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Abstract

A Search for Neutrinoless Double Beta Decay of 130Te

by

Adam Douglas Bryant

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yury Kolomensky, Chair

This dissertation describes an experimental search for neutrinoless double beta
(0νββ) decay of 130Te. An observation of 0νββ decay would establish that neu-
trinos are Majorana fermions and would constrain the neutrino mass scale. The
data analyzed were collected by two bolometric experiments: CUORICINO and
an R&D experiment for CUORE known as the Three Towers Test. Both exper-
iments utilized arrays of TeO2 crystals operated as bolometers at ∼10 mK in a
dilution refrigerator. The bolometers measured the energy deposited by particle
interactions in the crystals by recording the induced change in crystal tempera-
ture. Between the two experiments, there were 81 TeO2 bolometers used in the
analysis, each of which was an independent detector of nuclear decays as well
as a source of 130Te. The experiments were conducted underground at a depth
of about 3300 meters water equivalent in Hall A of the Laboratori Nazionali del
Gran Sasso in Assergi, Italy, in order to shield the detectors from cosmic rays.
The data analyzed represent an exposure of 19.9 kg · y of 130Te (18.6 kg · y from
CUORICINO and 1.3 kg ·y from the Three Towers Test). In addition to the com-
bined analysis of the two experiments, an analysis of CUORICINO data alone is
presented in order to compare with an independent analysis being carried out by
collaborators at the Univerity of Milano-Bicocca.

No signal due to 0νββ decay is observed, and therefore a limit on the partial
half-life for the decay is set. From a simultaneous fit to the 81 independent
detectors, the rate of 0νββ decay of 130Te is measured to be Γ0νββ(130Te) = (−0.6±
1.4 (stat.) ± 0.4 (syst.)) × 10−25 y−1, which corresponds to a lower limit on the
partial half-life for 0νββ decay of 130Te of T 0νββ

1/2 (130Te) > 3.0×1024 y (90% C.L.).
Converting the half-life limit to an upper limit on the effective Majorana neutrino
mass, mββ, using a set of recent nuclear matrix element calculations results in
mββ < 0.25–0.68 eV (90% C.L.), where the range reflects the spread of calculated
nuclear matrix element values. These results disagree by at least 1.2σ, depending
on the nuclear matrix element calculation, with a claim of observation of 0νββ
decay of 76Ge, assuming that the dominant mechanism driving 0νββ decay is the
exchange of light Majorana neutrinos.



i

To my family



ii

Contents

List of Figures v

List of Tables viii

1 Introduction 1
1.1 The Standard Model and neutrino masses . . . . . . . . . . . . . 2
1.2 Dirac and Majorana neutrinos . . . . . . . . . . . . . . . . . . . . 3
1.3 Neutrino mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Double beta decay 12
2.1 Nuclear matrix elements . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 0νββ decay implies Majorana neutrinos . . . . . . . . . . . . . . . 19
2.3 Status of experimental searches for 0νββ decay . . . . . . . . . . 21

2.3.1 Claim of discovery . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Next generation experiments . . . . . . . . . . . . . . . . . 25

3 Bolometric detectors 29
3.1 The CUORE bolometer module . . . . . . . . . . . . . . . . . . . 30

3.1.1 Energy absorber: TeO2 crystal . . . . . . . . . . . . . . . . 30
3.1.2 Temperature sensor: NTD Ge thermistor . . . . . . . . . . 31
3.1.3 Joule heater . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Bolometer operation . . . . . . . . . . . . . . . . . . . . . 33

3.2 Bolometric experiments for neutrinoless double beta decay searches 36
3.2.1 CUORICINO . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Three Towers Test . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 CUORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 First-level data analysis 49
4.1 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Analysis software framework . . . . . . . . . . . . . . . . . . . . . 50
4.3 Analysis database . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Pulse amplitude evaluation . . . . . . . . . . . . . . . . . . . . . . 51



iii

4.5 Identification of re-triggered pulses . . . . . . . . . . . . . . . . . 52
4.6 Offline heater flagging . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Gain stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.8 Energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9 Pulse shape discrimination . . . . . . . . . . . . . . . . . . . . . . 68
4.10 Thermal response transformation . . . . . . . . . . . . . . . . . . 73

5 Data quality checks and data selection criteria 75
5.1 CUORE Online/Offline Run Check (CORC) . . . . . . . . . . . . 76

5.1.1 CORC pages . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2 CORC technology and operation . . . . . . . . . . . . . . 81

5.2 Bad runs and bad intervals . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 CORC check . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Resolution consistency requirements . . . . . . . . . . . . . 86
5.3.3 Calibration quality and consistency requirements . . . . . 87
5.3.4 Selection criteria for analysis . . . . . . . . . . . . . . . . . 90

