but mediated by a right-handed
boson WR. The presence of this field would link the right-handed components
of fermion fields by means of new right-handed bosons. In order to explain an
idea of this mechanism we will consider the simplest case of one type of neu-
trino. Let us assume the standard Higgs mechanism with one Higgs doublet,
which is the mechanism of the generation of the masses of quarks and leptons.
If we use the Majorana fields defined in the previous section, we can construct
a Dirac mass term as follows:

LD = −MD(ν̄N + N̄ν) (1.15)
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It is natural to expect that the mass MD is of the same order of magnitude as
masses of the corresponding lepton or quark. We know, however, from experi-
mental data that neutrino masses are much smaller than the masses of leptons
and quarks. In order to “suppress” neutrino mass let us assume that there exist
also the lepton number violating Majorana mass terms:

− LM = MLν̄ν +MRN̄N (1.16)

the former (ML) is experimentally bound to be basically zero, the latter (MR)
has to be of energy scales of the order of the TeV. We are in fact assuming that
the mechanism that gives rise to MR is the result of a spontaneous symmetry
breaking of the group SU(2)R, which must have happened at energies greater
than the scales of the Great Unification Theory. Combining equations (1.15) and
(1.16) in a more compact form as:

− LM = ( ν N )M
(
ν

N

)
where M≡

(
ML MD

MD MR

)
(1.17)

it will be possible to diagonalized the mass matrixM obtaining two eigenval-
ues:

Mν '
M2

D

MR

, MN 'MR (1.18)

where ' is used by virtue of the experimental approximation of ML = 0 e
MR >> MD.
As mass eigenstates one of the order of meV, the other of the order of MGUT .
By including this more general symmetry group, an explanation of the mass
difference between light neutrinos and charged fermions. The price for this is
the appearance of a new particle, whose mass MN is so heavy that only LHC
could be a fair challenge for its discovery.

1.6 Neutrinoless Double Beta Decay

Double Beta Decay (DBD) is a rare spontaneous nuclear transition, whose ex-
istence was first proposed by Maria Goeppert–Mayer in 1935 [20]. In this tran-
sition, a nucleus (A,Z) changes the nuclear charge of two units maintaining
the same mass number, becoming therefore a (A,Z±2) nucleus. Suppose that
an (A,Z+2) nuclide appears in the final state. Normally DBD is not favored in
respect to single β-decay: the transition is observable only when the nuclide
has single β-decay energetically forbidden (which occurs when the intermedi-
ate (A,Z+1) nucleus has a binding energy greater than the (A,Z) and (A,Z+2)
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Figure 1.2: Nuclear mass as function of the proton number.

nuclei).

This situation can be understood by looking at the Weizsäker expression
for the atomic mass as a function of the mass number A and the number of
neutrons N and protons Z. In particular, the Weizsäker formula contains the
“pairing” term that takes into account the increase in binding energy of the
nucleus when protons or neutrons are coupled to give an angular momentum
equal to zero:

δ =


+12/A1/2 for even A and odd Z,N
−12/A1/2 for even A and even Z,N
04 for odd A

(1.19)

If isobaric nuclei are considered and their atomic masses are plotted as a
function of Z it is easy to find that, for odd A, the nuclei are positioned as de-
scribed on the left side of Fig. 1.2. If even A nuclei are considered, it is found
that the nuclear masses are disposed as shown in the right part of Fig. 1.2.

Two different DBD modes are usually considered. First, the decay with
two neutrinos (2ν-DBD). Lepton number is conserved by this decay, which is
allowed by the SM:

2ν−DBD : (A,Z)→ (A,Z + 2) + 2e− + 2ν̄e (1.20)

Second, the decay without emission of neutrinos (0ν-DBD), given by

0ν−DBD : (A,Z)→ (A,Z + 2) + 2e− (1.21)
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Figure 1.3: The “Black box” of 0ν-DBD: regardless of the physical mechanism that
dominates the decay, this diagram shows that a modification in the neutrino propaga-
tor results in a Majorana mass term for neutrinos [21].

This decay mode is forbidden in the Standard Model, as it violates the lepton
number by two units.

A brief look at the reaction above makes it evident that lepton number con-
servation is violated. Neutrinoless double beta decay can proceed through
many different mechanisms: almost any physics that violates the total lepton
number can generate it [22]. We will focus on the simplest channel, where only
two electrons are produced in the final state.
An experimental confirmation of this decay mode will thus constitute an im-
portant step in the study of elementary particle physics beyond the SM. The
Feynman diagrams for both decay modes are shown in Fig. 1.4. While the 2ν-
DBD diagram contains only SM interactions, the 0ν-DBD requires the known
V −A interactions in addition to a massive Majorana neutrino. The virtual neu-
trino in the diagram can be thought of as produced as an anti-neutrino at one
vertex and absorbed as a neutrino, which is equal to the anti-particle thanks to
the Majorana nature, at the other vertex; moreover, a non-zero neutrino mass is
required to flip the helicity, since the neutrino emitted with the electron at ver-
tex 1 is right-handed and the one absorbed at the other vertex is left-handed.
Should 0ν-DBD occur, its rate would be much lower than the one of 2ν-DBD
because of the helicity flip and the smallness of the neutrino mass.
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Figure 1.4: Feynmann diagrams for the two Double Beta Decay channels: (a) 2ν. (b)
0ν: an anti-neutrino is produced at vertex 1 and a neutrino is absorbed at vertex 2; this
process is allowed only for Majorana neutrinos.

The discrimination between these decay modes is, in principle, very sim-
ple and is based on the shape of the spectrum obtained by summing on the
energies of the two emitted electrons. In fact, this spectrum is determined by
the phase space of the other emitted particles. As shown in Fig. 1.5, 2ν-DBD
is a four body decay, with a continuous spectrum featuring a maximum value
around one third of the Q-value. On the contrary, the two electrons retain all
the available kinetic energy in 0ν-DBD (neglecting nuclear recoil). For this rea-
son, the spectrum is just a spike at the transition energy.

In both cases, DBD is a semi-leptonic second-order weak interaction, and
thus is characterized by a very long lifetime: for example, experimental half-
lives for this decay mode are T 2ν

1/2 ∼ 1018 − 1022 years for the 2ν-channel. This
remarks that the experimental observation of this decay turns out to be a great
challenge: very rare events have to be detected and disentangled from the
traces of other radioisotopes, which have similar transition energies but de-
cay times even 10 orders of magnitude shorter. Presently, 2ν-DBD has been
observed for ∼ 10 nuclides, while there exists only one positive result for 0ν-
DBD [18].
The probability for 0ν-DBD to occur is usually expressed using the general re-
lation derived from Fermi’s golden rule:
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Figure 1.5: Schematic representation of the spectra obtained by summing on the two
electrons energies for 2ν-DBD (dashed line) and 0ν-DBD. In the inset, the relative in-
tensity of the 2ν-channel is overestimated in order to underline its contribution to the
0ν background. Spectra are obtained with the convolution of a 5% energy resolution,
common to many experiments.

[
T 0ν

1/2

]−1
= G0ν |M0ν |2〈mββ

2〉 (1.22)

In the previous equation, G0ν is the phase space integral, approximately pro-
portional to

[
Q0ν
ββ

]5 and determined exactly, |M0ν |2 is the decay matrix element
and 〈mββ〉 the effective Majorana mass, defined by

〈mββ〉 ≡
∑
i

φimi|Uei|2 (i = 1, 2, 3) (1.23)

The φi phases that appear in the last equation are the CP intrinsic neutrino
parities, which are connected to the Majorana phases. Their presence implies
that cancellations are possible, and if the neutrino is a Dirac particle the can-
cellation is total (it is equivalent to a couple of degenerate Majorana neutrinos
with opposite phases), so that the decay doesn’t take place. It is true, however,
that mechanisms other than the exchange of a light Majorana neutrino cannot
be excluded for 0ν-DBD. However, it has been shown [21] that if 0ν-DBD oc-
curs, then neutrinos are Majorana particles even if the decay is dominated by
a different process: the dominant mechanism that drives 0ν-DBD is inserted
into the black-box shown in Fig. 1.3, and by connecting the external lines appro-
priately, a contribution to the neutrino propagator that turns ν into ν induces
always a Majorana mass term. The conclusion is that the experiments looking
for 0ν-DBD provide a model-independent determination of the neutrino na-
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corresponds to the inverted hierarchy and the red one to the normal hierarchy; the
darker bands are the regions allowed if oscillation parameters were to be known with
infinite precision [4].

ture, no matter which is the dominant mechanism driving the decay.

The importance of 0ν-DBD in the field on neutrino physics does not end
here: Eq. ((1.23)) points out also its importance in mass hierarchy discovery. In
fact, even if 〈mββ〉 has a dependence on φi, its upper and lower limits depend
on the absolute values of the mixing matrix elements. There is a relationship
between the effective Majorana mass and the lightest neutrino mass: it depends
on the valid hierarchy, according to which the lightest mass eigenstates is deter-
mined. The 〈mββ〉 vs. mlight relationship can be determined easily for both the
normal and the inverted hierarchy. The result in the case of normal hierarchy,
where mlight = m1, is reported as an example:

mββ = |cos2θ12cos
2θ13e

iα1m1 (1.24)

+sin2θ12cos
2θ13e

iα2
√

∆m2
12 +m2

1 + sin2θ13e
−2iδ
√
|∆m2

13|+m2
1|

Incorporating the values of mixing angles and squared-mass differences
measured by oscillation experiments gives mν in function of m1 for the normal
hierarchy and m3 for the inverted hierarchy, for a given set of phases. Fig. 1.6
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Figure 1.7: NME values for different nuclei. NME (red dots) and two different QRPA
calculations are compared (black and blue bars). The spread is due indicates the limits
of the values obtained by varying the input parameters [10]

shows the plot of mν in the two cases, allowing phases to vary from 0 to 2π.
Thus, an observation of 0ν-DBD, together with data provided by oscillation
experiments, would define a range for the absolute neutrino mass and disen-
tangle the hierarchy scheme of the neutrino mass eigenvalues. Experiments on
0ν-DBD search give an upper limit to the effective Majorana mass and rule out
regions of the plot 1.6. In particular, a sensitivity of ∼ 10 − 50 meV on 〈mββ〉
could definitely exclude the inverse and quasi–degenerate hierarchy.

1.6.1 Nuclear matrix elements

Eq. ((1.22)) shows clearly that the evaluation of 〈mββ〉 from an experimental
measurement of T 0ν

1/2 requires the exact knowledge of the Nuclear Matrix El-
ements 〈M0ν〉. From a theoretical point of view, this is the main limit when
describing 0ν-DBD. It has been discussed in the previous section that without
making any assumption on the mechanism that generates neutrinoless double
beta decay, the existence of this process implies that neutrinos are Majorana
particles. However, in order to extract informations on the neutrino mass hi-
erarchy and the absolute mass scale, some assumptions must be made on the
mechanism that is responsible for this process. The simplest possibility is to
assume that the 0ν-DBD occurs by the exchange of a light Majorana neutrino.
It is clear that, even under this assumption, the phase space factor G0ν and
the nuclear matrix element (NME) M0ν must be known in order to extract the
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value of mββ . Moreover, a strong evidence of neutrinoless double beta decay
can be obtained only if a positive signal is seen in several isotopes. This condi-
tion is necessary to rule out the possibility that the observed signal is produced
by some other unknown rare process able to mimic the 0ν-DBD experimental
signature. However, since different isotopes have different values for G0ν and
M0ν , these quantities must be known in order to compare experiments. While
the phase space factor can be evaluated exactly, NME represents the biggest
source of theoretical uncertainty in the evaluation of mββ . Nuclear matrix ele-
ments depend on the structure of the parent and daughter nuclei, as well as the
intermediate one. Since a many bodies problem must be solved, the calcula-
tion cannot be carried out analytically, but requires numerical computations in
which several approximations are introduced. There are different approaches
for the evaluation of nuclear matrix elements, two of the most important one
are the quasi-particle random phase approximation (QRPA) [23] and the nu-
clear shell model (NSM) [24]: since their correcteness and accuracy are strictly
related to the nuclear transition we are dealing with, there is still no simple ver-
ification, thus one possibility is to consider the spread of the theoretical values
as a measure of their uncertainties: figure 1.7 gives an idea of such spreads.





Chapter 2

Bolometric Detectors for Rare
Events Searches

2.1 Introduction

The passage of an elementary particle, an ion or a photon through matter gives
rise to ionization and excitation of nuclei and atoms of the traversed material,
resulting in a transfer of the particle kinetic energy to the traversed material.
Generally ionization represents a minority fraction of the total energy lost by
the particle, the majority fraction is indeed converted into phonons, the quanta
of elementary vibrational excitations of the atoms. In a material at thermal
equilibrium phonons account for the thermal motion of the atoms, their mean
energy being therefore proportional to the temperature.
Conventional techniques for the measurement of the energy deposition by an
elementary particle (or an ion or a photon) are based on the direct or indirect
detection of ionization [25]. More recent is the developement of devices based
on phonon detection, called thermal detectors or bolometers [26]. In these de-
vices the phonon signal is detected long after ion pair recombination, when -
if radiative energy losses are negligible - also the ionization energy have been
converted into phonons. It is quite common to read-out the phonon signal
when the initial non equilibrium energy distribution of phonons has reached
thermal equilibrium. In this approximation, where all the incident energy is
thermalized, the detector provides a true calorimetric measurement of the en-
ergy deposited by the particle and the macroscopic variable measured by the
phonon sensor is the temperature (this the reason for calling them thermal de-
tectors).
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2.2 Calorimeters

A calorimeter is a detector measuring, by means of a dedicated sensor, the tem-
perature rise of the material in which a particle interacted, releasing a franction
∆E of its energy. If C(T ) is the thermal capacity of the material and T its ini-
tial temperature, the energy convertion ∆E produces a temperature rise ∆T . If
C(T ) ' C(T + ∆T ) (which is a reasonable approximation for energy deposi-
tions of the order of 1 MeV are deposed in tens of milligrams of materials at low
temperature) the the temperature variation can measure the energy released in
the detector via:

∆T =
∆E

C(T )
(2.1)

The intrinsic resolution of the measurement is limited only by the thermody-
namic fluctuations of the internal energy U of the absorber. The squared mean
value σ of these fluctuations is given by:

σ =
√
k · T · C(T )2 (2.2)

where k is the Boltmann constant.
At room temperature these kind of detectors wouldn’t have the sensitivity to be
used as a particle detector. This is the reason why these instruments are gener-
ally used at temperatures of the order of mK where they can become even more
competitive than the state of the art solid state detectors.

2.3 Thermal signal

A thermal detector consists of three main components:

• the particle absorber, which is the mass where the particles interact, de-
positing a fraction of their energy. Through the detection of its temper-
ature rise it’s possible to measure the amount of energy deposited. The
absorber material can be chosen quite freely, the only requirements being,
in fact, reasonable thermal and mechanical properties. The absorber mass
can range from few micrograms to few kilograms;

• the temperature sensor which is used to measure the temperature rise in-
duced by the particle interaction in the absorber. Different kind of ther-
mometers exists, depending on the material and on the process through
which the temperature signal is converted into an electric signal. The sen-
sor is connected to the absorber by a thermal conductance GAS ;
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• the thermal link which provides the restoring of the equilibrium temper-
ature of the absorber after the heat pulse. It is the thermal conductance
Gab between absorber and the heat sink. Together with the system heat
capacity it influences the time response of the detector.

The heat sink is a low temperature refrigerator able to mantain the detectors at
temperatures ranging from about 0.1 K to 10 mK. By working at this tempera-
tures two important conditions are satisfied: the heat capacity of the absorber
is very low and the statistical fluctuation of temperature are small. Figure 2.1
shows this simplified model.
The deposed energy is transformed in heat and it is transmitted thorugh GAS

to the sensor whose temperature rises by consequence. The conductance GAB

guarantees that the system returns to thermal equilibrium with the heat sink
after the particle induced a temperature signal.
In order to collect all the information, the transmission time tAB of the heat to
the heat sink must be longer than tAS , the time need to reach equilibrium be-
tween absorber and sensor.
Using some math, if we keep both the heat capacities of absorber and sensor
constant and being P (t) the thermal power dissipated on the sensor, the dif-
ferential equation that describes that heat flow from the absorber to the sensor
are:

P (t) = GAB(TA − T0) +GAS(TA − TS) + CA
dTA
dt

(2.3)

GAS(TS − TS) = Cs
dTS
dt

(2.4)

where CA and CS are the thermal capacities of absorber and sensor respec-
tively, while TA,TS and T0 are the temperatures of the absorber of the sensor
and of the heat bath.
These equations are easily solvable by means of Fourier Transform, which leads
to the solution for the time developement of the temerature T (t):

T (t) = T0 +
∆E

(α− β)

(
e−

t
α − e−

t
β

)
(2.5)

where α and β are liked by the relation:{
α + β = τAS + τAB + CAS

GAB

α× β = τAS × τAB
(2.6)

where τAS = CAS
GAS

and τAB = CAB
GAB

: the expected temperature signal rises in a
finite time and returns to T0 with an exponential behaviour.
This thermal model can, in some cases, be even more simplified if that absorber
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Figure 2.1: Schematics of a simple thermal detector.

and sensor are considered as the same object (we will refer to this approxima-
tion as monolithic bolometer). In this case there’s only one thermal conductance
and capacity (G and C) and the signal has an instant rise time and an exponen-
tial decay:

∆T (t) =
∆E

C(T )
e−

t
τ (2.7)

where τ = C
G

.

2.4 Phonon physics

In order to understand the model described in the previous section, it can be
useful to discuss the process that leads to developement of a thermal signal af-
ter a particle interaction.
A ionizing particle loses energy primarly by means of scattering with the elec-
trons of the material it’s crossing. The energy of this interaction is converted in
the production of electron-hole couples and in phonons. As we stated ad the
beginning of the chapter, the phonon is the quantum of energy associated to
the different vibrational frequency mode of the crystal.
There are two kind of phonons that can be produced: optical and acoustical, de-
pending whether their vibrational pattern is longitudinal or transversal.
After the electron-hole recombination, mainly optical phonons are produced.
In times of the order of tens of ns their energy is converted into acoustic phonons.
At this point, phonons can follow different kind of propagation modes in the
crystal: when the optical phonons decay, phonons are still confined in the re-
gion of the primary interaction; this region expands due to the phonon propa-
gation up to dimentions of their propagation length; this propagation is called
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“balistic”, since the phonons basically evolve like free particles; by means of
scattering with the impurities in the crystal the propagation becomes diffusive
until the thermal equilibrium is reached. At this point, they are distributed in
frequency with a Plank spectrum whose temperature is shifted with respect the
equilibrium one (proportionally to the energy of the incident particle).

2.4.1 Phonon sensors

In principle two kinds of phonon can be detected: thermal or non-thermal [27].
Non-thermal phonons propagates with non-equilibrium distribution in the crys-
tal; being subjected by few scatterings, they mantaining a “memory” of the
interaction site: using several fast sensors it is possible in principle to deter-
mine the particle interaction point using the phonon signal relative time. This
phonons are difficult to be detected.
Thermal phonons instead are uniformely distributed in the crystal and their
signal can be measured as a thermal pulse described in section 2.3.
In order to achieve good signal-to-noise ratio, a phonon detector neeeds a high
sensitivity phonon sensor. The phonon sensor is a device that collects the
phonons produced in the absorber and generates an electrical signal, usually
proportional to the energy contained in the collected phonons. A simple re-
alization of this device can be accomplished through the use of a thermistor,
whose resistance, as a function of the temperature, has a steep slope. In prac-
tical devices, there are two main classes of thermistors which give the best re-
sults: semiconductor thermistors (STs) and transition edge sensors (TESs).
Thermistors are usually characterized by their “logarithmic sensitivity” A, de-
fined as:

A =

∣∣∣∣d logR(T )

d log T

∣∣∣∣ (2.8)

The value of the sensitivity is usually in the range 1-10 for STs and in the range
102-103 for TESs. In the rest of this work, we will focus on semiconductor
thermistors.

2.4.2 Semiconductor thermistors

STs consist normally of Ge or Si small crystals with a doped region. The doping
process must be chosen to provide a uniform concentration of dopants in the
thermistor volume. Neutron Transmutation Doping (NTD) is usually the best
choice for Ge. Standard planar Si technology (ion implantation) works also
well.
The electrical conductance of semiconductors is due to different phaenomena,
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depending on the working temperature and on the relative concentrations of
donors and acceptors of the material.
At high temperatures the conductance is intrinsic: it takes place through ther-
mal eccitation of the electrons from the valence band to the conduction band.
The intrinsic conductance decreases with the temperature: below a specific
thermal bound, the phonon energy is not sufficient for that kind of eccitation.
In doped semiconductors a second mechanism guarantees electrical conduc-
tance at low temperatures: this is due to the thermal activations of the charge
carriers of the impurities. The activation energy of impurities is inferior to the
energy gap and has a weak dependence from the temperature: for doped Si or
Ge, the activation energy varies from a few meV to 100 meV.
Doped semiconductors offer a high extrinsic conduction above nearly 1K. At
lower temperatures the activation energy of charge carriers is higher than the
thermal energy thus they become insulators.
Nevertheless, it is possible to realize semiconductors with a sufficiently high
conductance at low temperatures, by playing with the doping concentrations.
For example, in an n-doped semiconductor, by increasing the donors (decreas-
ing the average distance between impurities) the electronic levels of donors
start to interfere due to the superposition of their wave functions. For suffi-
ciently high concentration, this gives rise to a dual-band structure inside the
forbidden gap: the Hubbard band [28].
For donor concentrations below this transition, the electrons can tunnel from
an impurity site to another: this effect is known as “hopping” conduction. Fig-
ure 2.2 shows a nice view on this process.