6 CUORICINO 0νββ decay fit and limit 91
6.1 Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Signal efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Escape of a β . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Pulse shape cut . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3 Anti-coincidence cut . . . . . . . . . . . . . . . . . . . . . 96
6.2.4 Signal degradation due to noise . . . . . . . . . . . . . . . 96
6.2.5 Pileup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Energy resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Probability density function . . . . . . . . . . . . . . . . . . . . . 103
6.5 Fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Systematic errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7 Limit technique and results . . . . . . . . . . . . . . . . . . . . . 112
6.8 Fit validation with toy Monte Carlo simulations . . . . . . . . . . 117

7 Three Towers Test and CUORICINO combined analysis 122
7.1 TTT cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2 TTT signal efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 TTT energy resolutions . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 Combined fit results and systematic errors . . . . . . . . . . . . . 129
7.5 Limit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



iv

8 Conclusion 135
8.1 Comparison with previous CUORICINO results . . . . . . . . . . 135
8.2 Limit on the effective neutrino mass . . . . . . . . . . . . . . . . . 136
8.3 Comparison with the claim of discovery . . . . . . . . . . . . . . . 137

Bibliography 143

A Energy spectra from CUORICINO and the Three Towers Test 149

B Tables of physical parameters, resolutions, and efficiencies 157

C Generalized pulse amplitude measurement algorithm 166
C.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . 166
C.2 Variation in pulse onset time, t0 . . . . . . . . . . . . . . . . . . . 168

C.2.1 Determining the t0 offset . . . . . . . . . . . . . . . . . . . 168
C.2.2 Truncating the pulse . . . . . . . . . . . . . . . . . . . . . 173
C.2.3 Residual offset . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.3 Derivation of the amplitude algorithm . . . . . . . . . . . . . . . 174
C.4 Determining the covariance matrix . . . . . . . . . . . . . . . . . 176
C.5 Comparison with the optimal filter . . . . . . . . . . . . . . . . . 177
C.6 Implementation in Diana modules . . . . . . . . . . . . . . . . . . 177
C.7 Use in rejection of spurious pulses . . . . . . . . . . . . . . . . . . 177



v

List of Figures

1.1 Neutrino fluxes in SNO . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Neutrino oscillations observed by KamLAND . . . . . . . . . . . . 9
1.3 Neutrino mass hierarchies . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Masses of A = 130 isobars . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Feynman diagrams for double beta decay . . . . . . . . . . . . . . 15
2.4 Effective Majorana mass vs. lightest neutrino mass . . . . . . . . 17
2.5 Double beta decay spectra . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Nuclear matrix elements . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 0νββ decay implies Majorana neutrinos . . . . . . . . . . . . . . . 21
2.8 Heidelberg-Moscow spectrum . . . . . . . . . . . . . . . . . . . . 25
2.9 2νββ in the Heidelberg-Moscow experiment . . . . . . . . . . . . 26

3.1 CUORICINO floor . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Germanium wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Thermistor biasing circuit . . . . . . . . . . . . . . . . . . . . . . 34
3.4 NTD Ge thermistor load curve . . . . . . . . . . . . . . . . . . . . 35
3.5 Optimal working point . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 CUORICINO pulse . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 LNGS halls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 CUORICINO tower . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 CUORICINO internal lead shielding . . . . . . . . . . . . . . . . 39
3.10 Three Towers Test detectors mounted to dilution refrigerator . . . 42
3.11 Three Towers Test detectors without cylindrical shields . . . . . . 43
3.12 TTT channel map . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 CUORE cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 CUORICINO and TTT pulses . . . . . . . . . . . . . . . . . . . . 50
4.2 Average pulse and noise power spectrum . . . . . . . . . . . . . . 53
4.3 Re-triggered pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Spectrum before and after offline heater identification . . . . . . . 58



vi

4.5 Pulse from unidentified heater peak . . . . . . . . . . . . . . . . . 59
4.6 Example of a stabilization fit . . . . . . . . . . . . . . . . . . . . . 61
4.7 Example of a run split for stabilization . . . . . . . . . . . . . . . 63
4.8 Calibration spectrum and calibration fit . . . . . . . . . . . . . . 65
4.9 Calibration peaks with line shape fits . . . . . . . . . . . . . . . . 67
4.10 Examples of spurious signals . . . . . . . . . . . . . . . . . . . . . 69
4.11 Rise time vs. energy . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12 Examples of pulse shape parameter energy dependence . . . . . . 71
4.13 Pulse shape parameter normalization . . . . . . . . . . . . . . . . 72
4.14 Thermal response transformed pulse . . . . . . . . . . . . . . . . 74

5.1 CORC History plots . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 CORC History Graph plots . . . . . . . . . . . . . . . . . . . . . 78
5.3 CORC Summary plots . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 CORC Channel plots . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Resolution consistency check . . . . . . . . . . . . . . . . . . . . . 87
5.6 Incompatible initial and final calibrations . . . . . . . . . . . . . . 89
5.7 Calibration compatibility parameter . . . . . . . . . . . . . . . . . 89

6.1 Pulse shape cut efficiency fit . . . . . . . . . . . . . . . . . . . . . 95
6.2 Anti-coincidence cut efficiency fit . . . . . . . . . . . . . . . . . . 97
6.3 Noisy time intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Noisy pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Distribution of efficiencies due to noise . . . . . . . . . . . . . . . 101
6.6 Low efficiency channels and data sets . . . . . . . . . . . . . . . . 102
6.7 Energy resolution fits . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.8 Energy resolution distributions . . . . . . . . . . . . . . . . . . . 105
6.9 CUORICINO 0νββ fit . . . . . . . . . . . . . . . . . . . . . . . . 109
6.10 Profile negative log likelihood function . . . . . . . . . . . . . . . 110
6.11 Background parameterization variants . . . . . . . . . . . . . . . 113
6.12 Profile negative log likelihood with systematic errors . . . . . . . . 115
6.13 Profile likelihood with systematic errors . . . . . . . . . . . . . . . 116
6.14 Pull distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.15 Decay rate and error distributions . . . . . . . . . . . . . . . . . . 119
6.16 Decay rate and half-life limit distributions . . . . . . . . . . . . . 120
6.17 Dependence of half-life limit on best fit value . . . . . . . . . . . . 121

7.1 TTT pulse shape cut . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 TTT pulse shape cut efficiency fit . . . . . . . . . . . . . . . . . . 126
7.3 TTT anti-coincidence cut efficiency fit with 40K sources . . . . . . 127
7.4 TTT anti-coincidence cut efficiency fit without 40K sources . . . . 128
7.5 TTT energy resolution distribution . . . . . . . . . . . . . . . . . 130



vii

7.6 Combined 0νββ fit . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.7 Profile negative log likelihood with systematic errors . . . . . . . . 133
7.8 Profile likelihood with systematic errors . . . . . . . . . . . . . . . 134

8.1 Comparison between this work and the claim of discovery . . . . . 142

A.1 CUORICINO spectrum, 300–2000 keV . . . . . . . . . . . . . . . 150
A.2 CUORICINO spectrum, 2000–4000 keV . . . . . . . . . . . . . . . 151
A.3 CUORICINO spectrum, 4000–6000 keV . . . . . . . . . . . . . . . 152
A.4 Three Towers Test spectrum, 300–2000 keV with 40K sources . . . 153
A.5 Three Towers Test spectrum, 300–2000 keV without 40K sources . 154
A.6 Three Towers Test spectrum, 2000–4000 keV . . . . . . . . . . . . 155
A.7 Three Towers Test spectrum, 4000–6000 keV . . . . . . . . . . . . 156

C.1 CUORICINO pulse in ADC units . . . . . . . . . . . . . . . . . . 167
C.2 Variation of pulse onset time . . . . . . . . . . . . . . . . . . . . . 169
C.3 CUORICINO pulse with long decay time . . . . . . . . . . . . . . 170
C.4 Pulse derivative fit . . . . . . . . . . . . . . . . . . . . . . . . . . 171
C.5 Histogram of offsets . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.6 Pulse amplitude vs. offset . . . . . . . . . . . . . . . . . . . . . . 173
C.7 Comparison between amplitude algorithms . . . . . . . . . . . . . 178



viii

List of Tables

1.1 Neutrino mixing parameters . . . . . . . . . . . . . . . . . . . . . 9

2.1 Double beta decay half-lives . . . . . . . . . . . . . . . . . . . . . 13
2.2 Properties of candidate isotopes . . . . . . . . . . . . . . . . . . . 23
2.3 Current 0νββ decay half-life limits . . . . . . . . . . . . . . . . . 24

3.1 Active crystals in the Three Towers Test . . . . . . . . . . . . . . 44

4.1 CUORICINO heater channels . . . . . . . . . . . . . . . . . . . . 55
4.2 CUORICINO heater intervals . . . . . . . . . . . . . . . . . . . . 55
4.3 Gamma lines in the 232Th decay chain used for calibration. . . . . 66

5.1 CORC summary variables . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Types of bad runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Types of bad intervals . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Types of bad intervals related to the calibration . . . . . . . . . . 90

6.1 CUORICINO signal efficiency contributions . . . . . . . . . . . . 93
6.2 CUORICINO fit results . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Systematic error contributions . . . . . . . . . . . . . . . . . . . . 111

7.1 Exposures and background levels . . . . . . . . . . . . . . . . . . 123
7.2 TTT signal efficiency contributions . . . . . . . . . . . . . . . . . 125
7.3 Combined fit results . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Combined analysis systematic error contributions . . . . . . . . . 132

8.1 Principal results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Effective Majorana neutrino mass limits . . . . . . . . . . . . . . 138
8.3 Comparison between this work and the claim of discovery . . . . . 141