Electrons with energies below the Fermi level can be thermally excited (by
the absorption of a thermal phonon) above the coulombian gap, moving from
a donor site to another. In case kBT is of the same order of the gap, the tunnel-
ing happens between lower energy impurity sites, independently from their
spacial distance: this is called Variable Range Hopponing (VRH). In this con-
duction regime the resistivity of the sensor has a steep dependence on the tem-
perature:

ρ(T ) = ρ0 exp

(
T

T0

)γ
(2.9)

where γ, ρ0 and T0 depend on the doping level.
A flux of thermal phonons produces then a change in the conductance and this
variation can be transmuted into an electrical signal if the thermistor is polar-
ized.
The processes described previously do not account entirely for the behaviour
of a real sensor. In particular, the introduction of a phenomenological model



2.5. Bolometers 26

e

e e

Figure 2.2: Graphical representation of the “hopping” conduction mechanism.

known as Hot Electron Model (HEM) [29] helps to understand the non-linearities
of VRH. The basic idea of HEM is that, at low temperatures, the thermal cou-
pling between electrons and the lattice in the thermistor is weakened. This
implies the introduction of an electronic temperature Te and of a phononic tem-
perature Tph : when a power P is injected into the system, Te results larger than
Tph. The HEM answers the question about which temperature should be con-
sidered in equation (2.9). For example, the temperature of metals is defined
through their conduction electrons; in semiconductor thermistors, where con-
duction electrons and phonons of the lattice form two separate systems con-
nected by a finite thermal conductance, th resistance will depend on Te. In this
case the resistance of the thermistor is determined by equation (2.9) and the
thermistor can be used as thermometer.

2.5 Bolometers

The general theory describing bolometers has been developed by Mather in
1982 [30] for what concerns the monolithic case, in which there is no distinction
between sensor and absorber.
Bolometers use the variation of a resistance to measure temperature variation
of its absorber is a bolometer, so the main difference from the generic thermal
detector is that the bolometer temperature TB, in absence of a signal, is different
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Figure 2.3: The left panel shows the electric scheme of a simple bolometer circuit. The
right panel shows the dependence of the resistance on the power dissipation for vari-
ous values of the base temperature.

from the heat sink T0: this is due to two sources of power dissipated on the
bolometer itself: the electric and background power.
While the background power Pb is the superposition of all other dissipative
components, the electric power Pe is simply the heat flux due to Joule effect
since the bolometer is polarized by a small current ibias and is given by:

Pe = Vbias × ibias (2.10)

where Vbias is the voltage applied to the bolometer.
At thermal equilibrium we have:

Pe + PB = Geff (T1 − T0) (2.11)

whereGeff is the effective conductance of the sensor to the heat sink. A schematic
representation of a bolometric detector is shown on the left panel of figure 2.3,
while on the right panel the dependence of the resistance of the bolometer on
the power dissipation for diffeent temperatures.
In the model description given in the previous paragraph we neglected this dy-
namic component. However, for bolometers this is an non-negligible source of
non linearities of the detector’s response. This non-linearity is called “electro-
thermal feedback”. and can be appreciated by looking at the I−V dependence
(the load curve) for a TS shown on the left panel of figure 2.4. For small values
of the bias current the temperature rise produced by power dissipation can be
neglected and the IV curve is almost linear. For bigger values of IB the slope
of the I − V curve starts to increase, until an inversion point is reached, where
a further increase of the bias current causes a decrease of the sensor voltage.
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Figure 2.4: Load curves for semiconductor thermistors. On the left picture the work-
ing point is determined by intersection of the sensor characteristic curve with the bias
circuit load line. On the right the load curve is shown together with the corresponding
signal amplitude.

The right panel shows instead the relation between the resistance of the ther-
mistor and the dissipated power for different temperatures.
In static conditions, the thermistors electric and thermal parameters are de-
scribed by a point on the load curve. The intersection of the straight line of
equation V = VbI · RL and the load curve I = I(V ) determines the working
point of the sensor. Usually an optimal working point is chosen so that the
signal amplitude or the signal-to-noise ratio is maximum.

In this simple modelization in fact, it is straightforward to obtain the rela-
tionship between the maximum voltage signal (∆V ), the thermistor parameters
and the deposited energy E:

∆V =
RL

RL +Rbol

· Vbol · A ·
∆Tbol
Tbol

' E

CTbol
·
{
A ·
√
P ·Rbol

}
(2.12)

As expected, the highest the thermistor sensitivity, the highest the signal ampli-
tude. Moreover, since ∆V goes to zero if P → 0 but also if P → ∞ there must
be a point where the signal reaches a maximum. This point, called “optimum”,
must be found experimentally. The easiest way to accomplish this procedure is
by means of a fixed resistance (heater) directly glued onto the crystal through
which it is possible to dissipate a known joule power into the crystal in a man-
ner equivalent to a particle energy deposit. On the right panel of figure 2.4 the
trend of the heater energy as a function of the bias voltage is shown (superim-
posed to the load curve): the optimum point is the value of Vb that maximasises
the heater signal.
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Figure 2.5: Left panel: schematics of a TeO2 single module detector. Right panel: pic-
ture of a single module used for the CUORICINO experiment.

2.6 TeO2 single module

In chapter 3 we will describe the CUORICINO experiment, which operates
with bolometers having TeO2 crystals as absorber and a Ge thermistor as ther-
mal sensor.
In this section we describe the basic structure of CUORICINO, or single module.
This is a crystal, 3 × 3 × 6 or 5 × 5 × 5 cm3 in size, provided with an NTD Ge
thermistor acting as phonon sensor and operated as a completely independent
detector. The germanium thermistors are glued to the TeO2 crystal by 9 spots
of Araldit rapid epoxy. Their bias circuit scheme is the same as the one shown
in figure 2.3. Silicon chips with a heavily doped meander structure and a resis-
tance between 50 to 100 kΩ are also glued on to each crystal. They are used as
Joule heaters to inject a uniform energy in the crystal in order to monitor the
thermal gain and correct its variations off-line to stabilize the response of the
bolometers. This topic will be discussed in more details later on. The signal
is read by means of two 50 mm diameter gold wires, ball bonded to metalized
surfaces on the thermistor and thermally coupled to a copper frame. This cop-
per structure constitutes the heat sink, being in thermal contact with the coldest
point of the dilution refrigerator used to reach the operating temperature. PTFE
(Teflon) is used between the copper frame and the crystals: it has low heat con-
ductance and low heat leak preventing any signal loss as described in section
2.3. It compensates also for the differences between coefficients of thermal ex-
pansion of copper and of TeO2. Figure 2.5 shows a schematic of a TeO2 single
module, holding four TeO2 crystals.

Now that the basic principles of the energy absorber and of the temperature
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Figure 2.6: Left panel: schematics of a TeO2 single module detector. Right panel: pic-
ture of a single module used for the CUORICINO experiment.

sensor are known, a more refined bolometric model can be presented. The sin-
gle module can be modelized as in figure 2.6. It is composed by the following
parts:

• the heat bath, which is the thermal reference point;

• the absorber, connected by means of distinct conductances to the heat
bath (Gab) and to the thermistor’s phonon system (Ga−ph);

• the thermistor’s phonon system, connected by means of distinct conduc-
tances to the heat bath (Gph−b) and to the thermistor’s electronic system,
which is uncoupled due to the HEM model [29];

• the thermistor’s electron system, connected to the thermistor’s phonon
system by a conductance (Gph−e)

In this case the differential equation governing the dynamics of the thermal sig-
nal has an exponential solution characterized by three different time constants
depending on the main conductances of the model. If we take into account also
the thermo-electric feedback, these time constants are affected also by the pa-
rameters of the sensor’s circuit.
In first approximation - if the thermal capacity of the sensor is inferior to that
of the absorber and if the thermal conductance between sensor and absorber is
better that the ones that connect them to the heat bath, the expression for the
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Model parameter Value
Cabs 2.3×10−3 · T 3 [J/K]
Clat 2.7×10−8 · T 3 [J/K]
Gphb 4.8×10−5 · T 2.4 [W/K]

Gabs−bath 4.0×10−5 · T 2 [W/K]
Gph−el 7.0×10−1 · T 4.37 [W/K]
Gth−abs 1.6×10−3 · T 3 [W/K]

Table 2.1: Values of the parameters in the composite model applied to the Cuoricino
basic detector, with 5×5×5 cm3 absorber and 3×3×1 mm3 thermistor.

signal amplitude in equation (2.12) is still a good approximation (if the capac-
ity in the expression becomes that of the absorber). Table 2.1 reports the results
of different characterization measurements ([31, 32, 33]) and shows that this
approximation to be correct.

2.7 Noise sources

The main noise sources limiting the resolution for thermal detectors can be
classified in two main categories:

• Intrinsic noise: this is an unavoidable source of noise, strictly dependent
on the physical characteristics of the absorber and of the sensor. It gives
the reachable theoretical limit for the energy resolution.

• Extrinsic noise: it accounts for all the noise sources due to the experimen-
tal set-up, as the cryogenic system and the electronic read-out system. In
this category can be also included other sources of noise, as electromag-
netic interferences and mechanical microphonic noise. This noise actually
dominates the energy resolution of low temperature experiments.

In this chapter only a description of the intrinsic noise will be given, leaving the
analysis of the extrinsic sources for the chapter devoted to the detector details.

Johnson noise.
From the electric point of view and using a naive model, the thermistor can be
considered a resistor. It constitutes therefore a source of Johnson noise. The
power spectrum noise for a typical resistance R ' 100MΩ working at a tem-
perature T ' mK is: √

e2
n(ω) =

√
kBTRb ' 10−8 V√

Hz
(2.13)
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thus meaning an rms value of about of 10 nV. Since the typical bolometric sig-
nal is on average 150 µV/MeV/kg, this is absolutely negligible. In a more
realistic model, that takes into account the elettrothermic feedback effect, the
thermistor should be considered a complex impedance. This implies that its
noise power spectrum depends on the frequency. In any case the value given
in equation (2.13) gives a good estimation for an upper limit of the actual value.

Thermodynamic fluctuations.
As previously said the number of phonons exchanged between the thermistor
and the heat sink is subject to statistical fluctuation. This fact limits the intrinsic
energy resolution, according to eq. (2.2) and, for working temperatures of tens
of mK, it corresponds to and rms value of 20 100 eV for our bolometers.

2.8 The sensitivity of a calorimetric experiment

A useful way to introduce the main goals that a calorimetric experiment should
achieve in order to observe a rare nuclear decay in its absorber (the so-called
“source=detector” approach) is defyning its sensitivity. The sensitivity S0ν to
0ν-DBD is defined as the half-life corresponding to the number of decays Nββ

that can still be considered as background fluctuations at a given confidence
level. First of all, the radioactive decay law for the process under investigation
can be written as

N(t) ∼ N0

(
1− ln 2 · t

T 0ν
1/2

)
, (2.14)

where N0 is the number of nuclei under control at t=0; the equation is ob-
tained in an approximated form by considering the inequality T 0ν

1/2 � t, which
is allowed by the current limits on 0ν-DBD half-lives of order 1024 or greater.
As a consequence, the number of 0ν-DBD decaysNββ expected during the mea-
surement time t is

Nββ =
M ·NA · η · a

W
· ln 2 · t

T 0ν
1/2

· ε (2.15)

In the previous formula, M is the total absorber mass, NA is the Avogadro
number, η is the number of nuclides candidate to 0ν-DBD for absorber molecule,
W is the molecular weight of the absorber, a is the isotopic abundance and ε is
the detector’s efficiency. When no decays are observed in the measurement
time, Nββ represents the background fluctuation in the energy region under
investigation, and the T 0ν

1/2 written in the previous equation becomes the limit
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on the half-life of the decay. In order to detect Nββ in an energy window ∆E,
which corresponds to the energy resolution of the detector, the presence of ra-
dioactive background counts is a severe limitation. The calculation of sensitiv-
ity can be performed in the case both of a zero-background experiment, and
of background fluctuations that can cover the expected peak: only the second
option will be considered, as it is suitable to the Cuoricino experiment and its
next-generation evolutions (actually, someone may argue that we can never be
sure that there is no background). Let’s assume that the background level is
b, measured in c/(kg·keV·y): for a detector with mass M , the number of back-
ground events B in a time t and in an interval equal to the energy resolution
FWHM ∆E, centered around the Q-value of the decay, is given by

B = b · t ·M ·∆E (2.16)

Two assumptions are made: the number of background events scales with
the absorber mass of the detector and b is measured independently and pre-
cisely, as it commonly happens in bolometric experiments; the background
events in the region of interest will follow a Poisson distribution, with stan-
dard deviation equal to the square root of the number of events (if the number
of counts allow us to approximate the Poisson distribution with a gaussian).
The minimum number of events that are needed to reach a certain significance
of the peak, for example at a ξ% Confidence Level, is given by the probability
that the fluctuation of background events is equal to the peak. In other words,

Nββ = nσ ·
√
B , (2.17)

with nσ equal to the number of deviations corresponding to a probability of
(1-ξ)%. The combination of Eq. (2.15) and Eq. (2.17) defines the sensitivity of a
calorimetric experiment for 0ν-DBD search with non-zero background rate:

S0ν = 4.174× 1026
( a
A

)√ M · t
b ·∆E

· ε∆E (2.18)

The previous expression is valid for 1σ. It is evident by looking at the for-
mula that action on the parameters M , t, b, ∆E (and possibly a) are the crucial
parameter required to increase the sensitivity of an experiment.



Chapter 3

The CUORICINO experiment

In this chapter, the final 0-DBD result of the CUORICINO experiment is pre-
sented. The lower limit on the half-life of Neutrinoless Double Beta Decay
computed on CUORICINO data yielded one of the most stringent bound on
me e based on 130Te studies, and one of the best in general. CUORICINO data
acquisition started in April 2003 and ended in June 2008. The data are separated
into two runs (RUN I and RUN II), due to a major maintenance interruption.
The chapter is organized as follows: after a short description of the experimen-
tal set-up in section 3.1, the details of RUN II data analysisare presented: signal
processing in section 3.2, data reduction in section 3.3 and efficiency evalua-
tion in section 3.4. In section 3.5, the Bayesian approach used for the 0-DBD
half-life limit evaluation is described. The limit is evaluated on the entire data
set. This is done treating RUN I and RUN II as two independent experiments
whose likelihoods are combined. This choice was motivated by the difference
in detector configuration between the two runs (increased number of active
detectors, improved performance) and a presumable difference in background
composition (due to detector exposure to air).

3.1 CUORICINO

CUORICINO was an array of 62 TeO2 bolometers arranged in a tower of 13
floors. Each floor consists of a single module detector as described in section
2.6. Eleven floors are made of four 5 × 5 × 5 cm3 crystals each, while the two
remaining floors are composed by nine 3× 3× 6 cm3 crystals each.
The array was mounted in the dilution refrigerator installed in Hall A of the
underground Laboratori Nazionali del Gran Sasso (L’Aquila, Italy), a location
that guarantees a high degree of suppression of cosmic ray flux thanks to an
average coverage of 1400 m of rock (nearly 3500 m.w.e depth).
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Crystal Type Mass 130Te Mass Exposure Run II Exposure Run I
[g] [g] [kg(130Te)y] [kg(130Te)y]

big 790 217 15.7 0.94
small 330 91 1.98 0.094

enriched 330 199 0.75 0.145

Table 3.1: CUORICINO crystals informations and statistics. Crystal mass is the av-
erage measured mass for CUORICINO detectors. For the 130Te mass, we used the
measured isotopic abundances.

The array, closed in a copper structure and hang in vacuum inside the Inner
Vaccum Chamber of the refrigerator (the detectors are at a temperature of about
10 mK) is surrounded by a 1 cm thick roman lead cylindrical shield closed with
a bottom and a top lead discs of thicknesses of 7.5 cm and 10 cm respectively.
The refrigerator itself is shielded with a 20 cm thickness of low activity lead
and a 10 cm thickness of borated PET. Nitrogen is fluxed between the external
lead shield and the cryostat to avoid any Rn contribution to the detectors back-
ground.
Figure 3.1 shows a picture and the schematics of the detector’s set-up.

All crystals have natural abundance of 130 Te (34%), apart for four 3× 3× 6
cm3 crystals: two of them are enriched in 130 Te (82%) and the other two are en-
riched in 128 Te (75%). This kind of detectors search for 0ν-DBD processes with
the so called ”source=detector” technique, where the candidate is contained
inside the active mass of the detector itself. Teββ candidate with a rather favor-
able factor of merit1.
The signature of the decay would consist in a monochromatic peak appearing
in the spectra of the bolometers at an energy equal to the Q-value of the decay:
2527.5±0.013 keV (for the experimental measurement of this quantity we refer
to [34]). Indeed, in about 85% of cases the two electrons emitted by 130Te 0ν-
DBD decay are fully contained within one crystal.
The difficulty of the experiment consists in the control and reduction of all the
background events that can mimic such a signal. These can be non-particle
signals, due to electronic or thermal noise, and particle signals, due to radioac-
tivity and cosmic rays. The former are rejected on the basis of a pulse shape
discrimination technique (see section 3.3 and appendix C for further details).

1A second ββ candidate with high natural abundance is the isotope 128Te (i.a. 31.7%). This is
not as much interesting as 130Te because of its lower transition energy, that reduces the nuclear
factor of merit and shifts the signal in a higher background region (lowering therefore also the
achievable experimental sensitivity).
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Figure 3.1: On the left, a picture of the CUORICINO tower. On the right panel, the
schematics of the shieldings surrounding the detector’s array.

The latter are controlled during the experiment design and construction - by
a proper material selection and shielding [16, 35, 36, 37], and - at the stage of
data-analysis - by coincidence cuts (see section 3.3).
A detailed description of the array, of the cryogenic set-up, of the shields and
of the front-end electronics and DAQ can be find in [16] and references therein.
Here we recall the main step of data acquisition and data handling which are
relevant for the discussion.

3.1.1 Data and acquisition

Once the optimal working point of the detectors is chosen (2.5) cooled after
a proper study of their their operating point down at a working temperature
of nearly 8 mK. The electrical connections of the bolometric signals coming out
from each single module runs along the CUORICINO tower over a twisted pair
of low radioactivity Constantan wires. Passing through several thermalization
stages these wires reach the front-end electronics boards. The electrical read-
out configuration is composed of different stages: a differential preamplifier
(with a gain G=128 V/V), a bessel filter to reduce high frequency noise (the
cut-off frequency is set above 12 Hz on average) and a successive gain stage.



37 3. The CUORICINO experiment

At this point, the output voltage of each detector is monitored by a constant
fraction trigger. When the output voltage exceeds the trigger threshold, the ac-
quisition system records 512 samples (”event” in the following), corresponding
to a 4 s window sampled at 125 Hz. The acquired time window fully contains
the pulse development providing an accurate description of its waveform so
that the energy or different informations can be computed off-line.
The existence of a pre-trigger interval just prior to the production of the pulse
(”baseline”) is used to measure the DC level of the detector (which can be di-
rectly correlated to the detector temperature).

3.1.2 Extrinsic Noise

In the previous chapter we defined the intrinsic noise sources characterizing
TeO2 bolometers and we roughly estimated that they give contained contri-
butions to the observed FWHM of these detectors. The extrinsic noise sources
instead are not generated inside the detector, such as cryogenic apparatus, elec-
tronics and read-out set-ups.
The electronic read-out introduces an RMS of nearly 130 eV [33]: since the ob-
served average FWHM of these detectors is nearly 6 keV, these sources are not
dominant. Vibrations of the wires introduce the so called microphonic noise:
since a parasitic capacitance between wires is unavoidable, these oscillations
propagate to the voltage signal.
Finally, the most dangerous factor that spoils our resolution is the presence of
thermodinamic fluctuations of the system and heat power arising from me-
chanical vibrations. Being these low-frequency vibrations, they occur in a sim-
ilar frequency band as the one of the bolometric signals thus it is difficult to
reduce their contribution with an off-line filtering procedure.

3.1.3 CUORICINO spectra

Each single CUORICINO measurement lasted about 22 hours on average, with
the time between measurements (about 2 hours) dedicated to cryogenic sys-
tem maintenance. A routine calibration with an external 232Th source was per-
formed approximately once per month, lasting for about 3 days. The accumu-
lated data between two calibrations is referred to as a “data-set”. The spectrum
obtained by summing all the CUORICINO collected data (i.e. summing over
detectors and data-sets) is shown in figure 3.1.3. The background recorded by
the detectors is clearly dominated, in this region, by gamma emissions due to
radioactive contaminations of the detector and of the surrounding apparatus.
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Figure 3.2: Total energy spectrum of all CUORICINO detectors (black). The most
prominent peaks are labeled and come from known radioactive sources such as: e+e−

annihilation (1), 214Bi (2), 40K (3), 208Tl (4), 60Co (5) and 228Ac (6). The total energy
spectrum of all CUORICINO detectors during calibration measurements is also shown
(red). For convenience it is normalized to have the same intensity of the 2.6 MeV line
of 208Tl as measured in the background spectrum.

The most intense gamma lines are listed in reference [16]. In figure 3.1.3, the
spectrum corresponding to the sum of all calibration data is also shown. For
convenience the calibration spectrum is normalized to have the same intensity
of the 2615 keV line of 208Tl as measured in the background spectrum.

3.2 Data processing

The analysis of CUORICINO data starts with the collection of all the triggered
events. For clarity, we will model the single waveform V (t) induced by a parti-
cle interaction in the crystal as:

V (t) = V0 s(t) + n(t) (3.1)
V0 = G(T ) · A(E) (3.2)

In the first equation, V0 is the maximum value of the raw signal acquired
at time t0, s(t) describes the shape of the particle signal and n(t) is an additive
noise source. The second equation describes the dependence of the signal am-
plitude on the detector working temperature. Here we assume that the depen-
dence of the gain on temperature, G(T ), and that of the amplitude on energy,
A(E), can be factorized. This is not true in general, however it is a good ap-
proximation when dealing — as in our case — with small temperature drifts.
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Figure 3.3: A bolometric particle event (left) and a spurious non-physical signal (right),
superimposed with their optimum filter output (in color) in the time domain.

Although it describes a naive model, this formula highlights the key points of
the analysis. In order to estimate E, we need:

1. a technique able to measure V0, reducing the effect of n(t) as much as
possible, in order to improve our resolution (amplitude evaluation);

2. an algorithm to control for the variation of G(T ) produced by detector
temperature drifts (gain instability correction);

3. a technique to measure the form of A(E) (energy calibration).

Amplitude evaluation. This is done by maximizing the signal-to-noise ra-
tio by means of optimum filtering [38]: each waveform is convolved with a
transfer function h(t) whose Fourier transform is defined as:

H(ω) = eiωtmax
S∗(ω)

N(ω)
(3.3)

where S(ω) is the Fourier transform of the average detector response function
s(t), N(ω) is the spectral power density of the noise characterizing the detector,
and tmax is the time at which the pulse reaches its maximum. The functions s(t)
and N(ω) are computed by an averaging procedure of the bolometric pulses
and of the Fourier transformed baselines. Since the developement of the Op-
timum Filter for Cuoricino was one of the main topics of my ph.D work, a
detailed description of this technique can be found in chapter 4.