B.1 Values of physical parameters . . . . . . . . . . . . . . . . . . . . 158
B.2 CUORICINO energy resolutions, data sets 1–12 . . . . . . . . . . 159
B.3 CUORICINO energy resolutions, data sets 13–24 . . . . . . . . . 160



ix

B.4 CUORICINO energy resolutions, data sets 25–33 . . . . . . . . . 161
B.5 Three Towers Test energy resolutions . . . . . . . . . . . . . . . . 162
B.6 CUORICINO noise efficiencies, data sets 1–12 . . . . . . . . . . . 163
B.7 CUORICINO noise efficiencies, data sets 13–24 . . . . . . . . . . 164
B.8 CUORICINO noise efficiencies, data sets 25–33 . . . . . . . . . . 165



x

Acknowledgments

I am grateful to many people, professionally and personally, for their help, sup-
port, and encouragement during the completion of this work. The success of the
experiments on which this dissertation is based is due to dozens of individuals in
the CUORICINO and CUORE Collaborations. Likewise, my work as a graduate
student has been made possible by numerous people.

In Berkeley, I first would like to thank my advisor, Professor Yury Kolomen-
sky, for bringing me on board the CUORE project and for being an excellent
mentor. His advice and suggestions are always insightful and tremendously help-
ful. I would like to thank the members of my thesis committee, Professor Stuart
Freedman and Professor Rick Norman, for their careful attention to my analy-
sis and manuscript and for their suggestions for improvements. Other CUORE
collaborators currently or formerly in Berkeley have my appreciation for their sug-
gestions and input; they include Tom Banks, Thomas Bloxham, Patrick Decowski,
Michelle Dolinski, Elena Guardincerri, Ke Han, Koichi Ichimura, Richard Kadel,
and Laura Kogler. I wish to express my thanks to all the members of the Weak
Interactions Group at Berkeley for creating an enjoyable environment in which
to work. I would like to acknowledge my current and former KamLAND coun-
terparts in the neutrino graduate student office, Tommy O’Donnell and Lindley
Winslow, for being examples of excellent graduate students. I am grateful to Nu
Xu for his help with my GSRA appointment at LBNL. The members of the sup-
port staff in the Department of Physics at Berkeley, especially Donna Sakima and
Anne Takizawa, have my appreciation for all that they do for graduate students.

In Italy, I wish to thank the CUORE collaborators at Gran Sasso, Iulian Ban-
dac, Carlo Bucci, Paolo Gorla, Maurizio Perego, and Stefano Pirro, for welcoming
me into their laboratories, their hospitality, and their guidance. I would like to
acknowledge Fabio Bellini for his attention to my analysis and his suggestions
and Marco Vignati for developing the Diana software framework and for setting
an excellent example of how to program. I feel lucky to have been involved in
the close collaboration between the U.S. and Italian groups on the data analysis,
and I would like to make a special acknowledgement of the other members of the
teams that performed the first-level data analysis and data quality checks: for
CUORICINO – Fabio Bellini, Marco Carrettoni, Laura Kogler, Maria Martinez,
and Claudia Tomei; for the Three Towers Test – Silvia Capelli and Marco Vig-
nati. I would like to thank our physics analysis coordinator, Maura Pavan, for her
advice and suggestions and for keeping the analysis teams on track.

On a personal level, I wish to thank my parents for their many years of support
and encouragement. Finally, I would like to thank my wife, Leslie, for her love
and for understanding my long overseas trips to the lab.



1

Chapter 1

Introduction

In 1937 Ettore Majorana pointed out that the neutrino introduced by Wolf-
gang Pauli seven years earlier could be its own antiparticle, which would make
the neutrino fundamentally different from the other elementary particles of mat-
ter [1, 2]. Being electrically neutral particles, neutrinos and antineutrinos can
only be distinguished by their lepton number1, which is conserved in the Stan-
dard Model due to an accidental symmetry of the theory. Fermions with distinct
particle and antiparticle states, including the quarks and charged leptons, are
Dirac fermions, while fermions whose particle and antiparticle states coincide are
Majorana fermions. The distinction is closely connected to the form of the fermion
mass term in the Lagrangian of the theory (Sect. 1.2). If the fermion is massless,
so that no mass term appears, there is no physical distinction between the Dirac
and Majorana cases [3]. Until the late 1990s, experiments sensitive to the neutrino
masses found the masses consistent with zero, and neutrinos are massless in the
Standard Model.

Recently, experiments have provided compelling evidence for neutrino oscilla-
tions from one flavor to another in neutrino fluxes originating in the sun [4, 5],
the atmosphere [6], nuclear reactors [7], and particle accelerators [8, 9]. The fact
that neutrinos oscillate implies that neutrinos have mass, and prompted by this
discovery, the question of whether neutrinos are Dirac or Majorana particles has
become one of the issues at the forefront of particle and nuclear physics. To an-
swer this question, physicists are undertaking sensitive new experiments to search
for neutrinoless double beta (0νββ) decay, in which a nucleus (A,Z) decays to
(A,Z + 2) + 2e− with no (anti)neutrinos in the final state. So far unobserved,
neutrinoless double beta decay is a possible decay mode of some nuclides if and
only if neutrinos are Majorana particles [10]. Attempting to detect 0νββ decay
is currently the only practical experimental technique to determine whether neu-

1If neutrinos were massless, their helicity could also distinguish neutrinos (which are left-
handed) and antineutrinos (which are right-handed).
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trinos are Dirac or Majorana particles. Furthermore, if neutrinos are Majorana
particles, a measurement of the rate of 0νββ decay of a nuclide would provide a
constraint on the absolute mass scale of neutrinos.

This dissertation describes one of the most sensitive experimental searches
for 0νββ decay to date. The data analyzed are from two experiments based on
cryogenic bolometers, CUORICINO and the Three Towers Test, performed by
the CUORE Collaboration at the Laboratori Nazionali del Gran Sasso (LNGS)
in Italy. These two experiments served as prototypes for the upcoming CUORE
experiment as well as sensitive detectors in their own right for the neutrinoless
double beta decay of 130Te. This chapter discusses the theoretical framework for
neutrinos within the Standard Model, the distinction between Dirac and Majorana
neutrinos, and recent experimental results on neutrino masses.

1.1 The Standard Model and neutrino masses

The Standard Model of particle physics is a renormalizable gauge theory char-
acterized by the gauge symmetry SU(3)c ⊗ SU(2)L ⊗ U(1)Y . The field content of
the Standard Model includes three left-handed neutrinos: νeL, νµL, and ντL. A
left-handed neutrino ν`L (` ∈ {e, µ, τ}) and the corresponding left-handed charged
lepton `L transform as a doublet under the SU(2)L gauge symmetry. The right-
handed charged leptons, `R, are singlets under SU(2)L, and there are no right-
handed neutrinos in the Standard Model. The lepton content of the Standard
Model may be summarized as

L` ≡
(
ν`L
`L

)
, `R ` ∈ {e, µ, τ}, (1.1)

plus antiparticles.
The absence of right-handed neutrinos implies that neutrinos are massless in

the Standard Model. Bare mass terms are not allowed in the Lagrangian because
they are not gauge invariant. The charged leptons and quarks acquire masses via

the Higgs mechanism. The Yukawa interaction λΦTL``R, where Φ ≡
(
φ+

φ0

)
is the

Higgs doublet, is a gauge invariant term in the Lagrangian. When the electroweak
symmetry is spontaneously broken and the Higgs acquires a vacuum expectation

value 〈Φ〉 =

(
0
v

)
, the Yukawa interaction generates a mass term for the charged

leptons of the form λv`L`R. A mass term of this form, involving left-handed
and right-handed fields, is called a Dirac mass term. Every massive fermion in
the Standard Model acquires its mass from such a Dirac mass term. Neutrinos
are massless in the theory because without a right-handed neutrino, the Yukawa
interactions that would give rise to neutrino masses do not exist.
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Recent experiments have shown that neutrinos are not massless. Observa-
tions of neutrino oscillations, discussed in Sect. 1.3, demonstrate that at least two
neutrinos have nonzero masses. How can neutrino masses be incorporated into
the theory? The straightforward tack is to add right-handed neutrinos to the
particle content of the Standard Model by analogy with the charged leptons or
quarks. Then, neutrino masses would be generated by the usual Higgs mechanism.
However, the introduction of right-handed neutrinos allows for new terms in the
Lagrangian: Since a right-handed neutrino is uncharged under all the gauge sym-
metries, a mass term m(ν`R)cν`R is gauge invariant. This term should be included
in the Lagrangian according to the rule of constructing the most general gauge
invariant and renormalizable Lagrangian. This type of mass term, involving fields
of the same chirality, is called a Majorana mass term. Majorana mass terms are
uniquely possible for neutrinos because for charged fermions the Majorana mass
terms are not invariant under the U(1) gauge symmetry of electromagnetism.

A consequence of the existence of a Majorana mass term is that lepton number
is not conserved. Conservation of lepton number is not associated with a gauge
symmetry, like the conservation of electric charge is for example. Lepton number
is an accidental symmetry of the Standard Model; its conservation is a result of the
field content and the requirement of renormalizability [11]. As such, conservation
of lepton number is not viewed as inviolable like the conservation of electric charge,
and it is broken in many models extending the Standard Model. Lepton number
is the only quantum number that distinguishes neutrinos and antineutrinos. If
lepton number is not conserved, there is nothing to distinguish neutrinos and
antineutrinos, and neutrinos would be identical to antineutrinos. A fermion that
is its own antiparticle is called a Majorana fermion.