Figure 3.3 shows an example of an event due to a particle interaction and
and example of a non-particle event, most likely due to an abrupt temperature
increase produced by an electric disturbance or by vibrations. Each waveform
is superimposed with its optimum-filtered counterpart.
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Figure 3.4: Residuals (nominal energy – calibrated energy) vs. nominal energy eval-
uated on the main gamma lines identified in the CUORICINO background spectrum.
Circles (in color) refer to a calibrated energy obtained with the third order polynomial,
triangles (in black) with the log-polynomial. Figure from M.Martinez.

Once the optimum filter is applied, the amplitude of the signal is inferred from
the maximum of the filtered waveform in time domain.

Gain instability correction. This correction is achieved by measuring the
voltage amplitude, Vref , of a monochromatic reference pulse. This pulse is pro-
duced by depositing a fixed amount of energy into the crystal by the Joule dis-
sipation from a heavily doped silicon resistor glued to the crystal (see section
2.5. Because the energy deposited is fixed, any variation of Vref would be due
to a variation in G(T ), which can be measured and used to correct the ampli-
tudes of all the triggered events. For a more detailed discussion of this method
we refer to [39, 40].

Energy calibration. The voltage-energy relationship is reconstructed by
means of routine source calibrations: two wires of thoriated tungsten are pe-
riodically inserted between the cryostat and its external lead shield. The volt-
age amplitude of the pulses corresponding to the main gamma lines of 232Th
are used for the determination of the parameters describing the A(E) relation-
ship. This function is characterized by different non-linearity sources [16], the
dominant one being the dependence of the thermistor resistance on the tem-



41 3. The CUORICINO experiment

0 5 10 15 20 25 30 35 40

1

10

210

E
n
tr
ie
s

FWHM [keV]

Figure 3.5: Distribution of the energy resolutions (FWHM) measured in calibration
for the three groups of crystals during the 33 data-sets belonging to RUN II.They are
divided according to the crystal type: big crystals (blue), small natural crystals (red)
and 130Te enriched crystals (green).

perature [41]. In this work, A(E) is parametrized with a third-order polyno-
mial, which can be considered as the truncated Taylor’s expansion of the real
unknown calibration function. In the previous CUORICINO analysis [16], a
different calibration function was used. This was a second order polynomial in
log(V ) and log(E), based on a thermal model describing our bolometric detec-
tors. While this function performs better at extrapolation (i.e. above the high-
est calibration line at 2615 keV), the third order polynomial performs better in
the interpolation region (i.e. between threshold and 2.6 MeV). The difference
between the two parameterizations was studied using the total background
spectrum recorded by CUORICINO (figure 3.1.3); this spectrum contains sev-
eral gamma peaks whose origins, and therefore nominal energies, are clearly
identified. The difference between the nominal energy of each peak and its
measured position (the residual) is plotted against the nominal energy in fig-
ure 3.4, showing the slightly better performance of the 3rd order polynomial.
These residuals also provide important information concerning the precision
of our calibration: their spread, nearly 0.4 keV, can be used as an estimator of
the uncertainty in the energy position of a peak, including that produced by
the 0ν-DBD signal.



3.3. Data reduction 42

Source calibration measurements are repeated for each data-set and are also
used to check the detector performances over time. Figure 3.5 shows the distri-
bution of all the resolutions measured in calibration for the three crystal groups
(big, small, and enriched crystals).

3.3 Data reduction

The final CUORICINO spectrum is composed of events which survived two
different types of data selection: global and event-based cuts.

Global cuts: these are applied following quality criteria decided a priori
(e.g. an excessive noise level or an incompatibility between the two calibration
measurements at the beginning and the end of a data-set). They identify bad
time intervals to be discarded. This kind of cut introduces a dead time that is
accounted for by properly reducing the live time of the detector of interest. The
cuts are generally based on off-line checks that monitor the detector perfor-
mances and flag excessive deviations from global control quantities (average
resolution, average rate, etc.). The total dead time introduced by these global
cuts is ∼5%. A further dead time is introduced by the rejection of a short time
window centered around each reference pulse (the frequency with which the
reference pulses are generated is about 3 mHz). This cut ensures the rejection
of possible pile-up of a particle signal with the reference pulse (the impact of
this cut is reported as an efficiency in table 3.4).

Event-based cuts: these are the pulse-shape and the anti-coincidence cuts.
The former is used to reject non-physical and pile-up events (the presence of a
pile-up prevents the optimum filter algorithm from providing a correct evalu-
ation of the pulse amplitude). The latter allows for the reduction of the back-
ground counting rate in the region of interest (ROI). The 0ν-DBD signature we
look for consists of a “single-hit” event (only one detector at a time involved),
while many of the background counts in the ROI are due to “multiple-hit”
events. These include events due to alpha decays on the crystal surfaces that
deposit energy in two neighboring crystals and events due to gammas that
Compton scatter in one crystal before interacting in another one.

The pulse shape parameters used in this analysis are the rise time and de-
cay time of the raw waveform and a parameter that measures the consistency
of one of the basic statements of optimum filter theory. This “Optimum Filter
Test” parameter (OFT) is the difference (expressed in percentage of the total am-
plitude) between the evaluation of the pulse height in the time domain (as the
maximum value of the filtered pulse) and that in the frequency domain (as the
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Source Signal efficiency (%)

Energy escape 87.4±1.1 (big crystals)
84.2±1.4 (small crystals)

Pulse-shape cuts 98.5±0.3
Anti-coincidence cut 99.3±0.1

Noise 99.1±0.1
Pile-up with reference pulses 97.7

Total 82.8±1.1 (big crystals)
79.7±1.4 (small crystals)

Table 3.2: Contributions to the CUORICINO 0ν-DBD signal efficiency.

integral of the filtered-pulse power spectrum). Indeed, if the shape of an event
is identical to the average detector response, the two methods yield the same
result. However, if the shape of the signal is different from the expected one
(such as in the case of a non-physical or a pile-up event), they differ. Figure 3.6
shows the scatter plot of OFT as a function of energy for a CUORICINO de-
tector (here only one data-set is reported). The main trend reflects the change
of the signal shape with energy, and has a minimum in the region where the
average response was measured (1-2 MeV). This variation in the pulse shape
is caused by non-linearities introduced by the thermistor. Outliers on this plot
correspond to misshapen events which will be discarded; the colored vertical
bars identify confidence regions evaluated automatically on this distribution
in order to obtain cuts which are independent of the signal amplitude. A full
description of all the shape parameters used for Cuoricino can be found in 4,
while the shape linearization procedure is described in C. The anticoincidence
cuts require that only one detector fires within a time window of 100 ms.

3.4 Signal efficiency

The signal efficiency is the probability that a 0ν-DBD event is detected, its en-
ergy is reconstructed accurately, and that it passes the data selection cuts. This
parameter must be accurately determined, since it is used to obtain the number
of 130Te 0ν-DBD events. The overall signal efficiency is: (82.8 ± 1.1)% for the
CUORICINO big crystals and (79.7± 1.4)% for the small and the 130Te-enriched
ones. These efficiencies were computed as discussed below.

There are two main sources of inefficiencies, one “physical” that can be com-
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Figure 3.6: Typical scatter plot of the OFT (deviation of filtered raw signal from the av-
erage detector response) as a function of the signal’s evaluated energy. The main trend
identifies “good” events. Pile-up and non-physical pulses are outside the confidence
regions (identified by the colored vertical bars). At low energy, there is a high density
distribution of events for OFT values between 10−2 and 10−1; these events are due to
electric disturbances.

puted by simulations, and the other “instrumental” that must be measured
from the data. The mechanism of “physical” efficiency loss is the escape of
a fraction of the 0ν-DBD energy from the source crystal. Mechanisms for the
“instrumental” efficiency loss are: the pulse-shape cut, the anti-coincidence cut
and an incorrect assignment of the energy of the signal (mainly due to noise
and pile-up). Their contributions to the total signal efficiency are summarized
in table 3.4.
Physical efficiency: the 0ν-DBD signature is a sharp peak centered at the tran-
sition energy (Q-value) of the decay. The peak is produced by 0ν-DBD de-
cays fully contained within the source crystal. The containment probability
was evaluated using a Geant4-based Monte Carlo simulation that takes into
account all the possible energy escape mechanisms (i.e. electrons, X-rays or
bremsstrahlung photons escaping from the source crystals). Since the escape



45 3. The CUORICINO experiment

probability depends on the crystal geometry, the efficiency is slightly differ-
ent for the big and the small crystals (see table 3.4). Instrumental efficiency:
this is the product of the pulse-shape cut, anti-coincidence and excess noise
efficiencies. To evaluate the efficiency of the pulse shape cut, the background
photopeak at 2615 keV due to 208Tl was used as a proxy for the 0ν-DBD peak.
The 2615 keV peak was chosen because of its proximity to the 0ν-DBD energy
and its relatively high intensity. In principle, an ideal pulse-shape cut should
leave the main peak untouched and should only reduce the flat background.
The area of the peak can then be computed in terms of the the total number of
signal events (Nsig), the signal efficiency (εPS), the total number of background
events (Nbkg) and the background efficiency (εbkg). A simultaneous fit was done
on both the spectra of accepted and rejected events. The area of the peak in the
accepted events spectrum is given by εPS × Nsig, while for the rejected events
it is (1− εPS)×Nsig. Similarly, the background yield for the accepted events is
εbkg ×Nbkg, and the background yield for the rejected events is (1− εbkg)×Nbkg.
By including εPS directly in the parametrization of the fit, correlations among
the fit parameters are automatically taken into account when the error on εPS
is calculated. The result is εPS = (98.5 ± 0.3)%, and εbkg = (64 ± 2)%. The
pulse shape cut is clearly very powerful, rejecting approximately 36% of the
events in the continuum background while retaining 98.5% of the signal events
in the peak. The events discarded in this region are mainly pile-up with real
or spurious signals. To estimate the efficiency of the anti-coincidence cut, we
used the same procedure but considered the only available high intensity peak
that is produced by a nuclear decay with no detectable coincidence radiation.
This is the 1460 keV gamma line emitted in 40K electron capture (the only coin-
cident radiation, a 3 keV X-ray, is far below our threshold). Since events in this
photopeak are single hits, their reduction after an anti-coincidence cut can be
ascribed only to random coincidences. The last source of inefficiency is the loss
of 0ν-DBD events due to excess noise which can distort the pulse shape and in-
troduce an error in the reconstructed energy. If such an error is greater than the
resolution, the event can be considered as lost in the continuum background.
In order to estimate this efficiency we compare the number of reference pulses
generated during the measurements (the signals used for the gain instability
correction, see section 3.2) with the number actually measured in the correct
energy range.

3.5 0ν-DBD analysis

The definition of the energy window used to fit the 0ν-DBD spectrum, the hy-
pothesis assumed for the background shape and the number of free parameters
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Figure 3.7: A closer view of the CUORICINO anticoincidence spectrum (presented in
figure 3.1.3) near the 0ν-DBD ROI. Note that the efficiencies listed in table 3.4 are not
yet included.

used to describe the background itself are extremely important for the choice
of the analysis procedure and for the determination of its systematics. The
choice of the energy window is somewhat arbitrary, but it influences the back-
ground representation. If the energy window is too wide (compared to the
signal FWHM) a very precise knowledge of the background shape is necessary.
Obviously there is also a minimum width necessary to be able to evaluate the
background level beyond the 0ν-DBD peak. In our case, there is a background
line near the 0ν-DBD energy, at∼2505 keV, due to 60Co (sum of the two photons
emitted in cascade by 60Co decay), which should also be included in the win-
dow. Given these considerations, our final choice for the fit window is 2474–
2580 keV. This is the widest window centered on the ββ Q-value that allows the
following two background peaks to be excluded from the fit: the 2448 keV line
of 214Bi and the 2587 keV Te X-ray escape peak of the 208Tl line. The latter peak
is clearly visible in the CUORICINO calibration spectrum shown in figure 3.7,
although — due to the lower statistics — it is not visible in the background
spectrum shown in the same figure.
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Within this picture, we choose the simplest possible model for the shape
fi,j(E) of the spectrum (normalized to mass, live time, efficiency and isotopic
abundance) of each single detector (index i) in each data-set (index j) as:

fi,j(E) = Bi + Γ
60Co
i,j gi,j

(
E − ECo

)
+ Γ0ν gi,j

(
E − E0ν

)
(3.4)

Here gi,j(E) is the function describing the shape of monochromatic energy lines
in the ith detector, during the jth data-set, i.e. the response function that is rep-
resented by a gaussian with a width determined from calibration data2. E0ν is
the 130Te ββ Q-value, fixed at its measured value (2527.5 keV). ECo is the sum
energy of the two 60Co gamma lines (2505.7 keV).Bi is the flat background com-
ponent for the ith detector (here we assume a time independent background).
Finally Γ

60Co
i,j and Γ0νββ are, respectively, the 60Co activity for the ith detector

during the jth data-set (60Co has a half-life of 5.27 years), and the absolute ac-
tivity for 0ν-DBD , both expressed in counts/kg/y.

Free parameters are Bi, Γ
60Co
i,j , Γ0ν and ECo, the parameters of the response

function being fixed at the values measured during calibrations. Note that the
dependence of Γ

60Co
i,j on the index j is determined by the 60Co half-life; there-

fore, the total number of free parameters is determined only by the number of
detectors (i.e. by the index i).

3.5.1 Statistical approaches

The CUORICINO spectrum shows no evidence of a 0ν-DBD signal, thus we
will provide a limit for the half life of 130Te by means of a Bayesian approach.
Unlike other low statistics methods such as that of Feldman and Cousins [42],
this technique does not require an exact evaluation of the expected number of
background events (which is unknown). In our case, all the uncertainties are
marginalized in the process of the limit computation, and our prior knowledge
for the rate Γ0ν will be represented by a flat distribution, excluding the non-
physical region.

Once the statistical method is chosen, we need to decide how to model the
experiment: every CUORICINO detector can in fact be imagined as an inde-
pendent search for 0ν-DBD, characterized by its own background and resolu-
tion. There are three natural approaches which can be chosen to search for a 0ν-
DBD signal, to which we will refer as ideal, multi-spectrum and average-spectrum,
respectively:

2To evaluate the energy resolution in the 0ν-DBD region we use the 2615 keV peak since this
is the nearest peak to the Q-value clearly visible in our calibration spectra.
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ideal: treat the different detectors separately;

multi-spectrum: treat the different detectors separately, assuming an identical
background for all detectors within each group (big, small, 130Te-enriched);

average-spectrum: sum the spectra of all detectors belonging to the same group.

In the ideal approach , each detector and each data-set is fit with its own func-
tion fi,j(E). In principle this is the best approach since it uses all the informa-
tion available; however, the number of free parameters is huge (about a hun-
dred).

The multi-spectrum approach lowers the number of free parameters by forc-
ing the background and the 60Co rates to be identical on detectors of the same
group. In this approach each detector and data-set is still described individ-
ually by its own function fi,j(E) but the total number of free parameters is
reduced since Bi can assume only 3 values (for big, small and 130Te-enriched
crystals) and the same is true for Γ

60Co
i,j . This could be considered a strong as-

sumption, but it is motivated by the fact that the low statistics prevent us from
being sensitive to background variations among crystals of the same group in
the 0ν-DBD region. This method also offers the advantage of being less sensi-
tive to fluctuations in the counting rate of a single detector over time, and takes
into account the decay rate of 60Co.

The average-spectrum method removes the background assumption of the
previous model, at the price of a certain degree of information loss. The count-
ing rate is simply averaged over all data-sets and detectors for the three men-
tioned groups. A variation of the background and of the 60Co rate over time
is then irrelevant, provided that the response function does not change with
time. The average is done simply by summing over all the data collected with
detectors belonging to the same group, thereby obtaining three spectra that can
be represented by the function:

fk(E) = Bk + Γ
60Co
k gk

(
E − ECo

)
+ Γ0ν gk

(
E − E0ν

)
(3.5)

Here, the index k has three allowed values for big, small and 130Te-enriched
crystals while the response function gk(E) is defined as:

gk(E) =
1∑

i,j

Ai,j

∑
i,j

Ai,j√
2πσi,j

exp

(
−(E − E0)2

2σ2
i,j

)
(3.6)

where the sum over i extends on all the detectors belonging to the kth group
and j runs over all the data-sets. Ai,j and σi,j are the corresponding background
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Fit Parameter big crystals small crystals 130Te-en. crystals

RUN I: flat bkg rate 0.20±0.02 0.20±0.02 0.8±0.4
RUN II: flat bkg rate 0.153±0.006 0.17±0.02 0.35±0.05
RUN I: 60Co rate 4.6 ± 1.5 9 ± 6 0 ± 14
RUN II: 60Co rate 2.5 ± 0.3 1.7 ± 0.8 0 ± 3.5

Table 3.3: Background and 60Co rates expressed in counts/keV/kg/y obtained by the
combined fit of RUN I and RUN II data. The absolute rates are about 20% higher
because the efficiencies have not been yet included. The high background rate obtained
for 130Te-enriched detectors is mainly due to a higher intrinsic contamination of these
crystals.

exposure and energy resolution measured during calibration. Note that — as
is true also for the other two approaches — the response function is built using
measured quantities, i.e. it does not contain any free parameters.

We discarded the first approach due to the excessive number of free param-
eters, and we performed two parallel (and independent) analyses on real and
Monte Carlo-simulated data for the limit computation, following an unbinned
likelihood technique [43] for the second approach and the standard CUORI-
CINO Likelihood-Chi-Square technique [16, 44] for the average-spectrum one.
The goal was to choose the most reliable procedure, checking for possible bi-
ases and comparing performances. This Monte Carlo analysis, described in
details in chapter 5, proved an impressive correspondence between the two ap-
proaches. Since the choice of the one or the other is somewhat arbitrary. We
opted for the third method because it is consistent with the previous analysis
of CUORICINO data [16, 44] and because of its intrinsic simplicity.

3.6 The CUORICINO final result

As a next step, we added the contributions from big, small and enriched crys-
tals from RUN I, combining their likelihoods with the RUN II data and using a
similar reconstruction for the response function as described in section 3.5.1.
Finally, an evaluation of the overall systematic error on Γ0ν has been carried
out. This study will be documented in chapter 5.
The background rates are shown in table 5.5 while in figure 3.8 (left panel) we
show the best fit and the corresponding 68% and 90% C.L. limits. Figure 3.8
(right panel) shows the logarithm of the combined likelihoods of RUN I and
RUN II before and after the systematic uncertainties are included.
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Isotope τ 0ν
1/2

[y]
130Te (CUORICINO, this work) > 2.8 1024

76Ge (Heidelberg-Moscow collaboration [12]) > 1.91025

100Mo (NEMO collaboration [15]) > 5.8 1023

136Xe (Dama/LXe [17]) > 1.2 1024

76Ge (Heidelberg-Moscow experiment [18]) = 2.23+0.88
−0.621025

Table 3.4: We compare the most stringent 90% C.L. half-life lower limits present in
literature (first 4 rows). In the last row is reported the claim for a 0ν-DBD signal of
76Ge.

The resulting best fit for the 0ν-DBD rate of 130Te is:

Γ0ν
best = (−0.25± 1.44(stat)± 0.3(syst))× 10−25y−1

This result is compatible with zero, and the corresponding 90% C.L. half life
lower bound is:

τ 0ν
1/2 ≥ 2.8× 1024y

This limit is almost identical to the one we published in [16], despite the in-
crease of the total exposure by a factor ∼1.6. In general it is expected that the
limit scales with the square root of the exposure, i.e. we would expect an im-
provement of about a factor 1.3 which is by far smaller than the spread in the
90% C.L. limits that different experiments (with the same exposure and sensi-
tivity) can yield (figure 5.14). This is the reason we prefer to quote the sensitiv-
ity of the experiment together with the limit. It should to be mentioned that,
in reference [16], we used an older value of the 130Te transition energy energy
which had a much larger error and a slightly higher central value than the re-
cently measured one [34, 45]. With the same data used in [16], using the new
result for the transition energy (with its smaller error) pushes the limit toward
a lower half-life.
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Figure 3.8: Top panel: best fit, 68% and 90% confidence intervals for the total statistics
(RUN I+RUN II) superimposed on the CUORICINO sum spectrum of the three groups
of crystals (each scaled by efficiency and exposure) in the 0ν-DBD region. (The purpose
of the plot is to give a pictorial view of the result; in fact the fit was performed sepa-
rately on 6 spectra whose likelihood are combined, as described in the text). Bottom
panel: negative profile of the combined log likelihoods of RUN I and RUN II before
(black) and after (color) the systematic uncertainty is included.



Chapter 4

Signal processing

Digital Signal Processing (DSP) refers to various techniques for improving the
accuracy and reliability of informations computed on a digital signals.
In CUORICINO, when the trigger fires, a sample of N converted data, corre-
sponding to a time window T , is saved to disk. The time window is optimized
in order to reduce as far as possible signal truncation: in CUORICINO the sam-
pling frequency is 125 Hz, corresponding to 512 points acquired in 4 seconds.
The purpose of signal processing is to extract as many informations as possible
from each single event, such as the energy of a recorded particle interaction.
The main obstacles that need to be treated as much carefully as possible are:

• the bolometric noise superimposed to the signal that sploils the resolution
and must be filtered;

• the identification of spurious signals: non-physical events that triggered
the acquisition;

• the pile up with other signals that leads to a wrong amplitude evaluation;

The core part of my thesis work has been focused on the implementation of
different DSP algorithms to study bolometric signals.
These are: the Optimum Filter (OF), a digital filter that mitigates the influence
of noise for the first item; the calculation and study of pulse shape parameters
for the second and third items; the Wiener Filter (WF) technique, a digital filter
to gain time resolution resolution.
For each shape parameter, an example on a bolometric run characterized by a
high pile-up rate will be given in order to give an idea of their general distribu-
tions.
After a detailed description of these algorithms, a validation of their perfor-
mances on Monte Carlo simulations is also presented.
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The difficulty of a modeling of the complex noise patterns characterizing TeO2

made this kind of test a real difficult task. In order to overcome the lack of a
theoretical modelization of CUORICINO noise behaviour, I developed a Monte
Carlo method to produce random noise time series having, on average, the
same measured noise spectra of the bolometers. The general idea of the algo-
rithm is summarized in Appendix B. This is a starting point of a full simimula-
tion of the detector, which, in the future, will be combined by the modeling of
the bolometers response function recently proposed [41].

4.1 Notation

In this context, a signal, or an event, is considered as a collection of couples
{Ri, ti}, where Ri is a recording of the detector’s bias voltage, aquired at an
instant ti = i × τ , where i is an integer index running from 0 to the number of
acquired points and 1/τ is the sampling frequency. To simplify the notation, I
will identify a generic vector of samples simply as {Ri}, omitting the occuring
time ti to reduce redundancy.
Ri will instead identify the complex number associated to the ith frequency of
the Discrete Fourier Transform of {Ri}.

4.2 Optimum filter

In our bolometric detectors, a signal, amplified by the front-end electronics,
is fed into a high resolution ADC. The Bessel filter at the end of the analog
chain is used as anti-aliasing that could spoil the signal information. It’s cut-off
frequency is - by design - opportunely chosen to be higher than the band width
of the signal but much lower than the ADC sampling frequency, avoiging thus
any aliasing that can reduce the signal.
The acquired voltage signal - as a function of time - can be modelled as:

V (t) = b+ a · s(t− t0) + n(t), (4.1)

where b is the baseline DC level of the detector, a is the pulse amplitude, t0 is the
start time of the pulse (tipically 1 s after the the time start of the window), s(t)
is the detector response function (the pulse shape without noise, normalized to
unit height), and n(t) is the stochastic noise. The baseline, b, is the detector’s
bias voltage, and is generally estimated by averaging over the ∼1 s pre-pulse
interval.
The simplest estimate of the pulse amplitude is the pulse maximum minus the
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Figure 4.1: Top: The average pulse for CUORICINO channel 1 (Figure from A. Bryant).
Bottom: The average noise power spectrum (red) and the modulus of the discrete
Fourier transform of the average pulse (blue) for CUORICINO channel 1 (scaled to
be equal at the lowest frequency).
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baseline value: this measure is highly effected by n(t). It can be shown, fol-
lowing [38], that if n(t) has a stationary behaviour and if the shape s(t) doesn’t
change, we can obtain the best estimate for the signal amplitude by filtering it
with a transfer function whose components in the frequency domain are:

H(ω) = η
S(ω)∗

|N(ω)|2
eiωtM (4.2)

where S(ω)∗ is the complex conjugate of the Fourier transform of the ideal re-
sponse s(t), |N(ω)|2 is the noise power spectrum of the main disturbs affecting
the signal, tM is the instant when the maximum of s(t) is reached and η is a
proper normalization constant. The OF technique weights different Fourier
components of the pulse differently depending on the expected signal-to-noise
ratio (SNR) of each frequency component: frequencies that are highly influ-
enced by noise are down weighted, thus mitigating their influence on the pulse
amplitude.
At this point, as it will be shown in the next session, the estimate for the ampli-
tude a will be the maximum value of the OF’s output in time domain. Since we
are dealing with discrete signals, it can be useful to consider the DFT counter-
part of equation (4.2):

HOF
i =

S∗i
Ni

(4.3)

where Si and Ni are the discrete components of the Fast Fourier Transform of
the average pulse and of the noise power spectrum. In this equation no phase
shift is applied to the transfer function: this simply implies that the output of
the filter in the time domain {Oi}will be shifted so that the time axis will repre-
sent the delay between the raw pulse and the average pulse, without modifying
its amplitude.
An estimation for {Si} and {Ni}, is produced by averaging on acquired signals.
Since this is done from scratch, it is necessary to follow a recursive process: the
reason is that it is necessary to separate particle signals from pure noise events
(baselines) or to reject spurious signals such as pile-ups that would spoil the
result.
This is accomplished following this procedure:

• The first step is a rough hardware classification: particle signals are flagged
by the ADC under the veto of a constant fraction discriminator, while
baseline events are random caption of the detector voltage bias acquired
in anticoincidence with the particle trigger.

• The second step consists on an evaluation of the amplitude and other
shape indicators to select signals as “good” as possible for a first aver-
aging. For noise events, the signals are firstly windowed with a Kaiser
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Notation Meaning

{Ri} Raw pulse
{Si} Average pulse
{Oi} OF time-domain output of {Ri}
{Ai} OF time-domain output of {Si}
{Ni} Noise Power Spectrum
{Hi} OF transfer function
Ri,Si,Oi,Ai DFT components

Table 4.1: Notation Summary

function and then their average is computed by summing over their Fast
Fourier transform. Particle signals are also shifted so that they are syn-
chronized with an arbitrary reference point (the position of a pulse can in
fact change due to the jitter of the trigger. In this way we have a first raw
evaluation of {Ĥi} of {Hi}.

• Finally, using {Ĥi} the amplitude and the shape indicators are computed
using the OF output so that the noise fluctuation are as much contained
as possible to produce a refined evaluation of {Hi}.

As an example, figure 4.2 displays the average pulse and average noise
power spectrum for CUORICINO channel 1.
There is still one more point: leakage. Leakage is an error introduced by DFT
when the a sampled function is not completely contained in the acquired win-
dow. As can by see on the top panel of figure , the signal is trucated on its
right tail. The simple solution that was chosen is that signals to be filtered
and the OF’s transfer function are differentiated. Since bolometric signals have
very flat tails, their average derivative at the beginning and at the end of the
acquired will be zero, so that all the information is fully contained. It can be eas-
ily shown that this operation doesn’t modify the output of the filter (in Fourier
space derivation becomes multiplication), if the differentiated counterparts of
the average pulse and spectral density are used.
For clarity, a summary on the notation that will be used in this chapter is given
on table 4.1.
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4.3 Amplitude evaluation

In Fig. 4.2, a typical bolometric signal and the output of OF are shown. The
simplest amplitude estimator for the signal energy is the sample Aimax , where:

imax = arg max
i
{Oi} (4.4)

Since the OF can be seen as an autocorrelation function, it is simply the point
where the auto-correlation is maximal.
However, there is an intrinsic limit on the resolution of the pulse height mea-
surement imposed by the sampling frequency and by the Bessel filter used in
the acquisition chain, which limit the spectral information (the real instant at
which the pulse reaches its maximum value can infact fall between two ac-
quired samples).
A technique to improve the uncertainty on the pulse height due to discrete sam-
pling is to consider the parabola that intersects Oimax , Oimax−1 and Oimax+1. By
considering the analytical maximum of this parabola as the height of the pulse,
we should gain in resolution. In figure Fig. 4.3 three superimposed peaks are
shown, corresponding to three different techniques of amplitude estimation (in
mV). These are events caused by the gamma emission at 2615 keV of 208Tl de-
posing their whole energy in the bolometer. In blue it shown the height of the
raw pulse Eraw, defined as:

Eraw = Rimax − b̂ (4.5)

where b̂ is an average of the first samples to extimate the baseline level.
In red, the simple height of the OF output and in black, the height of the in-
terpolated parabola. Even though at these energies the SNR is quite high, the
improvement in the resolution is evident. The amplitude can also be evalu-
ated in the frequency domain by integrating over frequency components after
applying Eq. (4.3); this alternative will be discussed in Sect. 4.5.3.

The OF provides also a valuable information on the pulse timing: in data
analysis, for example to identify coincidence patterns between detectors, it is
important to measure the position of a signal with sufficient accuracy. but when
secondary pulses are present, identification of the primary pulse (the one that
triggered the acquisition) is important: the position of the primary pulse is
identified as the analytical value of the position of the maximum of the inter-
polated parabola.



4.4. Main pulse identification and Wiener filter 58

Figure 4.2: A raw bolometric pulse (black) and its time domain OF output (blue).

4.4 Main pulse identification and Wiener filter

When a secondary pulses are present, the identification of the primary pulse
with the OF alone can be difficult and - sometimes - even impossible. An ex-
ample of this issue can be seen in figure 4.4 where a close pile up is not resolved
in OF output.
The technique implemented for the identification of the main pulse is the “Wiener
Filter”: a deconvolution of the signal from the detector response in order to
obtain a narrow time resolution. The Wiener filter transfer function is the fol-
lowing:

HWiener
i =

S∗i
Ni + α|Si|2

(4.6)

where Si and Ni are the, respectively, the ith DFT component of the average
pulse and the ith component of the noise average power spectrum, while α is
a parameter that depends on the energy of the signal to be filtered. Basically,
α scales the average pulse power so that it is correctly compared to the noise
average contribution.
Given Ri the i-th DFT component of the OF output, α is computed as:

α =
N∑
i=1

√
|Oi|2

/
N∑
i=1

√
|Ai|2 (4.7)
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Figure 4.3: Resolution gain by applying the different amplitude estimation techniques
described in the text: raw pulse height (blue), OF height (red), and height of the inter-
polated parabola (black).

which corresponds to the ratio of the amplitudes of the filtered signal and of the
filtered average pulse, computed in the frequency domain (see section 4.5.3).
If the noise component at the denomitator is zero, the WF becomes the exact
formula for the deconvolution of a signal, whose output should be a delta func-
tion centered at the signal starting point. The noise component plays the same
role as in the OF’s transfer function: it downweights the frequencies where the
noise power is high.
As an example, figure 4.5 shows the WF output (red curve) applied to the same
raw pulse shown in figure 4.4: the two peaks are reasonably resolved.
The next step is to use a proper algorithm for maximum identifications: this
is due to the fact that the noise contribution cannot be suppressed as much as
with the OF technique, so it can happen that some random noise fluctuations
could be identified as signals.

In order to perform a robust signal identification, the following steps are iter-
ated:

1. the RMS of the filtered signal is computed

2. given a factor λ (> 1), the position tmax of the first maximum above λ·RMS
is flagged as signal.
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Figure 4.4: A close pile up in the raw signal (black curve) is not resolved by the OF’s
output (blue curve)

3. all the samples within a time window between tmax − ∆tl to tmax + ∆tr
are set equal to zero, where ∆tl and ∆tr are the time distance in which the
filtered signal goes from tmax to its first minimum on the left and on the
right, respectively.

4. the procedure is then iterated until there are no maxima above the thresh-
old.

In this way it is possible to identify which peak is the particle signal that
triggered the acquisition just by considering the one that is nearest to the trigger
sample which is fixed by the DAQ setup. This technique can be also applied in
pile-up rejection but presents many difficulties, since it is not simple to find an
automatic tuning procedure of the parameter λ for large amounts of data so it
has been used in CUORICINO mainly for the primary pulse identification.

4.5 Pulse Shape Parameters

An important feature of bolometric signals is that their time constants depend
mainly on intrinsic characteristics of the detector (in particular, the heat capac-
ities and the thermal conductances of the components of the assembly). It is
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Figure 4.5: A raw bolometric pulse with a pile-up (black), compared to its Wiener (red)
and Optimum (blue) filter outputs.

then reasonable to extract shape parameters from the raw pulse or from the
OF output to measure the deviation from the average response function of the
detector in order to discard spurious events. The main shape parameters used
in our pulse shape analysis are: the rise time and decay time, evaluated on the
raw pulses, and three different measures of the discrepancy between the fil-
tered pulse and the average detector’s response (TVL, TVR and OFT).
In the following section I will analyze in detail the ideas behind this shape pa-
rameters. In each section I will show a scatter plot for each single parameter as
a function of the energy, evaluated on a bolometric run with a 5x5x5 cm3 crystal
of TeO2, characterized by a high rate of pile-up. This is done to give a picture
of the distribution of these parameters in the worst possible situations. In these
measurements, in fact, the main source of pile-up was the 210Po alpha decay at
5.4 MeV: on each scatter plot we separated events identified as pile-ups by the
WF (red dots), in order to have a better feeling of the discrimination power of
each parameter.

4.5.1 Rise and Decay Time

These are the most “natural” shape parameters that can be used to characterize
a bolometric signals.



4.5. Pulse Shape Parameters 62

Energy [keV]
210 310

R
is

e 
T

im
e 

[m
s]

210

Energy [keV]
210 310

D
ec

ay
 T

im
e 

[m
s]

210

Figure 4.6: Scatter plots of the logarithm of rise time (left) and decay time (right). Red
dots are pile-ups identified by the Wiener filter.

We define the rise time of a signal as the time interval between 10% and 90% of
the primary pulse height. Since the sampling is discrete, a linear interpolation
is applied in order to approximate better the instant where the two fractions
are reached. The same procedure is performed to calculate the decay time of a
signal, with the only difference that is the time interval intercurring from 90%
of the amplitude to its 30%.
Since these parameters are computed directly on the raw signal, a sort of con-
trol of noise fluctuations is also applied: the raw pulse is smoothed with a
triangular function: a weighted sum of each bin with its neighbours where the
weights decays linearly with the distance. The ith sampled value Ri becomes:

R̂i =
1

N2

N∑
j=1

(N ·Ri + (N − j) ·Ri−j + (N − j) ·Ri+j)− b̂ (4.8)

where N is number of samples used for averaging and b̂ the average baseline
value. In our analysis N=3.
Then, the OF and WF technique are used to find the position and amplitude
of the primary pulse. Starting from the maximum position we find the time
instants t90%, t10% and t30% when the desired percentage of the maximum are
reached. Rise and Decay time (RT and DT ) will then be:

RT = |t90% − t10%| (4.9)

DT = |t90% − t30%| (4.10)

In Fig. 4.6 we show two typical scatter plots of these two quantities as function
of the time domain amplitude: the black dots are those flagged as single events
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Figure 4.7: TVL (left) and TVR (right) as functions of the energy. Red dots are pile-ups
identified by the Wiener filter.

by the Wiener filter, the red ones are pile-ups. The fact that a pile-up event
can have a “good” rise (respectively, decay) time is due to a secondary event
occurring after (respectively, before) the maximum of the main pulse.
In this measure, the distribution of rise and decay are nearly two horizontal
line as functions of the energy: this means that the shape of the pulses can be
considered almost constant with the energy.

4.5.2 Test Values

Under the assumption that the average response of the detector is independent
from the energy, it should be possible to produce an estimate, a test value (TV)
of the deviation of each acquired signal R(t) from the properly normalized and
synchronized average pulse A(t) as:

TV =
1

N

N∑
i

(Ai/Amax −Oi/Omax)
2 (4.11)

where Amax and Omax are maxima of the filtered average pulse.
The synchronization between the two waveform is carried on as follows.
The aim is to shift each Ai so that Aimax and Oimax are as close as possible. The
index imax identifying the maximum of the pulse Oi is the nearest integer to
tmax/τ , where tmax is the position of the maximum identified by the parabolic
interpolation as described in 4.3. A shift of imax is easy with sampled signals,
since it is sufficient to substitute each sampled Ai with Ai−imax (the OF output
is perfectly periodic by construction), but it will be necessary to compensate
also for the fractional part of the delay ifraq = tmax/τ − imax, which, due to the
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Figure 4.8: Scatter plot of the deviation from unity of the ratio of amplitudes in the
time and frequency domains (log scale) as a function of the OF maximum. Red dots
are pile-ups identified by the Wiener filter.

fluctuation of the triggering jitter, will be generally different from zero. This is
done with the following steps:

• a linear interpolation between Ai and Ai+1 is performed, obtaining an
equation f(i);

• then Ai becomes simply f(i+ ifraq)

Once the average pulse and the signal are synchronized, it still remains to be
decided the number of samples to be used in equation (4.11). Averaging on
all the time samples will result in an information loss: we decided to construct
two different etimator, for the left and the right pulse of the pulse near its maxi-
mum. The number of point is twice the number need to reach half of the signal
maximum (in CUORICINO, on average there are 20 points). As can be appre-
ciated in figure 4.7, the pile-up distribution is more resolved is more separated
from the single events: a simple cut like TVL¡10 and TVR¡10 would discard a
consistent fraction of pile-ups.
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4.5.3 An Optimum Filter Test (OFT)

As described in Sect. 4.3, the amplitude of a single particle event can be mea-
sured as the height of the OF output in time domain, but the theory of this
digital filter offers a different approach, which deals with the problem in the
frequency domain. At first, we define the average of the square root of the OF
output power spectrum as:

Ef =
1

N

N∑
i=1

√
|Oi|2 (4.12)

where Oi is again the ith DFT component of the filtered signal. It can be shown
that, as long as the SNR is sufficiently high and the main hypotheses of the OF
theory hold (basically if the noise is stationary and the waveform to be filtered
is as similar as possible to the response of the detector to a delta stimulation -
[38]), this is another estimator for the signal energy.
Intuively, each DFT compontent of the filtered signal is an independent estima-
tion of the signal energy: thus, equation (4.12) can be seen as an average over
these different estimates.
The main difference between these two approaches is that, by working in the
frequency domain, we are dealing with the information contained in all the
acquired window while by working in time domain, we consider only the re-
gion near the pulse maximum. It follows that, when the signal shape is differ-
ent from the standard detector response function or when there is a secondary
pulse in the acquired window, these two numbers will differ.
The shape parameter that has to be extracted following this assumption can be
considered as an Optimum Filter Test (OFT) and is defined as:

OFT = 1− Etd
Efd

(4.13)

where Etd and Efd are, respectively, the amplitudes evaluated in frequency and
time domain.
In Fig. 4.8 we show the scatter plot of OFT as a function of the time domain
amplitude Edt. Given the stability of rise and decay time, the steep decent of
this parameter could not be caused simply by a shape variation. It must be
addressed also to the way this parameter is expressed: for example, since the
frequency-domain is an integral of all the information of the recorded wave-
form, it could affected by a costant noise component which becomes less and
less important as the pulse height increases.
In this case, the good pulses form a high density band, and as can be seen in
the figure and almost no events identified as pile-up fall in the high density
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region, proving a good sensitivity of this parameter to the presence of a sec-
ondary pulse.
A technical discussion on how to use these quantities - as they are applied to
CUORICINO data - as pulse shape indicators in Appendix C.

4.6 Amplitude reconstruction in pile-up events

When dealing with pile-up events, combining Wiener and Optimum filtering,
we can try to extract as much information as possible from each event (i.e. from
each recorded pulse in a single window): we can use the Wiener filter to guess
the presence of secondary pulses and use the OF to measure their relative am-
plitudes. To perform this task we follow a simple least square technique.
Under the assumption that signals superpose in a linear way, we model {Oi}
with a function {A′i}, which is a superposition of the Np signals identified by
the WF:

A′i(~a) =

Np∑
p=1

ap · Api (4.14)

where the index i identifies the ith recorded time sample, while the index p
refers to the pth pile-up. The vector ~a is the vector of the unknown amplitudes
{ap} that we want to infere. Api is the output of the OF applied to the average
pulse, shifted in order to be synchronized to the pth pile-up, whose occurring
time has been measured with the WF.
With this modelization, we can build up an error function for the actual output
of the Optimum filter O(ti)

ERR(~a) =
N∑
i=1

(Oi − Ai(~a))2 (4.15)

The idea is to find the vector ~a of amplitudes that minimizes this function:
by solving the set of linear equations:{

∂

∂ap
ERR(~a) = 0

}
(4.16)

Since we have Np equation with Np unknown quantities, an algebric solution
always exists.
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Figure 4.9: Three examples of lognormal function for different values of σ in equation
(4.17). To be compared with a real CUORICINO pulse, shown in figure 4.2.

4.7 A study on simulated raw pulses

To check the many assumption and performances of the algorithms described
in the previous sections, we performed a check on simulated raw pulses. This
study has been carried out as a validation of the software I implemented: it
shouldn’t be considered as an efficiency test. The simulation is kept as much
simple as possible: I simulated particle events superposing to a function sim-
ilar to the detector response, a simulated noise time serie generated with the
algorithm described in Appendix B.
We used, for the reference pulse an analytic function, the “lognormal”, defined
as:

f(t) =
A

σt
exp

(
−(log(t)− c)2

2σ2

)
(4.17)

which shows a shape quite similar to bolometric signals, as can be seen in figure
4.9, where different shapes are superimposed.
Combining the noise simulation with this “analytical” pulse we can reproduce
a good variety of signal shapes at different SNRs. As an example, figure 4.10
shows a simulated electronic spike (fast decay time) and an instability of the
criostat (slow decay time) both superimposed to a simulated noise time serie.
The idea is to check the performances of all the algorithms described in this
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Figure 4.10: Simulated electronic spike (left) and a cryostat instability (right). The black
curve is the raw signal, the blue one the OF Filter output.

chapter varying:

• the SNR;

• the shape of the acquired signals (by means of parameter σ in equation
(4.17));

• relative amplitudes and positions in case of pile up;

Signal Amplitude. The first question that can arise from section 4.3 is: “is the
OF amplitude evaluation affected by differences between the signal to be fil-
tered and the reference pulse?”
In Cuoricino, particle signals show slow variations of their decay time (and
rise time) with the energy (they are due to non-linearities of the detector re-
sponse described in 2): tipical variations like these are of the order of nearly
1-2% within an energy range from 0 to 2.6 MeV. This condition violates one the
hypothesis for the OF appliability (fixed response function) and it might have
two important consequences that I’m going to discuss below: a variation of
the amplitude evaluated for the primary pulse (i.e. the amplitude computed
by the OF is different from the real one) and a variation of energy resolution
(since the OF is not working in ideal conditions). The effects on amplitude are
less relevant - in this case - since they can be accounted for by the amplitude to
energy conversion, while quite relevant is a possible degradation of the energy
resolution.

I firstly checked the OF output behaviour when the shape of the signals to
be filtered are different from the average response function used in equation
(4.3). Figure 4.11 shows the height of a noiseless pulse evaluated with the OF,
in which the rise time of {Si} is mantained fixed, while the decay time of {Ri}
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Figure 4.11: Ratio between the measured OF amplitude and the true amplitude on
noiseless simulated raw pulses (left) and on events generated with a SNR equal to 10
(right): the amplitude varies as the decay time is increased.

is progressively increased. As a reference pulse, we used a signal with a decay
time of nearly 320 ms. From this we can draw few conclusions:

• the amplitude is systematically underestimated on pulses with decay time
smaller than the correct one;

• with decay times greater than the reference one, it is slowly overestimated
until it reaches a maximum and then decreases slowly

• the variation in the amplitude is faster for decay times smaller than the
reference one;

• a variation of a factor 9 in the decay time, is reflected in a variation of
nearly 20% in the amplitude proving a good stability of the output of the
OF with the signal shape: significant variations in the signal shape do not
have a strong impact in the signal amplitude.