1.2 Dirac and Majorana neutrinos

A free spin-1/2 fermion, whether Dirac or Majorana, may be represented by a
four-component spinor field ψ, which satisfies the Dirac equation

(iγµ∂µ −m)ψ = 0. (1.2)

The field may be decomposed into left-handed and right-handed chiral projections:

ψ = ψL + ψR, where ψL =
(

1−γ5

2

)
ψ and ψR =

(
1+γ5

2

)
ψ. For Dirac fermions, the

left-handed and right-handed components are independent.
The definition of a Majorana fermion is that its field satisfies the constraint

ψ = ψc, (1.3)

where ψc ≡ Cψ
T

and C is the charge-conjugation matrix. This constraint is called
the Majorana condition and means the particle and antiparticle quanta of the field
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are the same. The Majorana condition implies ψR = (ψL)c, so the left-handed and
right-handed components of a Majorana field are not independent [2]. Therefore,
even though a Majorana particle may be represented by a four-component spinor,
the additional constraint of the Majorana condition implies that a Majorana field
is actually a two-component object.2

The Majorana condition does not need to be imposed by hand. The fields of
neutrinos with definite mass may automatically satisfy the Majorana condition,
depending on the form of the neutrino mass terms in the Lagrangian. Introducing
vectors of left-handed and right-handed neutrino fields,

νL =

νeLνµL
ντL

 , νR =

νeRνµR
ντR

 , (1.4)

the most general set of neutrino mass terms is

LD+M = −1

2
(νL)cMM

L νL −
1

2
νRM

M
R (νR)c − νRMDνL + h.c. (1.5)

where MM
L , MM

R , and MD are complex matrices [13]. The right-handed neutrinos,
νR, are iso-singlets and do not enter into the interaction terms in the Lagrangian.
The term with MD in Eq. (1.5) is a Dirac mass term and is the type of mass
term generated by the usual Higgs mechanism. The terms with MM

L and MM
R are

Majorana mass terms.3 The mass terms in Eq. (1.5) can be written as

LD+M = −1

2
(nL)cMnL + h.c., (1.6)

where nL =

(
νL

(νR)c

)
and the mass matrix, M , is symmetric. After the symmetric

mass matrix is diagonalized, the mass term takes the form

LD+M =
∑
i

miνiνi, (1.7)

where the fields of definite mass satisfy νi = (νi)
c if MM

L or MM
R is nonzero,

implying that the mass-eigenstate neutrinos are Majorana particles [13]. If MM
L =

MM
R = 0, the fields of definite mass do not satisfy the Majorana condition, in which

case the fermions are of Dirac type.

2It is possible and perhaps more natural to describe the theory of Majorana particles using a
two-component formalism from the outset [12]. The advantages of the four-component formalism
are symmetry in form with the Dirac fermions and convenience in writing the charged-current
interaction.

3In order for the term with MM
L to appear, the Higgs sector of the theory must contain more

than the minimal two-component Higgs field [12].
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A Majorana mass term violates any global U(1) symmetry ψ → eiφψ, such as
lepton number. Correspondingly, the Majorana condition precludes a Majorana
particle from having any nonzero conserved charge. Hence, Majorana neutrinos
are truly neutral particles. Since nonzero MM

L or MM
R implies Majorana neutri-

nos, Majorana neutrinos are in this sense a more general possibility than Dirac
neutrinos. If neutrinos are Dirac particles, it would strongly indicate that there
is some unknown symmetry restricting the form of the neutrino mass terms. The
nature of neutrinos, Dirac or Majorana, and whether lepton number is conserved
in nature are open experimental questions. Experiments aiming to answer these
questions attempt to observe a lepton-number-violating process, with neutrinoless
double beta decay being the most promising candidate.

1.3 Neutrino mixing

The three neutrinos that participate in weak interactions are linear combina-
tions of the neutrinos of definite mass defined by

ν` =
n∑
i=1

U`iνi, (1.8)

where U is a unitary matrix called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
lepton-mixing matrix. In Eq. (1.8) the mixing is expressed in terms of fields. In
terms of states,

|ν`〉 =
n∑
i=1

U∗`i|νi〉. (1.9)

The number of neutrinos of definite mass may be more than three, but from
the oscillation experiments, we know that there are only three mass eigenstates
light enough to be produced in the experiments. There may be more neutrinos
with very heavy masses, such as the GUT-scale neutrinos of seesaw models. The
3×3 submatrix of U connecting the weak-eigenstate neutrinos with the light mass
eigenstates is approximately unitary and is written in the standard parameteriza-
tion as

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


×

eiα1/2 0 0
0 eiα2/2 0
0 0 1

 .

(1.10)
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In this notation, cij and sij stand for cos θij and sin θij, respectively. The pa-
rameterization in Eq. (1.10) contains three mixing angles, θ12, θ13, and θ23; the
CP-violating phase δ; and two Majorana phases, α1 and α2. The phases α1 and
α2 are called Majorana phases because they have observable consequences only if
neutrinos are Majorana particles.