In order to check if this shape variation could be reflected in the resolution,
we performed the same analysis after superimposing a noise component to
the simulated events. The simulations has been carried out by generating 500
events for each different decay time. The right panel of figure 4.11 shows the
result of this test.
The vertical spread associated to the different decay times can be considered
as an indicator of the resolution for that specific decay time. The most relevant
consideration we can extract from this plot is that the trend doesn’t change and
that the resolution is similar at each different decay time.
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Figure 4.12: Performances of the main pulse shape parameter on the discrimination of
different decay time. Each simulation is carried out with a SNR of 100. Each parameter
is normalized so that its mean and variance at the correct decay time are, respectively
0 and 1. Top left: OFT; Top Right: Decay Time; bottom left: TVR; bottom right: TVL

We can conclude that, if we use a response function that is different from the
average behaviour of the signals (in the ranges tested in the simulations), only
a bias is introduced in the amplitude evaluation . This bias could be absorbed
in the calibration procedure for the same run. What would really matter would
be a change of the detector response during the same measurement, which
couldn’t be reabsorbed in the same way.
Compared to the variation we have tested with the simulation, we can state
that, within the variation observed on CUORICINO data, the OF theory is per-
fectly appliable.

Shape Discrimination. I used the simulations also to validate the algorithm
I implemented for the shape indicators. The Monte Carlo pulses can be used
also to check parameters’ performances on the recognition of different decay
times, when the SNR changes. As a measure of good performance, I will use
the minumum decay time difference that can be resolved (at least at one sigma)
using the corresponding shape parameter distributions.



71 4. Signal processing

True Decay Time [ms]
100 200 300 400 500 600 700 800 900

O
F

T
 [

a.
u

.]

-5

0

5

10

15

20

25

True Decay Time [ms]
100 200 300 400 500 600 700 800 900

D
ec

ay
 T

im
e 

[a
.u

.]

0

5

10

15

20

25

30

True Decay Time [ms]
100 200 300 400 500 600 700 800 900

T
V

R
 [

a.
u

.]

0

10

20

30

40

50

True Decay Time [ms]
100 200 300 400 500 600 700 800 900

T
V

L
 [

a.
u

.]

0

5

10

15

20

Figure 4.13: Performances of the main pulse shape parameter on the discrimination of
different decay time. Each simulation is carried out with a SNR of 10. Each parameter
is normalized so that its mean and variance at the correct decay time are, respectively
0 and 1. Top left: OFT; Top Right: Decay Time; bottom left: TVR; bottom right: TVL

Figure 4.12 shows the behaviour of TVR, TVL, OFT and the Decay Time (ex-
pressed as absolute difference from the true value) on a simulations generated
with a SNR of 100 (since the average RMS of Cuoricino crystal peaks is nearly
3 keV, this should correspond, basically, to a 600 keV signal). Here all the pa-
rameters have a good resolving power, and TVR seems to be the most sensitive
parameter even to slight variation of decay time (the curvature is high near the
minimum).
Near the lowest Cuoricino energy threshold (the lowest one is 30 keV) the SNR
would be nearly 10. Figure 4.13 shows the perfomances of the pulse shape pa-
rameter in this conditions. Also here, the one with the lowest RMS and best
resolving power remains TVR, followed by OFT.
This software validation proved that the combined use of these shape param-
eters seems to be a powerful tool to recognize even small variations of decay
time near the energy thereshold. However, the relative decay-time distance
of the spurious signals from the reference pulse is never known a priori: this
is the reason why we can’t put an arbitrary energy threshold. The fine tun-



4.7. A study on simulated raw pulses 72

Table 4.2: Fractions of false pile-up identification on 1000 simulations for different
SNRs and WF configurations.

λ SNR=100 SNR = 50 SNR = 20 SNR = 10

2 0% 0% 5% 10%
3 0% 0% 0% 2%
4 0% 0% 0% 0%

ing required to find the minimum SNR needed for the discrimination is again
mandatory. For example, in a measurement with similar noise and average
pulse to the ones used in these simulations, if the electronic spikes have a de-
cay time of nearly 200 ms, a SNR of 10 would not be sufficient to distinguish
them by particle signals, thus the only way to discriminate them would be to
increase the energy threshold.
Pile-up. To get the situation more complicated, I added the contribution of a
pile-up. This time two parameters are changed: keeping their shape fixed, I
summed two lognormal curves varying their relative distance and amplitude.
The main problem introduced by the pile-up, is that, if we deal with filtered
(and thus periodic) signals, a pile-up can affect the main pulse even if it hap-
pens after it: obviously it is a computational effect introduced by the passage
to the frequency domain when the OF is applied. The amplitude of the sec-
ondary pulse instead is physically altered by the main pulse because the sec-
ondary pulse occurs during an instability of the detector’s temperature caused
by the primary event.

First of all, we perfomed a validation of the algorithm defined in section 4.4
for the identification of secondary pulses. The first check has been a measure
of the probability of rejecting a good pulse, at different SNR. Starting with a
signal-to-noise ratio of 100 and λ=2 (defined in section 4.4), the signal ampli-
tude is lowered until the signal-to-noise ratio of Cuoricino threshold is reached.
1000 time series has been generated for different sets of SNR values: the results
are shown in table 4.2. As can be seen, near the threshold we have a 10% of
“probability” of rejecting a true signal as a pile-up. Increasing λ we can ob-
tain better results but, as we addressed before, this algorithm is too sensitive to
small fluctuations and its fine-tuning can become difficult if the noise changes
with time. Anyhow, its resolving power can be seen as we switch on pile-ups:
at a fixed SNR we superimposed to the main pulse a secondary event whose
magnitude and distance to the main pulse are progressively increased. In this
way a simple test of the efficiency of the algorithm can be appreciated if we
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look at the reconstructed energies evaluated with the procedure described in
4.6. Figure 4.14 shows the amplitude of the primary pulse (expressed as SNR),
as a funtion of the relative distance between the two pulses. When they are per-
fectly synchronized (zero delay) the pulse will be recognized as a sigle event.
Without the WF, the amplitude is generally incorrect untill the relative distance
is not sufficiently high. As the pile-up begins to reach the end of the acquired
window the amplitude suffers an underestimation due to the leakage because
the shape of the pile-up is truncated.
If we switch on the Wiener Filter, a reasonable range of delays (in this case, for
example, between nearly 400 and 2000 ms) could still be accepted for a mea-
sure of the main pulse energy. The bottom panel of figure 4.14 shows in fact the
reconstructed primary-pulse amplitude as a function of the delay of the sec-
ondary pulse . Within the mentioned delay range, the amplitude is correctly
reconstructed but the resolution is worsened of less than a factor of 1.3-1.5.

At the time the CUORICINO result was finalized, the rule was to discard all
the pile-ups (it was the safer approach, since this validation had never been car-
ried out): this is a small fraction of the events since the rate on a single crystal is
so small that the probability of a pile-up in a 4s time window is not so relevant
for the analysis. Anyhow, in the future, in situation of a bolometric analysis
with higher rate, this algorithm can become a powerful tool to gain live time of
the detector by keeping as much information as possible also from the events
that would be rejected: even if their amplitude is not perfectly reconstructed,
they could be, for example, be used for coincidences.
To check if the secondary pulse is actually the one that has been superimposed
(and not just a random noise fluctuation), I checked two quantities: the devia-
tions of the measured amplitudes and positions of the pile-up from their true
values (which are recorded during the simulation). Figure 4.15 shows these
quantities as functions of the pile-up delay from the reference pulse: above de-
lays comparable to the rise time the secondary pulse is always recognized.

Pile-ups can be recognized also by means of shape indicators.
Figure 4.16 shows the behaviour of all the shape indicators in case of a pile-up
between two pulses with amplitude 100 and 10 SNR, expressed as a function
of the relative delay of the two events. Note that events with delay greater
that 3 seconds do not contain pile-ups and are reported to compare the average
behaviour of the pulse shape parameter in absence of a secondary pulse. As
expected, TVL and TVR are indeed sensitive untill the two pulses are close,
while losing the information for distant pile-ups. The most sensitive indicator
is OFT, showing a high sensitivity to the presence of pile-up even at higher
delays.
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4.8 Pulse shape analysis for CUORICINO

As already stated in chapter 3, the rejection of spurious events is a critical is-
sue of CUORICINO analysis, in which we classify events through confidence
intervals determined for each recorded pulse by the distributions of the shape
parameters such as the ones described in this chapter.
Signals falling within these intervals are defined as ”true” (or physical) pulses,
while signals having one or more of their parameters outside the relevant in-
tervals are rejected as noise or pileups.
The main problem is that the evaluation of this confidence intervals in the con-
text of an experiment like CUORICINO had been indeed difficult.
If the detector’s response function wouldn’t be energy-dependent, the trend of
any pulse shape parameter as a function of the energy should be an horizontal
line.
Figure 4.17, where the distribution of TVR and OFT for a CUORICINO run are
shown, gives an idea of how reality is far from being linear. In this situations,
it is evident that it is not possible to apply simple box-shaped cuts in the pa-
rameters’ space, otherwise we would obtain an energy dependent efficiency:
it becomes necessary to control the trend of any quantity used in pulse shape
analysis before applying any criteria of rejection. One of the main goal of my
thesis work has been focused on the linearization procedure briefly described
in chapter 3 (and in Appendix C for a more description).
This non-linear trends are surely due to two main factors: a computational one
and physical one. First of all, I have shown that basically every parameters
evaluation algorithm contains an estimate of the amplitue itself, so every shape
indicator and energy are correlated by construction. On the other hand, it has
been shown by a recent work on the thermal model of bolometric pulses that
the time constants of bolometric pulses contain an energy dependent term de-
termined by the thermistor’s resistance [41]. Since every detector had its own
working point, its thermal conductances, the main problem with CUORICINO
data is the strong differences in the shape parameters distributions among the
detectors. CUORICINO is composed of 52 working channels, whose measure-
ments are subdivided in 32 data-sets: this means that a control on over 1760
different scatter-plots needs to be carried out as much automately as possible.
This has lead to the choice of a compromise between the sensitivity of a param-
eter and its stabilitity during CUORICINO data-taking.
In the previous section we have shown that the most sensitive parameter to
shape variation is TVR. In the CUORICINO case this translates in parameter
whose distributions are difficult to be linearized since it is indeed to much sen-
sitive even to small fluctuations of the signal’s shape (figure 4.17 is an example
of the differences between TVR and OFT, for the same channel).
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OFT has shown, on average, a smoother behaviour, and seemed to offer this
kind of compromize. Thus, it has been chosen as the main parameter for pulse
shape analysis of CUORICINO, using also the rise and decay time (whose scat-
ter plots can be easiliy interpolated with a polynomial function) for a better
resolving power. The efficiency of this technique, shown in table 3.4 proved
this to be a reasonable choice: the probability of discarding a good event was
nearly 2%, while the rejecting nearly 36% of the background level in the region
of interest for the 0ν-DBD .
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Figure 4.14: Top panel: amplitude of the primary pulse without the amplitude correc-
tion technique as a function of the distance to the pile-up maximum. Bottom panel:
the same plot is shown for the reconstructed amplitude. Different colors represents the
different amplitudes of the secondary pulse - expressed as signal-to-noise ratio
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Figure 4.15: Top panel: reconstructed amplitude of the secondary pulse as a function
of its distance to the main pulse. Bottom panel: measured delay of the secondary pulse
as a function of its the true delay known from the Monte Carlo truth. Different colors
represents the different amplitudes of the secondary pulse - expressed as signal-to-
noise ratio



4.8. Pulse shape analysis for CUORICINO 78

Tr
u

e 
D

el
ay

 [
m

s]
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

OFT [a.u]

-3
10

Tr
u

e 
D

el
ay

 [
m

s]
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Decay Time [ms] 50
0

55
0

60
0

65
0

70
0

75
0

80
0

Tr
u

e 
D

el
ay

 [
m

s]
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Rise Time [ms]

5658606264666870

Tr
u

e 
D

el
ay

 [
m

s]
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

TVR [a.u]

1

10

sh
if

t*
8

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

TVL [a.u.]

1

10

Figure 4.16: Schematic representation of the resolving power of the different pulse
shape estimators for pile-up rejection. Each parameter value is plotted as a function
of the relative distance between the main and the secondary pulse. Events with de-
lay greater that 3 s contain no pile-up and are reported for reference of the average
behaviour of the shape parameter in absence of pile-up.
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Figure 4.17: Examples of two CUORICINO scatter-plots of TVR (bottom) and OFT
(top). The main trends identify particle signals. The dense distribution on top are
electronic spikes. Even if the spikes’ distribution is more resolved by TVR, OFT shows
a trend which is more easy to be linearized.



Chapter 5

Cuorino Analysis For Neutrinoless
Double Beta Decay

This chapter presents the main steps followed for the analysis of CUORICINO
data for the evaluation of Neutrinoless Dobule Beta Decay. This is a documen-
tation of the stuties perfomed on RUN II which was analyzed from scratch with
the new software that will be used for the CUORE, whose prototype is CUORI-
CINO itself. As described in chapter 3, CUORICINO limit has been evaluated
by means of a bayesian approach used to study the spectrum in the region of
interest: in the first part of this chapter instead, there will be a description of
the studies performed for the optimization the data, the model and algorithms
used for such analysis. Finally, the comparison between the Monte Carlo ap-
proaches is discussed in detail.

5.1 Analysis framework and data

The entire RUN II data of Cuoricino has been used to test the software frame
work developed by the CUORE collaboration: DIANA. This software is based
partially on algorithms already used for Cuoricino that were transported from
the old environment (FORTRAN based) to the new one (DIANA) with improve
ments and revisions, and partially on new algorithms introduced mainly to be
able to authomatize most of the data processing steps. DIANA, written entirely
in C++, is designed to deal with a huge amount of data as much automately as
possible. Each operation of the data chain that leads to the evaluation of the
energy of a single event belongs to different “modules”, C++class structures
inheriting from a common base class. Each module is configured at the start-
up of the analysis so that the data ow is mainly automated. The collection of
the DSP algorithms described in chapter 4 is an example of such modules, as
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the methods for the energy calibration and gain instability corrections already
mentioned in chapter 3. Many of these techniques have been translated from
the old FORTRAN code with improvements and automation tools. The repro-
cessing of CUORICINO RUN II data (besides the change in the code) consisted
in a more uniform treatment of data (such as an identical denition of the Opti-
mum Filter parameters, the use of an automatic or semiautomatic procedures
for calibrations and stabilization) and in the application of an improved algo-
rithm for the Pulse Shape Analysis and stabilization. For this reasons Cuoricino
final result have been evaluated using - for RUN II - the new reprocessed data.

5.2 Fit method

The numerical method used for the limit evaluation is the same applied for the
computation of the results published in [46]. The same code (TIMEZZO ), based
on MINUIT , is here used. For a more detailed description of TIMEZZO , we
refer to Appendix A.
The limit for the 0ν-DBD half life of 130Te is evaluated by means of a Bayesian
approach.
The three anticoincidence sum spectra of Big, Small and Enriched crystals (iden-
tified with the index k) are modeled with the following set of equations:

fk(E) = Bk + Γ
60Co
k gk (E − ECo) + Γ0νgk (E − E0ν) (5.1)

whereEi is the energy associated to the ith bin, gk(E) is the function describ-
ing the shape of the peak andE0ν is theQ-value of the 130Te DBD transition. The
free parameters of this model are:

• Bk [c/kg/y], the three flat background rates;

• Γ
60Co
k [c/kg/y], the three 60Co activities;

• Γ0ν [c/kg/y], the absolute 0νDBD rate;

• ECo [keV], the Q-value for the 60Co line.

Assuming Poisson statistics for the binned data, and scaling each fk by its
exposure and efficiency in order to obtain yi,k (i.e. the number of counts pre-
dicted by the model for the ith bin in the kth spectrum), the overall CUORICINO
likelihood will be:

L(n|y) =
∏
i,k

exp (−yi,k) ·
y
ni,k
i,k

ni,k!
(5.2)
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where ni,k is the number of counts observed in the ith bin in the kth spectrum
(in this notation, n and y indentify the vectors of the measured and expected
number of counts, respectively). Instead of maximizing L, we follow the pre-
scription of a likelihood chi-square analysis proposed by Baker and Cousins
[47], which gives the possibility of constructing a general χ2 statistics directly
from the likelihood function. A chi-square statis tics is any function of the data
and of the parameters which is asymptotically distributed in the classical chi-
square distribution. The desired function comes from a likelihood ratio :

λ =
L(n|y)

L(n|n)
(5.3)

which is the ratio between the likelihood of obtaining the collection of all
the counts n, given a general vector of expected counts y, and the model-
independent likelihood for which the best estimate of each yi,k is simply ni,k
(its a generalization of the one-bin case where, if n counts are observed in a
time T , then the maximum likelihood estimator for the expected rate y is just
n/T ).
At this point we can compute our χ2 as:

χ2
L = −2 · log λ = 2 ·

∑
i

∑
j

(yi,k − ni,k + ni,k log(ni,k/yi,k)) (5.4)

This function has the advantage that it can be used both for goodness of fit tests
as for computation of confidence intervals.
In order to obtain the 90% C.L. limit value on Γ0ν , we express the likelihood as
a function of the free parameter of the model of equation (5.1), we exclude the
unphysical region from the likelihood function with a flat prior (basically we
won’t allow negative rates to be measured) and then compute the confidence
interval with TIMEZZO as described in Appendix A.

5.3 Hypotheses behind the fit

5.3.1 Background modelization

The definition of the energy window used to fit the DBD spectrum, the hy-
pothesis assumed for the background shape and the number of free parame-
ters used to describe the background itself are important for the choice of the
analysis procedure and for the determination of its systematic.

The choice of the energy window is somehow arbitrary, but it influences the
background representation. If the energy window is too wide (compared to the
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Figure 5.1: Background summed spectrum superimposed to the normalized calibra-
tion sum spectrum. The same pulse shape cuts are applied on both cases.

FWHM) a physical model able to describe the background shape is mandatory
(but today we don’t have a sufficiently reliable model). Obviously there is also
a minimum size of the energy window necessary to be able to evaluate the
background level beyond the 0ν-DBD peak. Moreover, in our case, there is a
peak very close to the ββ Q-value, at 2505 keV due to 60Co, which has therefore
to be included in the window. The final choice for the fit window is 2474-
2580 keV, that is the wider window, centered on the ββ Q-value, that allows
to exclude the following background peaks: the 2448 keV line of 214Bi and the
2587 Te X-ray escape peak of the 208Tl line
The latter peak, not clearly visible in the background spectrum, can be appre-
ciated in figure 5.1 that shows the CUORICINO spectra for the Big crystals
compared to a calibration spectra whose rate is normalized on the 208Tl line.

As already stated in chapter 3, once defined the energy window, it is nec
essary to fix a technique for background evaluation. There are three possible
general approaches:

• ideal: treat separately the different detectors;

• multi-spectrum: assume the background identical for groups of detectors;

• average-spectrum: average the background over the detectors belonging to
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Figure 5.2: Left panel: counting rate [c/keV/kg/y] in the energy region between 2490
keV and 2590 keV (including therefore the 2505 keV peak due to 60Co) vs. channel
number. Right panel: counting rate [c/keV/kg/y] in the energy region between 2700
keV and 3200 keV vs. channel number. Red points refer to 330 g natural crystals,
blue points to enriched ones. Rates are computed on the same data used for the DBD
analysis (PSA and anticoincidence cuts included). Colors refer to the crystal type: Big
(black), Small (red) and Enriched (blue).

the same group;

where the three groups of detectors are, as already stated, those having the
same efficiency (i.e. mass) and isotopic abundance: Big, Small and Enriched
crystals.

The ideal approach would introduce a high number of free parameters since
in our analysis we have 55 detectors. Moreover it would require to have a
good description, detector by detector, of the energy resolution. This is possi-
ble if we assume that the energy resolution is well represented by the estima-
tion obtained on the calibration runs. With this approach, each channel and
each data-set is treated separately, fitting each channel spectrum with its back-
ground model and using the energy resolution measured during the calibration
for each data-set. In principle this is the best approach since it uses all the in-
formation available and does not imply any hypothesis on the uniformity of
the background rate among detectors. Two weak points can be devised in this
approach: the number of free parameters (55 background coefficients and 55
60Co rates), and the assumption that the energy resolution measured during a
background data-set (∼1 month) is equal to the energy resolution measured in
a 6 days calibration (∼3 days before the start of the background run and ∼3
days after).
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Figure 5.3: Counting rate [c/kg/y] vs. floor on the three 60Co lines: 1173 and 1332 keV
in the upper panel and the sum line at 2505 keV in the lower panel.

The multi-spectrum procedure avoids the high number of free parameters in the
fit by forcing the background to be identical on the detectors of the same group:
this assumption is motivated by the fact that the low statistics prevents us from
being sensible to background variations among crystals of the same group in
the DBD region (see left panel of fig. 5.2). Here too the energy resolution is
evaluated from calibration data.

The average-spectrum approach avoids any strong assumption, at the price of
a certain degree of information loss. Indeed, the energy resolution here can
be determined on the background spectrum itself (see section 5.3.2) and no
hypothesis on the background differences among detectors is used. The back-
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Figure 5.4: Counting rate [c/kg/y] vs. floor on the gamma lines of 232Th: 338, 583, 911
and 2615 keV.

ground is simply averaged on all the statistics and all the similar crystals (those
of the three mentioned groups). Also a variation of the background rate during
time is here not relevant, provided that the response function does not change.
This last approach is the one used for the study documented in this thesis, as a
continuation of the standard CUORICINO analysis.
Anyhow, it should be stated that the hypothesis of a uniform counting rate
on detectors of the same group is not supported by our present knowledge on
DBD background composition but we expect that the extremely low statistics
on the single channel spectra will prevent us from appreciating such differences
in the ROI. For example, the 2505 keV peak has a too low intensity to be able
to compare its rate among different detectors. However this peak is produced
by the contemporary detection of the two gamma photons emitted in 60Co de-
cay. These lines (at 1173 and 1332 keV) have a much higher intensity and - as
shown in figure 5.3 - their rate is dependent on the crystal position in the tower.
60Co is a short-living isotope produced by neutron activation in Copper. The
1173 and 1332 keV lines reduce their intensity with the 60Co half-life, showing
that activation is not due to underground neutrons and that the contamination
must have been introduced with the new Copper used for Cuoricino. We can
therefore identify the source of 60Co in the Copper of the mounting structure of
the Cuoricino tower. This was constructed with two different kind of Copper
and each piece of the tower (top, bottom, frames and the lateral coverages) was
exposed to sea level neutrons for a different time. This difference in the expo-
sure, and the variation of geometrical efficiency can account for the behavior
observed in figure 5.3. Excluding the 60Co, we have not identified any other
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contribution to the DBD background that could be time dependent. Indeed,
241Bi lines (which have had very important variations during the experiment)
have a negligible intensity above the 2448 keV peak. The few cosmogenic iso-
topes identified in the spectrum have Q-values far below the ββ transition en-
ergy and the 210Po peak - which is observed to decay in time - is ascribed to an
internal contamination of the crystals and therefore should not give any contri-
bution in the region of interest. The approximately flat background under the
DBD peak is most likely due to three different sources. In the LNGS Annual
Report of year 2006 [48] is included a detailed description of the sources. They
are:

• the 208Tl that contributes through the Compton of the 2615 keV line (see
figure 5.1 and 5.4);

• the surface alpha contaminations of the crystals;

• the surface alpha contamination of the crystal mounting structure (mainly
Copper);

The first two sources have a clear signature and are quite dis-uniform in their
intensity. The third is not clearly identified, but should account - together with
the second source - for the continuum background measured in the 3-4 MeV
region (see figure 5.2).

5.3.2 Response functions

The simplest model that can be assumed to represent the shape gk(E) of a peak
centered at E0 in the sum spectrum of the kth crystal group is:

gk(E) =
1√
2πσ

exp

(
−(E − E0)2

2σ2

)
(5.5)

We will refer to this equation as single-gaussian response function.
The hypothesis subtended by this equation is that, although collecting events
from different channels and data sets, the response function is still a simple
gaussian. The resolution associated with this gaussian can be measured on kth

sum background spectrum itself, using a background line close enough to the
0ν-DBD Q-value (in our case the 2615 keV line of 208Tl). The assumption that
a single gaussian can represent correctly the response function of a collection
of detectors could be considered an oversimplification of the problem, and -
except for a simple χ2 - there’s no actual method to confirm the reliability of
this approach.
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Figure 5.5: Fit of the 2615 keV line in the anticoincidence sum background spectrum
(Big crystals on the top panel and Small crystals on the bottom one). The two response
functions are compared: single gaussian (green) and sum of gaussians (red).

On the contrary, if we follow the idea that the resolution measured in a cali-
bration is a good estimator for the resolution of the corresponding background
data-set, then it is reasonable to believe that in the sum spectrum the response
function can be modeled as a superposition of all the gaussians whose res-
olutions were measured in calibrations. This for all the channels/data-sets
summed in the spectrum. With this assumption, the response function has the
form that we already defined in chapter 3:

gk(E) =
1∑

i,j

Ai,j

∑
i,j

Ai,j√
2πσi,j

exp

(
−(E − E0)2

2σ2
i,j

)
(5.6)

where the sum over i extends on all the detectors belonging to the kth group and
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Figure 5.6: Distributions of the resolution measured in calibration for the three groups
of crystals.

j runs over all the data-sets. Ai,j and σi,j are the corresponding background ex-
posure and energy resolution measured during calibration.
Even in this case there is a simplification since calibrations run last for few days
while background data-sets lasts for about 1 month. Equation (5.6) in princi-
ple provides a better description of all the possible differences among channel
resolutions and their changes through time. While the first leads not only to
averaging such differences but also measures the energy resolution exactly on
the background spectrum that is being used for 0ν-DBD analysis. In section 5.4
we will show the impact of these two functons on the best fit values and on the
90% CL limits.
In order understand which of the two equation is more appropriate, we studied
the performances of the two functions (on RUN II data) comparing the χ2/ndf
obtained when fitting the 2615 keV line in the Big and Small crystal background
spectra (see figure 5.5). Practically, the two response functions have been con-
structed as described below.
The single gaussian response function described by equation (5.5) was obtained
measuring the resolution at the 2615 keV line of 208Tl for each of the three sum
spectra on the right side of the peak: this is due to the presence of a tail on the
left part which presently is not understood. The regression was performed with
a gaussian peak superimposed to a linear background. These are the resulting
FWHM’s:

• Big crystals: 6.3 ± 0.1 keV
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Figure 5.7: Comparison between the fits of the multi-gaussian response function (red)
and the crystal ball function (blue).

• Small crystals: 8.9 ± 0.5 keV

• Enriched crystals: 10 ± 2.2 keV

The sum of gaussians response function described by equation (5.6) was ob-
tained after a binning of the measured resolutions. Since the gaussians in equa-
tion (5.6) are more than a thousands for the Big crystals, almost four hundreds
for the Small crystals and about 50 for the two Enriched crystals, we used the
following averaging procedure for the construction of the response function:

• for each group of detectors we collected all the resolutions measured in
calibrations into an histogram (see figure 5.6) with binning width ∆σ;

• we assigned to the jth bin a weight Tj which is the sum of the live-times
of all the detectors whose resolutions are within σj ±∆σ/2.

• the response function at energy E0, for a group of crystal is then be:

g(E) =
1∑

j

Tj

∑
j

Tj√
2πσ2

j

exp

(
−(E − E0)2

2σ2
j

)
(5.7)
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Figure 5.8: Cuoricino calibrations double-hit scatter plot.

Apparently there is no significant evidence for a better modeling of one of the
two functions since the χ2/ndf are similar. Anyhow, both the modelizations
seem to describe poorly this peak: a low energy tail can be seen on the left side
of the peak (possibily due to some sort of energy loss mechanism). The question
that can arise is then whether this could be a characteristic of every monochro-
matic line in the Cuoricino spectrum. In fact, this energy tail is not present in
the CUORICINO Monte Carlo simulation, thus it could be a side effect of some
unknown energy degradation characterizing the bolometers (i.e. a quenching)
and not accounted by the processes implemented in the simulations. A possi-
ble alternative, frequently used in particle physics, that can describe this peak
is the so-called crystal ball function:

f(x, α, n, x̄, σ) =


exp

[
−(x− x̄)2

2σ2

]
, for

(x− x̄)

σ
> α

A ·
(
B − x− x̄

σ

)−n
, for

(x− x̄)

σ
≤ α

(5.8)
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Figure 5.9: Cuoricino calibrations double-hit scatter plot.

where

A =

(
n

|α|

)n
·
(
−|α|

2

2

)
,

B =
n

|α|
− |α|.

(5.9)

Although this function better describes the shape of the Tallium line, as can
be seen in figure 5.7, in the CUORICINO spectrum we couldnt find any other
peak with a comparable signal-to-background ratio to test this function. The
question is: is this asymettry a characteristic of every monochromatic line?
We decided to use the coicidence information in order to find other peak with
this characteristics. Figure 5.8 shows a scatter plot of the energy of all the
double-hit events recognized in Cuoricino calibrations. Diagonal iso-energy
lines identify events in which the whole energy of a gamma decay is divided
in two crystals via Compton scattering. We identified the double-hit events
whose energies summed to 2615±10 keV and plotted their comulative spec-
trum, that can be appreciated in figure 5.9. As expected the main trend is the
Compton shape plus the contribution of two peaks due to the single escape of a
511 keV gamma after pair production (one crystal will record the energy of the
two electron plus one of the annhilation photons - 2104 keV -, while the other
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Figure 5.10: Different response function evaluated on the 511 keV (top) and 2104 keV
(bottom) energy lines.

crystal stops the escaped gamma). As can be seen, this two peaks have high
statistics and a great signal-to-background ratio (nearly 1000) and can thus be
used to check the performances of different response function. The different
height of the two line is due to the resolution improvement at lower energy.
Firstly we interpolated the background with a second order polynomial on an
energy region far from the peak. Then, once the background shape is fixed, we
fitted the peak with the three different functions and checked the result with a
χ2 test and a likelihood ratio test. Figure 5.10 shows no significant difference
between the two: both chi-square and likelihood ratio are nearly one, thus no
evidence for an asymmetry was found.
The asymmetric part seems to be most likely due to an inefficiency in the energy
collection when compton effect is envolved; anyhow, any physical analysis of
these processes will require dedicated measurements in orther to gain a better
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understanding. Until further evidence, we will describe the shape of the peak
caused by the containement of the 0ν-DBD event with a gaussian function.

5.4 Best Fit Results

We have studied the differences in the 0ν-DBD best fits obtained with the two
models for the detector’s response function. This study has been performed on
RUN II data and can be considered as a measure of the impact of changing the
hypothesis that the resolution of a detector could be measured during calibra-
tions.
The parameters used in the fit procedure are summarized in table 5.1 while
tables 5.2 and 5.3 show a summary of the results.

Figure figure 5.11 shows the results obtained by fitting DBD peak with the
single-gaussian response function (equation (5.5)) and the sum-of-gaussian one
(equation (5.6)).
The results are computed following the average-spectrum approach. The best fit,
the background function, the 68% and 90% confidence limits are superimposed
on a fictitious spectrum constructed as the sum of the three spectra (those that
are used in the fit) after a proper normalization that takes into account the dif-
ferent live times, efficiencies, mass and isotopic abun dances of the three groups
of crystals.
The difference between the results obtained with the two functions seems to be
not only in the 0ν-DBD rate best fit value, but also in its error. Consequently
the limit changes. As it can be seen from the figures, the single-gaussian distri-
bution is wider and this translates in a higher number of counts, in larger error
and, therefore, in a weaker limit. Anyhow, the hypothesis that the resolution
measured in calibration can be a considered as a measure also of the resolution
of background runs is not ruled by this analysis, so we decided to choose the
sum of gaussian as a description of the detector response and we used, in order
to be conservative, the difference between the best fits obtained with the two
functions (0.08× 10−25 y −1 ) as a measure for the a systematic error on Γ0ν .
As a next step, we added the contribution from Big, Small and Enriched crys-
tals from RUN I, combining their likelihoods in equation with the RUN II data
and using a similar reconstruction for the response function. The results are
shown in table 5.5 while in figure 5.12 we show the best fit and corresponding
68% and 90% limits.
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Figure 5.11: Fit result for the fictitious spectrum for the single-gaussian (top) and multi-
gaussian response function.
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Figure 5.12: Fit result with the inclusion of RUN I. The response function here is the
sum of gaussian and the background is flat.

5.5 Systematic uncertainties

In our analysis we have identified the following sources of systematic uncer-
tainties:

• the calibration uncertainty;

• uncertainty in the signal efficiency;

• the background shape;

• the response function;

• the energy window of the fit.

In the case of the calibration uncertainty we have a direct estimate of its mag-
nitude coming from a dedicated analysis of the residuals (see section 3.2): we
reconstruct the position of a peak in the 0ν-DBD region with a precision ∆E =
±0.4 keV. Being the position of the 60Co fit more far than this value, we de-
cided to use a more conservative value of 0.8 keV. This systematic error has
been included directly in the fit as a gaussian fluctuation in the energy position.
Since this uncertainty is significantly larger than the error (0.013 keV) on the Q-
value [34], the systematic error discussed here also automatically includes the
experimental uncertainty on the measured 130Te transition energy.
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To evaluate the uncertainty from the choice of energy window and shape
of the background spectrum, we varied the model for the background (flat,
linear and parabolic) at four different energy intervals centered at the Q-value
of the 0ν-DBD decay (we increased the lower and the upper bound of an energy
window starting from 2527±30 keV at increasing steps of 5 keV). The results of
this analysis have shown an average variation in Γ0ν of 3× 10−26y−1.

The uncertainty on the signal efficiency is reported in table 3.4 to be 1.1%
for the big crystals and 1.4% for the small crystals, both of which are neg-
ligible compared to the contributions from the energy scale and background
parametrization.
Being the systematic error on the response functions also small (0.8× 10−26 y−1

) we can state that we are dominated by the background uncertainty.

5.6 Confronting statistical methods

On CUORICINO RUN II data, the results of the multi-spectrum and average-
spectrum approaches described in section 5.3.1 were indeed very similar. Table
5.4 shows the best fits and limits for the two approaches: no significant differ-
ence is observed.
In order evaluate the performances of the two approaches, we compared the
distribution of the relevant statistical estimators for a thousand toy Monte Carlo
simulated spectra for each CUORICINO detector, generated with rates cor-
responding to those directly measured in RUN II (see table 5.5) and no 0ν-
DBD signal. Several pieces of information have been obtained from this com-
parison:

• Both methods lead to compatible results. Figure 5.13 demonstrates a
strong correlation between them.

• Both are unbiased. Figure 5.14 (left panel) shows that for both methods,
the distribution of the best fits divided by their statistical errors is com-
patible with a gaussian centered at zero with a variance equal to one. This
is an important result which is not always guaranteed by maximum like-
lihood methods applied to low statistics.

• Both have similar sensitivities. The distributions of the 90% confidence
intervals (figure 5.13 top panel) show a sensitivity of nearly 2.5x1024 y,
evaluated as the median of the distribution, following the Feldmann and
Cousins prescription [42].

The last point offers a nice synthesis for a better understanding of the numbers
we are dealing with. A wide range of limits can be reached in experiments
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Figure 5.13: Results of a toy Monte Carlo simulation with no 0ν-DBD signal (1000
simulated CUORICINO-RUN II experiments). Scatter plot of the 90% C.L. limits (top
panel) and of the best fits (bottom panel) obtained with the two different approaches.
The colored line has slope=1 and shows the strong correlation between the two tech-
niques.

with the same true background level (figure 5.14, right panel) and therefore
with the same sensitivity. In this respect, quoting only the limit reached by an
experiment can be misleading if the sensitivity is not also mentioned.

5.6.1 An interpretation of the MC results

We tried to find a possible - analytical - explanation for the result obtained
with the MC simulations: the almost perfect compatibility between the multi-
spectrum and the average-spectrum methods. To do this we model the problem
making some assumptions:

• we consider Cuoricino data to be composed only by big crystals;

• we assume that the experimental data are a collection of binned spectra;
one for each channel c and data-set d;
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Figure 5.14: Results of a toy Monte Carlo simulation with no 0ν-DBD signal (average-
spectrum in black and multi-spectrum in color). Left panel: pull distributions of the
obtained best fits divided by their statistical error. Right panel: distribution of the 90%
confidence level limit on the decay rate.

• nc,d(Ei) will be the number of counts in the ith bin with energy Ei for
channel c and data-set d;

• we assume that the expected number of counts in our spectra yc,d(Ei) is
the superposition of a gaussian peak (the 0ν-DBD signal) and only a flat
background:

yc,d(Ei) = mc,d ·

(
Γ · 1√

(2π)∆Ec,d
exp

[
−(Ei − E0)2

2∆E2
c,d

]
+Bc,d

)
(5.10)

where mc,d is the corresponding exposure, while Γ and Bc,d are the ex-
pected rate of signal and background in one energy bin.E0 is the Q-value
of the searched transition and ∆Ec,d the resolution measured for dataset
d on channel c.

Finally we assume that:

• we know with infinite precision the value of the average expected back-
ground Bc,d, so that we can avoid any marginalization;

• we can work in a gaussian approximation of Poisson statistics;

• the number of counts mc,dΓ is negligible with respect to the background
(this seems reasonable, since we actually set it to zero in the simulations).

Within this picture, the expected number of counts for one of the spectra will
be:

Nc,d =
∑
i

ycd(Ei) (5.11)
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Figure 5.15: 90% upper limit on Γ as a function of the best fit. 1000 simulations are
compared to the expected approximated behaviour.

Considering our assumptions, the likelihood of obtaining nc,d(Ei) will be
a gaussian with mean value yc,d(Ei) and width σc,d, thus the logarithm of the
likelihood for this spectrum will reduce to:

log [L(data|Γ)] = const.− χ2 (5.12)

where χ2 is defined as:

χ2 =
N∑
i=1

[yc,d(Ei)− nc,d(Ei)]2

σc,d(Ei)
(5.13)

Since we chose a flat prior for Γ, the upper limit for this quantity will be
proportional to the width of the likelihood with respect to Γ near its maximum
(Γbest). Such width, σΓ, can be defined as:

1

σ2
Γ

∝ ∂2χ2

∂Γ2

∣∣∣∣
Γ=Γbest

(5.14)

With the proper substitution of equation (5.11) and deriving twice (5.20), we
obtain:

1

σ2
Γ

∝
N∑
i

2m2
c,d

σc,d(Ei)

1

2π∆E2
c,d

exp

[
−(Ei − E0)2

∆E2
c,d

]
(5.15)

Using again the gaussian approximation of Poisson statistics (σ2
c,d(Ei) =

ycd(Ei)), the fact that we expect that Γbest to be negligible with respect to B
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Figure 5.16: Ratio between the errors of approach II and approach III increasing the
spread of the detectors’ resolutions (α = 1 correspond to the CUORICINO spread
shown in figure 5.15).

and after some algebra to deal with the summation of the exponentials (for the
details, we refer to [49]) we obtain a familiar expression:

1

σ2
Γ

∝ mc,d

Bc,d∆Ecd
(5.16)

In which the error on Γ will be proportional to the expected background and
resolution, and inversely proportional to the exposure: it’s the definition of
sensitivity. If we want to express the overall error, combining all channels and
data-sets, we obtain the likelihood spread for the ideal approach 1:

1

σ2
I

∝
∑
c,d

mc,d

Bc,d∆Ec,d
(5.17)

At this point, in order to reduce the number of free parameters, a possible
interpretation of the multi-spectrum approach 2 could be the application of the
following substitution:

Bc,d ' B =
1

K

∑
c,d

Bc,d (5.18)

1 This is the approach treating each detector as a different experiment without any assump-
tion on the background

2Treating CUORICINO as a collection of different experiments with the same background
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where K is the total number of spectra. Rather than saying that we force the
detector to have the same background, we could say that we are simply evalu-
ating the average value of the background for each channel.
As long as the backround are similar, this assumption will be correct, and the
error will be proportional to:

1

σ2
II

∝
∑
c,d

mc,d

B∆Ec,d
. (5.19)

The average-spectrum approach 3 instead, computes also a different χ2:

χ2 =
N∑
i=1

[y(Ei)− n(Ei)]
2

σ(Ei)
(5.20)

where y(Ei) =
∑

c,d yc,d(Ei) and n(Ei) =
∑

c,d nc,d(Ei).
Now, following the same steps that we used to reach (5.17), the rough estimate
for the likelihood spread would be:

1

σ2
III

∝
∑
i

(∑
c,dmc,d

)
g2(Ei)∑

Bc,d

(5.21)

where g(Ei) is the response function defined in equation (5.6). If we approxi-
mate also the response function as a gaussian whose sigma ∆Eeff is:

∆Eeff =
1∑

c,dmc,d

∑
c,d

mc,d∆Ec,d (5.22)

we obtain:
1

σ2
III

∝ 1∑
c,dBc,d∆Eeff

∑
c,d

mc,d (5.23)

The main difference from equation (5.19) and (5.23) is that in the latter we
are averaging before summing all the terms. Clearly, the sum of a product is
greater that the product of the sums, so the sensitivity of the second approach
(in which we treat separately each detector fixing the background) is in princi-
ple greater.
What is the order of magnitude of this difference for CUORICINO data?
To get an idea of the ranges of appliability of the approximation of equation

3It averages all the detectors in the same spectrum, under the assumption that they have
similar backgrounds
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Figure 5.17: Errors on the decay rate computed on 1000 Cuoricino-RUNII-like experi-
ments.Top panel: the true background rate is the same on each detecter. Bottom panel:
the true background is different between detectors (with the same spread as the exper-
imental one)

(5.23) we modelled the distribution of CUORICINO data with a Landau prob-
ability distribution. Figure 5.15 shows that this distribution fairly describes
CUORICINO detectors. Defining σq as the width of this Landau function,
we simulated different outcomes for CUORICINO resolutions sampled from
a Landau distribution whose width is α · σQ and we computed the ratio be-
tween (5.19) and (5.23) as a function of α.
Figure 5.16 shows the result of this evaluations.



5.6. Confronting statistical methods 104

In CUORCINO case (where α = 1), the third approach has an error of the or-
der of 3-5% greater than the second one. In this section surely we made many
approximations, but if we confront the error of the two approaches on the sim-
ulations (see figure 5.17), we obtained that the second approach is better, with a
4% smaller error (1.55× 10−25 y−1 vs. 1.44× 10−24 y−1) which is of the expected
order of magnitude.
More over, we genereted a set of simulations in which the true background
of each crystal can be different, taking values sampled from a flat distribution
with the same width of the experimental errors. Looking at the bottom panel
we can see that the two distribution are shifted, mantaining the same propor-
tion (1.73×10−25 y−1 vs 1.66×10−25 y−1) that they had when the background was
the same: the two assumptions are in fact making the same approximations for
the background introduced by equation (5.18) and this propagates in the same
way for both approaches. We can then conclude that the two methods are actu-
ally making almost the same approximations concerning the background and
that they gave comparable results basically thanks to the similar resultions of
detectors belonging to the same group.

5.6.2 Sensitivity

An important conclusion extracted from equation (5.19) and (5.23) is that, if we
have a strong knowledge of the background, the spread of our likelihood is
not linked to the peculiar outcome of an experiment (the maximum Γbest of its
likelihood). This can be appreciated also by looking at the distribution of the
experimental errors evaluated on the simulations in figure 5.17 and compare
it to the spread of the limits distributions in figure 5.14. The statistical error
seems to be an instrinsic characteristic of different experiments with the same
background.
What really varies between experiment is the maximum of the likelihood, Γbest,
which surely depends on the recorded counts in the region of interest. This
affects directly the limit: if we assume the likelihood to be almost gaussian
with a constant error, the equation for the limit Γlim takes the form:∫ Γlim

0
P(Γ) 1√

2πσΓ
exp

[
− (Γ−Γbest)

2

2σ2
Γ

]
dΓ∫ +∞

−∞ P(Γ) 1√
2πσΓ

exp
[
− (Γ−Γbest)

2

2σ2
Γ

]
dΓ

= C.L. (5.24)

where P(Γ) is the prior we have chosen.

In our simulation, Γbest will depend only on how much the background will
be above or below its average value (this can be seen by deriving equation
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Figure 5.18: 90% upper limit on Γ as a function of the best fit. 1000 simulations are
compared to the expected approximated behaviour.