Because the neutrinos that are produced and absorbed in weak interactions
are mixtures of states with different masses, a neutrino produced in a particular
flavor can be detected as a neutrino of a different flavor. This phenomenon of flavor
change is known as neutrino oscillations. The first experimental hints of neutrino
oscillations came from experiments detecting neutrinos from the sun, starting
with Ray Davis’s chlorine experiment at the Homestake mine [14]. The Davis
experiment, which ran between 1970 and 1994, utilized the reaction νe + 37Cl →
e− + 37Ar to measure the flux of neutrinos produced in the sun. It was designed
to test models of the chain of nuclear reactions that power the sun. Rather than
confirming the solar models by finding the expected flux of neutrinos, the Davis
experiment measured a flux of neutrinos that was only about one-third of what
was predicted. This deficit of solar neutrinos was confirmed by the GALLEX [15]
and SAGE [16] experiments, which utilized the reaction νe + 71Ga → e− + 71Ge,
although the measured flux in these gallium experiments was about one-half,
rather than one-third, of the expected flux. We know now that the difference in
electron neutrino fluxes between the chlorine and gallium experiments is due to the
lower energy threshold of the gallium experiments and the energy dependence of
neutrino oscillations. The solar neutrino deficit was also observed by the Super-
Kamiokande experiment via neutrino-electron scattering in a water Cherenkov
detector [17].

The deficit of νe from the sun hinted that the νe were oscillating into other
flavors, but conclusive evidence that neutrino oscillations were the correct solution
to the solar neutrino deficit came from the Sudbury Neutrino Observatory (SNO)
experiment [4, 5]. The SNO experiment was the first experiment that could detect
the appearance of νµ and ντ , not just the disappearance of νe. The SNO detector
was a water Cherenkov detector that used heavy water, D2O, instead of ordinary
water. In addition to elastic scattering and charged-current interactions of neutri-
nos, thanks to the use of heavy water, SNO was also sensitive to neutral current
interactions, ν` + d→ ν` + p + n, which can happen for any neutrino flavor with
equal cross sections. The neutral-current interactions allowed SNO to measure the
total flux of solar neutrinos of all flavors, and the total flux agrees with the value
predicted by solar models for νe production (Fig. 1.1). Together with the reduced
flux of νe measured in charged-current interactions, the SNO neutral-current rate
demonstrates that electron neutrinos produced in the sun oscillate into different
flavors on their way to the earth.

Neutrino-oscillation experiments have usually been analyzed in terms of the
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Figure 1.1: Neutrino fluxes measured by SNO in the elastic scattering (ES),
charged current (CC), and neutral current (NC) channels. The horizontal axis
represents the flux of electron neutrinos, and the vertical axis represents the flux
of muon and tau neutrinos combined. The neutral current channel is equally sensi-
tive to all neutrino flavors. Therefore, the flux measured in the NC channel, φSNO

NC ,
could be due to fluxes of electron neutrinos and muon/tau neutrinos represented
by any point in the purple band with slope −1. The charged current channel is
sensitive only to electron neutrinos, so the allowed region from the φSNO

CC measure-
ment is the red vertical band. The elastic scattering channel is sensitive to all
neutrino flavors but has a larger cross section for electron neutrinos, resulting in
an allowed region indicated by the green band for the φSNO

ES measurement. The
intersection of the three bands determines the composition of the solar neutrino
flux at the earth, proving that electron neutrinos produced in the sun oscillate
into other neutrino flavors. The SNO measurement of the total flux agrees well
with the neutrino flux predicted by the standard solar model indicated by the
dashed lines. Figure from Ref. [4].
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mixing of two neutrino flavors. In the two-neutrino-mixing case, two parameters
describe the oscillations: a mixing angle θ and the difference in squared masses
∆m2

12 ≡ m2
2 −m2

1. The survival probability of an electron neutrino is given by

P (νe → νe) = 1− sin2 2θ sin2

(
1.27

∆m2
12

eV2

L

km

GeV

E

)
, (1.11)

where L is the distance between the neutrino source and the detector and E
is the neutrino energy [18]. Two-neutrino mixing is a good approximation for
existing experiments because the value of θ13 in Eq. (1.10) turns out to be small
and the two mass-squared differences measured in solar and atmospheric neutrino
oscillations are very different. Therefore, the oscillation parameters are described
in terms of the solar mixing angle, solar mass-squared difference, atmospheric
mixing angle, and atmospheric mass-squared difference. These are identified with
the parameters of the full three-neutrino oscillation picture (Eq. (1.10)) as θsolar =
θ12, ∆m2

solar = ∆m2
12, θatm = θ23, and ∆m2

atm = ∆m2
13.