(5.20) once with respect to Γ). Thus, instead of simulating N experiment then,
we can gain a full picture of the behaviour of the limit as a function of Γbest by
computing the limit with equation (5.24) for every reasonable outcome that we
expect (namely, for every resonable background fluctuations below or above its
average).
Figure 5.18 shows a comparison between the resulting parameters (limits and
best fits) evaluated on 1000 Cuoricino-like experiment and this approximation,
in which we computed equation (5.24) as a function of Γbest.
As we can se there’s a good agreement between the two as Γbest is close to zero.
When we are looking for a signal whose contribution is compatible with the
background fluctuations, the limit is actually a less stable estimate for an infor-
mation on Γ than the likelihood width or - since basically they are the same -
the sensitivity. This can be addressed to the fact that in the fit window we have
more information concerning the background, rather than the searched signal.
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Table 5.1: Fit ingredients

0νDBD Q-value [keV] 2527.5±0.013
Atomic molecular mass [g] 159.6
Average Efficiency RUN II (Big crystals) 0.827
Average Efficiency RUN II (Small crystals) 0.798
Average Efficiency RUN II (Enriched crystals) 0.798
Average Efficiency RUN I (Big crystals) 0.856
Average Efficiency RUN I (Small crystals) 0.825
Average Efficiency RUN I (Enriched crystals) 0.825
Crystal mass (Big crystals) [kg] 0.79
Crystal mass (Small crystals) [kg] 0.33
Crystal mass (Enriched crystals) [kg] 0.33
Isotopic abundances (Big crystals) 0.338
Isotopic abundances (Small crystals) 0.338
Isotopic abundances (Enriched crystals) 0.75

Table 5.2: RUN II fit results for the single gaussian response function. A calibration
uncertainty of 0.8 keV is included in the fit.

Energy Region [keV] [2474-2580]
Best Fit (Γ) [y−1] (0.34± 1.54)x10−25

Limit (τ1/2) [y] 1.99x1024

Flat Bkg (Big Crystals) [c/keV/kg/y] 0.154±0.006
Flat Bkg (Small Crystals) [c/keV/kg/y] 0.17±0.02
Flat Bkg (Enriched Crystals) [c/keV/kg/y] 0.34±0.05
60Co Rate (Big Crystals) [c/kg/y] 2.5 ± 0.3
60Co Rate (Small Crystals) [c/kg/y] 1.7 ± 0.8
60Co Rate (Enriched Crystals) [c/kg/y] 0 ± 4
60Co Peak Energy [keV] 2506.9±0.2
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Table 5.3: RUN II fit results for the sum of gaussians response function. A calibration
uncertainty of 0.8 keV is included in the fit.

Energy Region [keV] [2474-2580]
Best Fit (Γ) [y−1] (0.25 ± 1.51)x10−25

Half life limit [y] 1.99x1024

Flat Bkg (Big Crystals) [c/keV/kg/y] 0.154±0.006
Flat Bkg (Small Crystals) [c/keV/kg/y] 0.17±0.02
Flat Bkg (Enriched Crystals) [c/keV/kg/y] 0.34±0.05
60Co Rate (Big Crystals)[c/kg/y] 2.5 ± 0.3
60Co Rate (Small Crystals) [c/kg/y] 1.7 ± 0.8
60Co Rate (Enriched Crystals) [c/kg/y] 0 ± 3.5
60Co Peak Energy [keV] 2506.5±0.3

Table 5.4: Comparison between the fit results for the two studied approaches on RUN
II data.

Multi-spectrum Average-spectrum

Best Fit [y−1] (0.2 ± 1.5)×10−25 (0.3 ± 1.5)×10−25

Half-life limit [y] 2.5 × 1024 2.4 × 1024
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Table 5.5: Fit Results combining run I and II using the sum of gaussian response func-
tions. A calibration uncertainty of 0.8 keV is included in the fit.

Energy region [keV] [2474-2580]
Best fit (Γ) [y−1] (-0.25 ± 1.44)x10−25

Limit (τ )(without systematics) [y] 2.92x1024

Limit (τ )(with systematics) [y] 2.81x1024

Flat Bkg (Big Crystals) RUN II [c/keV/kg/y] 0.153±0.006
Flat Bkg (Small Crystals) RUN II [c/keV/kg/y] 0.17±0.02
Flat Bkg (Enriched Crystals) RUN II [c/keV/kg/y] 0.35±0.05
60Co Rate (Big Crystals) RUN II [c/kg/y] 2.5 ± 0.3
60Co Rate (Small Crystals) RUN II [c/kg/y] 1.7 ± 0.8
60Co Rate (Enriched Crystals) RUN II [c/kg/y] 0 ± 3.5
Flat Bkg (Big Crystals) RUN I [c/keV/kg/y] 0.20±0.02
Flat Bkg (Small Crystals) RUN I [c/keV/kg/y] 0.17±0.07
Flat Bkg (Enriched Crystals) RUN I [c/keV/kg/y] 0.8±0.4
60Co Rate (Big Crystals) RUN I [c/kg/y] 4.6 ± 1.5
60Co Rate (Small Crystals) RUN I [c/kg/y] 9 ± 6
60Co Rate (Enriched Crystals) RUN I [c/kg/y] 0 ± 14
60Co Peak Energy [keV] 2506.5±0.3





Chapter 6

A prior-free analysis of Cuoricino
data

“I trust you about as far as I can throw Manhattan”
– Guybrush Threepwood

6.1 Coverage and Priors

The confidence interval we computed for Cuoricino is obtained by means of
a bayesian approach. This means that the confidence level we quote refers to
the so-called “degree of belief” concerning the limit we obtained. A generic
statement E - in our case: “if Neutrinoless Double Beta Decay exists, then
τ 0ν

1/2 > 2.8× 1024 yrs” - is considered 90% probable. This belief can be expressed
in many different ways, but the one of the most coherent with the Bayesian ap-
proach could be: ”Given a box containing 90 white and 10 black balls, I am as
confident that E will happen, as that the colour of the ball will be white. I am
as confident about Ē (the complement of E) as of extracting a black ball”.
If I have computed my limit correctly, I wouldn’t see any difference between
betting on E or extracting a white ball.
This probability is different from frequentist one: in that case, the limit would
have been a property of an ensamble of similar experiments and the confidence
level would be the fraction of these experiments for which E would be true. If
a frequentist interval satisfy this requirment, we say that it has a correct ”cov-
erage”.
The bayesian limit instead is related to a single experiment, the one on whichE

was computed. Anyhow checking the coverage can give precious hints on the
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Table 6.1: Coverage of the Cuoricino limit evaluation as the sensitivity is reached

<n> 25 20 15 10 5
coverage 91% 96% 99% 99% 99%

limit evaluation behaviour, expecially on low counting experiment like Cuori-
cino.
For this study I performed a similar Monte Carlo study as the one presented
in the previous chapter, with the addiction of a simulated signal of 0ν-DBD .
Just to have a more practical idea of the number of counts we are dealing with,
the average background rate used in this simulations corresponds to basically
9 counts/keV in the region of interest. The average RMS fluctuation of this
background under a FWHM of th signal peak would be of nearly 7 counts. To
this background we superimposed a simulated signal progressively lowered to
reach this value: we started with the 0ν-DBD rate that would have caused 25
counts in the CUORICINO spectrum for the Big crystals ( since the number of
130Te per year is 7.3x1024, this would correspond to τ 0ν = 2x1024yrs). Table 6.1
shows the frequentist coverage of the limit evaluation method as long as we
reach the sensitivity.
As we reach the sensitivity region, whatever is the expected 0ν-DBD rate, we
never fail: we always quote a correct higher limit. This is exactly what is shown
in figure 5.18: there is a wide range of possible limits that are unaccesible, un-
less really deep background downward fluctuations, thus it is obvious that
when the true signal is lower than this “bound” we will never be wrong on
quoting our upper limit.
How is it, that the Bayesian prescription for a desired confidence level (i.e.
90%), ends up in a limit with different properties? The answer which is gen-
erally given in this case [50] is that the prior doesn’t respect properly the re-
searcher’s real ideas about the quantity he is measuring. The flat prior we used
seemed the most umbiased assumption but it hides some subtleties. One for
all: with a flat prior we are stating that, before looking at Cuoricino data, we
believe that:

P (0 < Γ0ν < 1) =
1

10
P (1 < Γ0ν < 10) =

1

100
P (10 < Γ0ν < 100), ... (6.1)

which may sound strange. If this prior is really the most unbiased, how could
I say that Γ is more likely to be between 0 and 1, than between 10 and 100?

A common way to avoid this situation is to use another prior, frequently
use in counting experiments: the so-called “Jeffrey’s prior” [51], a distribution
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Figure 6.1: Comparison between different Cuoricino posterior functions: the black
curve is obtained with a flat prior for Γ0νββ , the green curve with a Jeffrey’s prior. The
distributions are not normalized.

based on the observation that what often seems uniform is not the probabil-
ity per unit of Γ0ν , but rather its probability per decade (i.e., we are equally
uncertain about its orders of magnitudes). Mathematically this translates in:

P (0 < Γ0ν < 1) = P (1 < Γ0ν < 10) = P (10 < Γ0ν < 100), ... (6.2)

which implies that dP/d lnΓ0ν = k , or dP/dΓ0ν ∝ 1/Γ0ν . Since for Γ0ν = 0 there
is a divergence, generally a cut-off Γmin to approximate this function.
Let us check what changes between the two, if applied to Cuoricino final like-
lihood.
Figure 6.1 shows the comparison with the two posterior functions: Jeffrey’s
prior (for which we used a cut-off at Γmin = 10−28y−1) is evidently more peaked
to zero. This results in a much stronger limit : τ 0ν > 8.5× 1024 yrs. This is what
we expected: as can be seen, this prior favors lower rates.
Anyhow, this strong dependence of the final distributions on the priors shown
in this example should not be considered a bad feature, as were an artifact of
Bayesian inference. It should not be a surprise: this is just a hint of the fact that
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the experimental data are not so strong as to lead every scientist to the same
conclusion.
As we reach the sensitivity the experiment becomes inable to change our prej-
udice, thus there can be subsets of the prior function which are left untouched
by the likelihood of our experiment: in this case, any probabilistic statement
about Γ0ν becomes too belief-dependent.
Since a discussion on the correct prior could be endless, it would be useful to
present Cuoricino data in a prior-free way, in order to gain as much informa-
tions as possible of how this experiment can effectively change our idea on
Neutrinoless Double Beta Decay.

6.2 Prior-free results

Cuoricino can be considered as frontier experiment: it was designed to look for
a tiny signal which is expected to be lower than the background which is mea-
sured during the long run of the data taking itself. It is interesting to note that,
even when the signal is evident at an impressive number of sigma (one for all
in this field is the Klapdor’s claim [18]), the scientific community can still be
doubtful about its physical interpretations. Since in Cuoricino there is no evi-
dence of a signal, it’s not then suprising the limit we quote is indeed sensitive
to the researcher’s prior assumption. Nevertheless, it is important to stress out
that it is possible to give all the informations about Neutrinoless Double Beta
Decay of 130Te which are as much unbiased as possible.
The idea, proposed in [50], is very simple: presenting the results so that they
should be ready (and easy) to be turned into probabilistic statements, which
are needed to form one’s opinion about the quantity of interest or to take deci-
sions. It should be the scientific community to interpret and combine different
experimental results and then translate them into statement about Nature. This
can be done by noticing that the strongest tool that we have on taking decisions
is the likelihood-ratio approach.
If we rewrite Bayes theorem in terms of the quantities we are measuring we
obtain:

P (Γ0ν |ncd) ∝ L({ncd} |Γ0ν)× P (Γ0ν) (6.3)

we can note that we can use it to confront two different hypothesises on Γ0ν (i.e.
Γ1 and Γ2) as follows:

P (Γ0ν
1 | {ncd})

P (Γ0ν
2 | {ncd})

=
L({ncd} |Γ0ν

1 )

L({ncd} |Γ2)
× P (Γ0ν

1 )

P (Γ0ν
2 )

(6.4)

In this way we keep the information coming from the data separated from
the priors. The ratio of likelihoods on the right side of equation (6.4) known as
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Figure 6.2: Bayes factor for Cuoricino data.

“the Bayes factor” and it quantifies the ratio of evidence provided by the data
in favor of either hypothesis. The Bayes factor is considered to be practically
objective because likelihoods (i.e. probabilistic description of the detector re-
sponse) are usually much less critical than priors about the physics quantity of
interest. The Bayes factor can be extended to a continuous set of hypotheses,
by allowing Γ1 to assume any possible value, and fixing Γ2 to an arbitrary vale,
for example Γ0ν

2 = 0.
If we plot this function for Cuoricino data, we obtain the curve shown in fig-
ure 6.2. The logarithmic scale on x-axis is important: the likelihood ratio has
a plateau which covers an infinite number of order of magnitudes for which it
would be irrelevant if Γ is different or equal to zero (for example between 0 and
10−25 y−1): this is the effect of the sensitivity, the data are blind to all those or-
der of magnitudes. This function can be considered in fact as a sort of a transfer
function of our prior knowledge about Γ0ν . If we believed that Γ0ν = 0, for ex-
ample, then Cuoricino data are useless: our idea wouldn’t have been changed
by the data, since the likelihood ratio in that region is almost constant and equal
to 1. Above Γ0ν = 10−25 yrs−1 the function drops to zero, ruling out any other
value.
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This function gives a clear way on how someone needs to change its mind
about Γ0ν after looking at Cuoricino data and its more than a cosmetic rewrit-
ing of the likelihood ratio, since its gets rid of any propabilistic interpretation.
Looking at this function a different kind of bound can be set on 0νββ rate, for
example as the conventional value of Γ where the Bayes factor equals 50%, 5%
or 1% of the insensitivity plateau (becomes just a matter of taste). What is im-
portant is not to call this value a bound at a given probability level, but a sort of
sensitivity bound that separates the ragion where we cannot say nothing about
neutrinoless double beta decay (the sensitivity region) and a region where we
can clearly rule out different order of magnitudes.
This approach combines the idea of limit and sensitivity, which are generally
kept separated, at once. It also offer an easy way of interpret the results of
different experiments: since the Bayes factor is a filter of our prior ideas, the
combined effect of several experiments on our prejudices will be simply the
product of the different Bayes factors.



Chapter 7

Conclusion

In this thesis the final result on 0ν-DBD in 130Te is shown, obtained with an ex-
posure of 19.75 kg·y of , including a detailed study of systematic errors for the
first time. A half life limit of 2.8×1024 y at 90% C.L. is obtained (2.9×1024 y
if systematic errors are not included), to be compared (as discussed in sec-
tion 5.6) with an experimental sensitivity1 of ∼2.6×1024 y. This limit can be
used to extract an upper limit on mee using the theoretical NME evaluation for
130Te nucleus. We report here results obtained using the most recent nuclear
calculations found in literature:

• 300–570 meV using the Quasiparticle Random Phase Approximation (gen-
erally known as QRPA) evaluations of reference [8]

• 360–580 meV using the QRPA evaluations of reference [9]

• 570–710 meV using the Shell Model (SM) evaluations of reference [10]

• 350–370 meV using the Interacting Boson Model (IBM) evaluations of ref-
erence [11]

Note that, for each reference, a range (and not a single value) for mee is pre-
sented, reflecting the different results for the NME obtained by the authors
when varying model parameters, such as the treatment of the short range cor-
relations or the value of gA (the axial-vector coupling). Then, the interval 300–
710 meV can be taken as the final range for the 90% C.L. upper bound on mee

(at 95% C.L. this becomes 340–780 meV).
In table 7.1 we compare this result with the most stringent 90% C.L. half-

life lower limits present in literature. For each experimental result, in table

1This is the sensitivity evaluated for the total (RUN I + RUN II) statistics.
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Isotope τ 0ν
1/2

[y]
130Te (CUORICINO, this work) > 2.8 1024

76Ge (Heidelberg-Moscow collaboration [12]) > 1.91025

100Mo (NEMO collaboration [15]) > 5.8 1023

136Xe (Dama/LXe [17]) > 1.2 1024

76Ge (Heidelberg-Moscow experiment [18]) = 2.23+0.88
−0.621025

Table 7.1: We compare the most stringent 90% C.L. half-life lower limits present in
literature (first 4 rows). In the last row is reported the claim for a 0ν-DBD signal of
76Ge.

7.2 we report the mee range obtained with the NME evaluations here consid-
ered. Despite the differences between the NME evaluations, it is evident that
CUORICINO is one of the most sensitive experiments performed to date.

Finally, comparing the top and the bottom row in table 7.2, the 95% C.L.
half-life limit on mee obtained in this work with the 2 sigma range correspond-
ing to the positive signal quoted by [18] and obtained with a re-analysis of the
Heidelberg-Moscow data. The two results are clearly compatible.
My contribution to this analysis has been mainly focused on the digital pro-
cessing of raw signals, on pulse shape analysis and on the validations of the
statistical tools developed to compute the final result: basically, the first and
last step of the whole analysis chain. This forced me to face some of the main
loop holes of the information flow from the detector DAQ up to the final spec-
trum. This is the reason why, in this conclusive section, Id like to focus also on
the benchmark role of CUORICINO for the future DBD experiment that will be
CUORE [52].
In my opinion, the main difficulty of CUORICINO analysis has been caused by
the different behaviours of the detectors: this lead to a problematic automati-
zation of the analysis process - such as pulse shape studies, calibration or sta-
bilization - one of the main demands for CUORE. This was difficulty of many
steps of the analysis, from pulse shape studies to stabilization or calibration,
for example.
With this perspective, a lot of work for CUORE has been done on research and
developement projects. Under the hardware point of view the collaboration
is studying a more uniform assembly of the detectors. For what concerns the
data analysis, we now possess a more detailed understanding of the bolome-
ters thermal model.
Anyhow, as an example, the parametric approach to pulse shape analysis, as
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Isotope QRPA [8] QRPA [9] SM [10] IBM [11]
mee [meV] mee [meV] mee [meV] mee [meV]

130Te (this work) < 300–570 < 360–580 < 570–710 < 350–370
76Ge ([12]) < 230–400 < 280–460 < 530–640 < 270

100Mo ([15]) < 610–1270 < 810–1430 - < 830–850
136Xe ([17])< 700–1640 < 800–1230 < 1020–1270 < 640–670

76Ge ([18]) = 180–430 = 220–500 = 410–700 = 210–290

Table 7.2: We report the different mee range obtained from the 90% C.L. of the most
recent experimental result (rows 1-4) and for each of the considered NME evaluations.
This identifies the upper bound on the neutrino Majorana mass according to the dif-
ferent results reported by the same author (when varying some of the parameters in
the used nuclear model). This should be compared with the positive signal quoted by
[18] (row 6). For this last case the mee range corresponds to the 2 sigma range in the
measured half-life.

it has been applied to CUORICINO, will be impossible for an experiment like
CUORE. In fact, the cross-checking of the performances of the implemented
algorithms was one of the main difficulties: the only way was to manually
identify any issue (i.e. a sudden variation of a detectors rate from its average
behaviour, due to the appearance of an unexpeted pupulation of spurious sig-
nals) and then correct it.
The impressive and cautious work done by the CUORICINO analysis group on
the fine-tuning of the software is something that we cannot afford in CUORE.
We dont know yet the impact on CUORE data of all the refinements imple-
mented for CUORICINO: a detailed study will be mandatory between obtain-
ing a better resolution or a lower background and the effective work necessary
to guarantee stable performances of these techniques.

For what concerns the statistical approaches to the final fit of CUORICINO
spectrum for the 0-DBD limit evaluation, I think we gained a lot of informa-
tions by comparing the differences between two different approaches described
in section 5.3.1. The main lesson I learned is that, no matter which statistical
refinements we can use (at least the one we figured out), the background fluc-
tuations in the DBD region prevents us from any significant gain in sensitivity.
Also the valutation of the systematics, proved that the main source of uncer-
tainty is the lack of a background model. Since the background is our main
issue, and since it is the main source of errors on any evaluation of this elusive
decay, I believe that the best approach for the future would be keeping its eval-
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uation separated from the signal. The main systematic effects we got came from
the background model uncertainty (fit window and background function), so
I believe that this error should be computed directly on the background and
then propagated on the DBD rate. As in blind analysis, if the fit is carried out
excluding the energy region where the peak should appear (for example one
FWHM under the DBD Q-value), we should be able to study and predict the
number of counts under the peak with a statistical and systematic error.
For what I have been able to understand during this thesis work, it is my opin-
ion that only the Bayesian approach (rather thant the Feldmann&Cousins one
[42]) offers an easy and simple way to propagate this information (the expected
number of background counts under the DBD peak) to produce an unbiased
estimate on the neutrinoless double beta decay. In the last chapter I tried to
summarize what I would choose about a way of presenting a scientific result
near the sensitivity of an experiment, focusing on all the advantages that the
Bayesian approach can offer as a clear way to present usable results. The main
goal, rather than quoting and refining the limit evaluation of a few percent,
should be to produce a result which is fairly understandable and comparable
with other results. Even if we see nothing, we still can be as much clear and
precise as possible about our uncertainty.



Appendix A

TIMEZZO

The operating principle of the program TIMEZZO is that the likelihood function
of the data we are dealing with is asymptotically gaussian.
To describe TIMEZZO operating principles, we start from the monodimentional
case, where only a parameter Γ has to be studied.
Under very general conditions, given a collection of data x, when the number
of observation becomes “infinitely” large, the likelihood function L(x|Γ) takes
the form of a gaussian in Γ with mean value Γ and variance σ2. This is a conse-
quence of the Minimum Variance Bound theorem [53] and allows us to express
L as:

L(x|Γ) = Lmax · exp

(
−1

2
χ2

)
(A.1)

or

logL(x|Γ) = log (Lmax)− 1

2
χ2 (A.2)

where χ2 is given by the formula:

χ2 =

(
Γ− Γ

σ2

)2

. (A.3)

The principle used by TIMEZZO for the evaluation of confidence intervals is the
so called “intersection procedure”: the interval is custructed by intersecting the
gaussian L(Γ) by the straight line Lmax · e−α: if α = 0.5 we are computing a 68%
interval, α = 2 identifies the 95% and so on.

The advantage we get from this approach is that this can be done also for
non-symmetric gaussians: if there exists a generic transformation g = g(Γ)
which transforms the function L(Γ) into a gaussian of unit variance and mean
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L

L

L-1

Figure A.1: Graphical representation of the intersection method in case an unphysical
region is excluded (i.e. Γ < 0).

value ḡ. With this new parametrization in the new variable g, L takes the form:

Lg(x, g) ∝ exp

[
−1

2
(g − ḡ)2

]
(A.4)

In principle, one could extract the parameters with the intersection procedure
on Lg, finding the confidence interval [g1, g2] and then inverting the relation
g(Γ) in order to get the proper interval [Γ1,Γ2] but this is actually non neces-
sary. One of the most important properties of the likelihood function is that
it is invariant under the parametrization (since it gives the joint probability of
obtaining x, this probability cannot change if we express it as LΓ or Lg. For all
the possible Γ we should have:

LΓ(x|Γ) = Lg(x|g) (A.5)

Streactly speaking, this approximation can only be approximately correct.
The existance of a transformation function g(Γ) is not granted at will. As long
as logL has a single maximum and does not deviate too much from a parabola,
the intersection procedure would work properly. Of course this implies that
one has to check a posterior if the approximation is reasonable, given the ac-
tual shape of LΓ.
If a flat prior function is included, TIMEZZO numerically search for a proper
value of the intersection α that would give the desired confidence interval in
case part of the area. As an example, figure A.1 shows a situation in which the
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Figure A.2: Graphical representation of TIMEZZO operating principle for confidence
interval evaluation.

maximum likelihood value is in the negative region: TIMEZZO then finds the
value alpha for which the interval [Γ = 0,Γ = L−1(α)] identifies the desired
probability content of the physical region Γ ≥ 0.
This idea can be generalized to the N -dimensional case, if we extend the hy-
pothesis of a normal distribution also to the other parameters in our model. In
this case the generalized likelihood becomes:

L(x|θ) =
1

(2π)
N
2 |V| 12

exp

[
−1

2
(x− θ)T V−1 (x− θ)

]
(A.6)

where θ is the N -dimensional vector of the parameters and V is the covariance
matrix. In this case the χ2 will be:

χ2(x, θ) = (x− θ)T V−1 (x− θ) , (A.7)

and the region of space defined by:

χ2(x, θ) = α (A.8)

will be a hypersurface of constant probability density, which will depend
on the value of α. Figure A.2 shows the bidimensional case in which we have
two parameters, Γ and B, in which the ellipse χ2 = α gives the region of space
having a probability content of 68.3%.
In this context, the region [Γ1,Γ2] which has the 68.3% probability content for Γ,
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idependently by the value of B, is the intersection of the Γ axis with the vertical
tangents of the ellipse [53].
In the bidimentional case TIMEZZO would then proceed as follows:

• using the gaussian approximantion, TIMEZZO finds the value α that would
identify a region subtended by a normal distribution with the desired
probability content (taking into account the proper normalization due to
the inclusion of priors);

• it calls MINUIT to identify the isocountur corresponding to the intersec-
tion χ2 = α.

• finally, it identifies the interval [Γ1,Γ2] by intersecting the Γ-axis with the
vertical tangents of the ellipsoid.

The N -dimentional case, is a generalization of this procedure.



Appendix B

A simulation of bolometric noise

A standard approach in noise time series simulation is based on Carson’s the-
orem [54]. In fact, the superposition of randomly delayed pulses of a definite
shape f(t) with arbitrary coefficients ak gives rise to a pulse train

n(t) =
∑
k

akf(t− tk) (B.1)

whose power spectrum N(ω) can be expressed in terms of the f(t) power spec-
trum Pf (ω) according to

N(ω) = αPf (ω) = α|F̂ (ω)|2 (B.2)

where α is a proper normalizing constant and F̂ (ω) is the Fourier transform
of f(t). The delays tk’s are distributed according to Poisson statistics and f(t)
is usually required to have a zero mean value so that n(t) averages to zero. It
can be shown that this result is independent of the density function used for
the random amplitudes ak, if the variance of such distribution is fixed by the
choice of the normalizing constant α.

The basic idea of the method consists then in searching a proper expression
for f(t) so that the generated time series n(t) have the desired power spectrum
N(ω). In other terms one is faced with the problem of inverting equation (B.2)
to obtain the expression of f(t) given Pf (ω). Then, n(t) can be built iteratively
according to equation (B.1) with a proper choice of the random parameters ak
and tk.

This approach can be quite difficult whenever the desired spectrum is dif-
ferent from a simple power law and analytical approaches to the determination
of f(t) are usually not straight-forward. In fact, the desired noise spectrum of-
ten shows complex behaviours in the measured frequency range. An example
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of such a common situation is shown in fig. B.1 (referring to the output of a few
hundred microgram bolometric detector) where we have a complex forest of
microphonic lines overimposed to a smoothly varying distribution. The anti-
aliasing filter cut frequency is also apparent by the quick drop of the power
spectrum in the 100-200 Hz region.

The method proposed here consists in the determination of an f(t) which
exactly matches a given noise power spectrum. This is essentially based on the
choice of a particular (out of an infinite number of possibilities) function f(t)
which satisfies equation (B.2) and can be applied both to the case in whichN(ω)
is known analytically or experimentally measured.

Let us begin with the discrete case of a sampled sequence f [k]. If we con-
sider a finite number L of samples and assume ergodicity, then the power spec-
trum can be approximated by an ensemble average over a sufficiently large
number of finite sequences fL[k] of fixed length L according to

Pf [k] '< |F(fL[k])|2 > (B.3)

whereF stands for the Discrete Fourier Transform (DFT) operator. Since the se-
quence elements fL[k] are supposed to be real, the corresponding power spec-
trum is a real even function and only half of its values are independent. In fact
all the informations concerning the phases are lost in the quadrature and this is
the reason why the inversion of equation (B.3) does not admit a unique solution
fL[k].
The simplest solution to equation (B.3) is obtained by deleting the ensemble
average and inverting the resulting expression. Phases can be then randomly
added assuming a flat distribution. The result represents the core of this work
and can be summarized as follows:

F [k] ≡
√
N [k] · eiθk (B.4)

f [k] = F−1(F [k]) (B.5)

where N [k] is the power spectrum according to which we want to generate
our time series (known a priori) and θk are random numbers uniformely dis-
tributed between 0 and 2π. In order to guarantee the condition of reality of f [k]
upon inverse DFT the sYmmetry constraint F [k] = F ∗[−k] must be imposed.

Noise time series can now be built following equation (B.1), simply gener-
ating the delays tk according a Poisson distribution:

tk = tk−1 − ln(1−R)/λ (B.6)
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where R is a random number with a uniform distribution and λ, which rep-
resents the overlap rate of the signals f [k], is the only free parameter of the
method and is usually adjusted to improve the quality of the simulated time
series.

As stated above, the choice of the normalization term α partially fixes the
arbitraryness in the choice of the amplitudes density function by setting its
variance. This can be better understood by following some of the steps in the
derivation of the Carson’s theorem. Actually, by substituting equation (B.1)
into the the power spectrum definition we obtain:

N(ω) =

〈∣∣∣∣∣F
[∑

k

akf(t− tk)

]∣∣∣∣∣
2〉

=

=

〈
|F (ω)|2 ·

∑
ij

aiaje
iω(tj−ti)

〉
(B.7)

The last sum can then be separated into two different terms, one for i = j, the
other for i 6= j. It can be shown that the latter is proportional to F (0) and there-
fore vanishes since we required f(t) to average to zero. We obtain therefore:

N(ω) =
〈
|F (ω)|2

〉〈 L∑
k=1

|ak|2
〉

(B.8)

The averaged sum on the right hand part can be thought as the average of
the squared amplitude of each single pulse times their average number M of
occurencies. As a result we can express the average power spectrum as:

N(ω) =
〈
|F (ω)|2

〉
M < |a|2 > (B.9)

By comparing equation (B.9) and equation (B.2) we can finally obtain the
relation between the average rate λ, the normalization constant α and the am-
plitudes variance |a|2 :

|a|2 =
α

M
=

α

λT
(B.10)

where T is the finite length of the time series. Any arbitrary distribution with
a variance given by equation (B.10) can now be used to generate the random
amplitudes ak and the method is fully defined.

We can therefore summarize the most relevant steps for the method imple-
mentation as follows:



127 B. A simulation of bolometric noise

Figure B.1: Superposition between a simulated (black) and measured (red) bolometric
noise power spectrum obtained with a bolometric detector of O(mg) mass. The simu-
lated spectrum was obtained averaging 50 finite time series. Error bars are the average
standard deviations of the simulated spectra. The distribution of the χ2/d.o.f. for a set
of simulated spectra is shown in the inset.

• Given the desired noise power spectrum N(ω) select the basis function
f(t) according to equation (B.4) and (B.5). Then equation (B.2) fixes the
constant α

• Generate a set of increasing delays tk according to a Poisson distribution
with average rate λ.

• Generate the random amplitudes ak according to an arbitrary distribution
with variance fixed by equation (B.10).

• Shift f(t) by tk imposing a periodicity constraint f(t) = f(t + T ) and
multiply the result by ak.

• Sum iteratively over tk while
∑
tk < T
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Figure B.2: Ratio between the simulated and measured bolometric noise power spectra
shown in Fig.B.1.

The method can be used also when a theoretical (analog) estimate of F (ω) is
known. This is a common situation when the performance of an electronic cir-
cuit or of a detector are studied. In this cases the discrete power spectrum F[k]
can be in fact obtained by means of a proper frequency warping [55] of the ana-
log theoretical estimate of the power spectrum.

B.1 Validation

Following the recipe described here, from the power spectra of a small mass
bolometer, a set of 50 simulated time series was generated. The respective
power spectra were obtained according to equation (B.3) by averaging their
DFT’s. The result is directly compared in fig. B.1 with the original noise power
spectra obtained experimentally. The ratio between the experimental and sim-
ulated power spectra is also reported in fig. B.2.
In order to allow a more quantitative estimate of the level of agreement be-
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Figure B.3: Average normalized standard deviation (dots) of the simulated power
spectra as a function of the number of simulated time series used for the average pro-
cess. The black line joins simulated points while the red one is an inverse square root
law shown for reference.

tween the simulated and the original power spectra, a full set of simulated
power spectra was generated in order to evaluate the distribution of the sim-
ulated values at each frequency. Each power spectrum was obtained averag-
ing 50 simulated time series. The obtained standard deviations are shown in
fig. B.1. The distributions of the χ2/d.o.f. are also shown to demonstrate the
correct statistical behaviour. The fluctuations of the simulated power spectra
values depend of course also on the number of time series used for the av-
erage process (equation (B.3)). Such a dependence was explicitely studied by
generating a different set of power spectra and evaluating the corresponding
average standard deviation from the desired otput, as a function of the number
of averaged time series. The result is shown in fig. B.3 and found in excellent
agreement with an inverse square root law.
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Pulse shape analysis for the
CUORICINO experiment

Pulse shape analysis is used to reject spurious signals.
We classify events through confidence intervals determined for each recorded
pulse by the distributions of the shape parameters described in section 4.5. Sig-
nals falling within these intervals are defined as ”true” (or physical) pulses,
while signals having one or more of their parameters outside the relevant in-
tervals are rejected as noise or pileups.
The use of more than one pulse shape parameter results in better reliability of
the rejection technique but is important to stress out that the definition of these
confidence levels is arbitrary: what really matters is the possibility to measure
the efficiency of this procedure in order to control the dead time induced by
such cuts.

C.1 Spurious signals

The definition of spurious events is kept as much general as possible: a trig-
gered event containing any waveform which is not caused by a single particle
event. Also true particle signals could be discarded if they are pile-up events or
if the pulse shape is ”deformed” by a fake event (see figure C.2). In both cases
the choice of rejecting a particle event is motivated by the possible failure of
the pulse amplitude evaluation algorithms due to the presence of a secondary
waveform in the analyzed sample of data.
As clearly visible in figure C.1 below a certain energy a pulse shape parameter
as the rise time can become unefficient and it is hard to separate good and bad
events: particle signals are the higher horizontal line, the lower one is the dis-
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Figure C.1: Scatter plot of the logarithm of the rise time versus energy.

tribution of “spikes”, impulsive electronics noise with small time constants. In
the lower energy region, the distributions of good events and noise waveforms
merge. To avoid any noise contamination in the data sample used for physics
a software energy threshold (see section C.4) is usually set, selecting only those
signals for which the pulse shape parameters are enough efficient.
Typical examples of rejected events are shown in figure C.2.

C.2 Shape parameters linearization

Pulse shape analysis has to make decisions based on the distributions of a set of
shape indicators in order to identify spurious events. For example, an efficient
pulse shape parameter r in general should satisfy this condition:

P (particle|r = r)� P (spurious|r = r) : (C.1)

the signals for which r is close to its average value r are more likely caused
by a particle interaction, rather than by a spurious event. In this situation, a
reliable pulse shape cut could be:

|r − r| < nσr (C.2)

where σr is the width of the distribution of r and n identifies the desired number-
of-sigma confidence level. This is because we are implicitly making the as-
sumption that:

P (particle|r) ' P (r) (C.3)
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Figure C.2: Examples of spurious signals: a pile-up (top), a pileup with a non particle
event (middle) and a spike (bottom).
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Anyhow, it can happen that r depends on the energy E of the signal which it
was computed on. In this case, for two different energies E1 and E2 , in general
we could have have that:

P (particle|r(E1)) 6= P (particle|r(E2)) (C.4)

which makes unreliable any simple cut like the one in equation (C.2).
The main idea behind linearization of a parameter r, is to find a transformation
r → r̂, such that:

P (particle|r̂(E1)) ' P (particle|r̂(E2)) (C.5)

In order to obtain r̂ from r, we perform a fit on a scatter plot of this quantity
versus the energy, interpolating with a function fr(E,~a), where ~a is the vector
of free parameters to be found. The parameter r of an event with measured
energy E , will then become:

r̂(E) =
r

fr(E,~abest)
(C.6)

where ~abest is the vector obtained by the regression.
It is important to stress out that this method is indeed rough, since we basically
straighten the distributions without any significant knowledge of the param-
eters governing such non linear behaviour: this knowledge can come from a
thermal model of the thermistor response in conjunction with a measurement
of the main quantities governing the detector’s response (resisistances, capac-
itances, and so on...). The details on this procedure are described in the next
two sessions.

C.2.1 Interpolating functions

In order to measure the trend of shape parameters a simple least square fit is
not efficient: the presence of outliers will cause a deformation of the interpolat-
ing function beacause each point has the same weight of the others; it is then
necessary to give stress to regions where the probability of a ”good” signal to
occur is high.
The method used in order to control the presence of outliers is called ”robust re-
gression”. The basic idea behind such technique is to change the error function
to be minimized during the regression so that it is less sensitive to low density
regions: for example, given N measured values Ei, ri and a model f(Ei,~a), a
robust regression will minimize, with respect to ~a:

Err(~a) =
∑
i

log

[(
ri − f(Ei,~a)

s

)2
]

(C.7)



C.2. Shape parameters linearization 134

log(Energy)
4 5 6 7 8 9

lo
g
(O

F
_
R
is
e
T
im

e
)

3.9

4

4.1

4.2

4.3

4.4

4.5

Figure C.3: Scatter plot of the logarithm of the rise time versus the logarithm of the
energy: the non-linearity of the detector’s response gets higher at greater energies.
The energy range is 0-10 MeV: red dots identify intervals of 500 keV.

where Err(~a) is the error function and s a scaling quantity which is generally
iteratively measured.
In this way, bigger errors induced by outliers are reduced by the use of the log-
arithm and by the presence of s.
The dependence of rise and decay times (to which we will refer as RT and DT)
from the energy had been modelled as a second order polinomial, while for
the OFT parameter, which has shown different trends even in the same chan-
nel during CUORICINO, three are the main tendencies that have been used to
force it to be linear. Examples of these trends are shown in figure C.4. The trend
on the top panel is modelled with fourth order polynomial. The second trend
has been derived by noticing that its derivative should behave like a sigmoid
function, since it is characterized by a negative slope at low energy and a pos-
itive slope at higher energies. The interpolating function for the trend in the
middle panel is then the integral of a sigmoid and will have five free parame-
ters: the minimum value, the width of this minimum, the two slopes and the
additive constant of the integral.
The bottom panel is a rare observed condition for some channels in which the
shape parameter presents a minimum with an adrupt discontinuity. It has then
been modelled as:
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Figure C.4: Examples of the three interpolating functions used in the OFT parameter
linearization. Outliers are most likely to be pileups and “triangoloni”, while the high
density regions far from the blue trends are spikes or low energy noise events. The
energy range is 30-7000 keV: red dots identify intervals of 500 keV.
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2∑
i=0

ai · Ei, if E < Emin

2∑
i=0

bi · Ei, if E ≥ Emin

(C.8)

where ai ,bi and Emin are the free parameters.
For each channel and data set we must then decide which is the best model

for the OFT: since we have many outliers, the χ2 test is not sensitive to the
goodness of fit (the average error could be high, even with a good lineariza-
tion, because of the presence of spurious events). Thus, the decision pointed to
the one whose effect makes OFT more linear: we perform a regression with a
simple first order polinomial on each of the three ÔFT obtained with the dif-
ferent functions and chose the one whose slope il closer to zero.

C.2.2 Variance normalization

In the first section, we described a general transformation of a shape parameter
r → r such that a cut of the form:

|r̂ − r̂| ≤ nσr (C.9)

can be considered a pulse shape cut. Actually, as can be appreciated from the
top panel of figure C.4, also σr can vary with the energy. By variance normal-
ization we mean then the control of the parameter’s variance σr(E) , expressed
as further tranformation for r, which could make a cut as much as possible
independent of the energy:

|r̂ − r̂| ≤ nσr(E)→ r′ ≡ |r̂ − r̂|
σr(E)

≤ n (C.10)

This offers the possibility to perform a ”number of sigma” cut which has the
same confidence level at any energy. It also offers the opportunity of treating
each channel in the same way, since by construction the parameter should av-
erage to the same mean and variance.
This procedure will lead to the normalized quantity (PSAnsigma) applied in the
main pulse shape cut:

• Produce a scatter plot of ÔFT as a function of the logarithm of the energy.
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• Divide the whole scatter plot in vertical energy slices. Here becomes im-
portant the use of log(E), instead of E: since the higher is the energy,
the lower is the number of events, by dividing the histogram of log(E) in
equally spaced slices we obtain wider regions as we increase the energy.

• For each of these slices produce an histogram of ÔFT .

• Since we expect ÔFT to average to one by construction, we fit each of
these histograms with a gaussian in a reasonable interval (if the fit doesn’t
converge due to low statistics effects, we take the mean and RMS from
each events in the slice).

• Get the mean value mj and variance σj from the interpolation on the jth

histogram.

• Apply the following transformation to any ÔFT falling in the jth his-
togram:

ÔFT → PSAnsigma ≡
ÔFT −mj

σj
(C.11)

The effect of this procedure, applied to the OFT parameter, is shown in fig-
ure C.5.

C.3 Pulse Shape Cuts

In order to obtain a procedure through which we can obtain linearized quanti-
ties as much automatically as possible, we followed this procedure:

• We select all the events from a single channel within a single data set.

• We perfom a rough cut (using the Wiener filter and mean values and RMS
of the shape parameters) in order to produce a scatter plot of rise and de-
cay time (RT and DT) versus energy with a controlled number of spurious
events.

• We apply the linearization procedure, intepolating their distributions with
a second order polinomial in order to obtain D̂T and R̂T from equation
(C.6) (in the standard DIANA ntple, these quantities are labelled “linRise-
Time” and “linDecayTime”).
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Figure C.5: Example of the process of linearization and normalization of the OFT pa-
rameter. The scatter plot is analyzed at different energy slices, where the mean values
and variance are computed (top). After this process, the parameter becomes almost en-
ergy independent (bottom).The energy range is 30-7000 keV: red dots identify intervals
of 500 keV.
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Figure C.6: Distribution of the variable PSAnsigma for channel 10 for the whole CUORI-
CINO data (black curve). The red curve shows the effect of the cut on linearized rise
and decay time, which leaves the left peak almost untouched.

• We use linearized rise time and decay time to identify spikes and “trian-
goloni” (which were difficult to identify with a rough cut) by selecting a
belt in parameter shape in which we require these two parameters to have
variations of 20% at most, compared to their average value.

• On these events we perfom the linearization and variance normalization
in order to obtain PSAnsigma.

Figure C.6 shows the distribution the variable PSAnsigma for all the events from
channel 10 from all the CUORICINO statistics. The left peak corresponds to
particle events, as shown by the red curve, obtained after applying the cut also
on the linearized rise and decay times. In order to work with a distribution
as much symmetrical as possible, we decided to apply the final ”number of
sigma” cut:

PSAnsigma ≤ 2

on all the CUORICINO channels at once. Figure C.7 shows the effect of this cut
on the variable “linRiseTime” for channel 31 on data set 15.
In order to deal with the effect of these combined cuts we will need to deal with
an efficiency measure.
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Figure C.7: Effect of the cut PSAnsigma ≤ 2 alone on channel 31 from data set 15.

C.4 Thresholds

The definition of threshold is useful to reduce spurious coincidences between
true signals and triggered noise and also to reduce causal coincidenses between
true pulses and cross-talks. At low energies good pulses and noise merge in a
indistinguishable way so that even the study of the variation of pulse shape
parameter distribution resulted unefficient for the definition of thresholds (at
leas it resulted not simple to develop an authomatic algorithm to fix threshold).
There are also occurrences where the trigger efficiency is reduced by unknown
reasons (i.e. the trigger threshold unchanged but the detector triggering much
less that in other runs, and - to a first check - the problem doesn’t look as a noise
rate variation).

Consequently definitions based on the variation of the PSAnsigma distribu-
tion with energy does not work, nor consistency with the average rate works
because rates are not statistically compatible. What makes difficult the defi-
nition of a recipe for setting analysis threhsolds is not only the spread in the
counting rate among crystals but also the variation of the counting rate with
time due to Rn.

The only solution that we devised so far for the definition of thresholds
was to compare the rate among crystals in different data sets. We assumed
that the rate at low energy is dominated by contaminations that are similar for
all the crystals. Two time variation of the rate are reasonably possible: a time
decreasing rate (due to long-living activated isotopes not identificed but giving
contribution at low energies) and Rn. The former seems not present, the latter
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has a clear signature: a correlation with Rn lines. We adopted therefore the
following criteria for threshold definitions:

• define an acceptance interval for the rate of each channel/data set nor-
malized to the average rate for that data set. This requires that rate time
variations have the same behaviour for all channels since they are due to
a ”global” source: Rn. The acceptance interval was defined looking at a
”safe” region i.e. above 600 keV.

• rise the thresholds of detectors that lie outside this acceptance interval

• check the result in terms of correlation with Rn

This technique was applied considering the following intervals 600-2000 keV,
200-80 keV and 80-30 keV. Whenever a channel was not satisfing the above
mentioned criteria its threshold was rised to the lowest energy above which
the criteria is satisfied. This definition of threshold is in someway arbitrary,
however it does not bias the analysis provided that efficiencies are correctely
evaluated.
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