The values of the solar mixing angle and mass-squared difference have been
measured by combining SNO data with data from the KamLAND reactor antineu-
trino experiment. The KamLAND experiment has measured the flux of electron
antineutrinos from nuclear reactors [7]. The KamLAND liquid scintillator de-
tector in the Kamioka mine in central Japan is located at an average distance
of ∼180 km from many commercial power reactors. Electron antineutrinos pro-
duced in the beta decay of fission products in the reactors are detected when
they induce inverse beta decay, νe + p → e+ + n, in the KamLAND detector.
The delayed coincidence between the prompt signal from the positron and the
delayed signal from the capture of the neutron is used to separate antineutrino
events from backgrounds. Oscillations measured by KamLAND are characterized
by the same mixing angle, θ12, and mass-squared difference, ∆m2

12, as the solar
neutrino experiments. The measured values of these parameters, obtained from
a global analysis of all the experiments, are listed in Table 1.1. KamLAND has
also produced the most direct evidence for neutrino oscillations by measuring the
electron antineutrino survival probability as a function of L/E, shown in Fig. 1.2.

Neutrino oscillations have also been observed in atmospheric neutrinos, first
by the Super-Kamiokande experiment. Atmospheric neutrinos are produced when
cosmic rays bombard the air in the upper atmosphere. The collisions mainly pro-
duce pions, which produce neutrinos when they decay. The Super-Kamiokande
detector is a water Cherenkov detector in the Kamioka mine that detects atmo-
spheric neutrinos via charged-current interactions with nucleons, ν`+N → `+N ′.
Because the earth is spherical, the flux of upward-going and downward-going neu-
trinos at the detector site would be symmetric if no oscillations occurred. Super-
Kamiokande found a clear asymmetry in upward-going and downward-going neu-
trinos [6]. The oscillation effect was confirmed by the accelerator-based, long
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Table 1.1: Measured values of neutrino mixing parameters from the global three-
flavor analysis of Ref. [19] (September 2007 update).

Parameter Best fit 2σ confidence interval

∆m2
12 7.6× 10−5 eV2 (7.3–8.1)× 10−5 eV2

|∆m2
13| 2.4× 10−3 eV2 (2.1–2.7)× 10−3 eV2

sin2 θ12 0.32 0.28–0.37
sin2 θ23 0.50 0.38–0.63
sin2 θ13 0.007 ≤ 0.033
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Figure 1.2: Neutrino oscillations observed by KamLAND. The survival probability
of electron antineutrinos measured by KamLAND as a function of L/E agrees very
well with the expectation based on neutrino oscillations. Figure from Ref. [7]
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baseline experiments K2K [8] and MINOS [9], and the measured values for the
oscillation parameters, θ23 and ∆m2

13, are listed in Table 1.1.
The limit on the third mixing angle, θ13, in Table 1.1 comes primarily from

the CHOOZ reactor antineutrino experiment in France [20]. The CHOOZ liquid
scintillator detector was located about 1 km from two nuclear reactors. At this
distance, the experiment was sensitive to oscillations at the frequency determined
by ∆m2

13 that are modulated by the size of sin2(2θ13). The data were consistent
with no oscillations, and therefore an upper limit on θ13 was obtained.

Although the differences in neutrino mass-squared have been measured, os-
cillation experiments cannot measure the individual neutrino masses. Therefore,
the absolute mass scale (the mass of the lightest neutrino) remains unknown.
The absolute neutrino masses are constrained by the Mainz and Troitsk tritium-
beta-decay experiments to be less than 2.5 eV (95% C.L.) [21, 22]. A stronger,
but model-dependent, bound of

∑
mν < 0.67 eV (95% C.L.) has been obtained

from cosmological evidence [23]. Moreover, the sign of ∆m2
13 is unknown, leading

to two possible hierarchies of neutrino masses, normal (∆m2
13 > 0) and inverted

(∆m2
13 < 0). If the mass of the lightest neutrino is much greater than

√
|∆m2

13|,
the pattern of neutrino masses is said to be degenerate. The situation is illus-
trated in Fig. 1.3. If neutrinos are Majorana fermions, a measurement of the rate
of neutrinoless double beta decay of a nuclide, combined with results from single
beta decay experiments and cosmology, can determine the absolute neutrino mass
scale and hierarchy (see Chapter 2).
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Figure 1.3: Two orderings of the neutrino masses are consistent with current
data, depending on the sign of ∆m2

13. In the normal hierarchy (left side), the
small mass splitting observed in solar neutrino oscillations is at the bottom, and
in the inverted hierarchy (right side), the small mass splitting is at the top. The
question marks indicate that the mass of the lightest neutrino is unknown.
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Chapter 2

Double beta decay

Double beta decay is an extremely rare nuclear transition from a nucleus (A,Z)
to its isobar (A,Z + 2) with the emission of two electrons. The transition may
occur via a Standard Model allowed process in which two electron antineutrinos
are emitted along with the electrons: (A,Z) → (A,Z + 2) + 2e− + 2νe. This
decay mode, known as two-neutrino double beta (2νββ) decay, can be thought
of as two simultaneous beta decays. The expected rate for 2νββ decay was first
calculated by Goeppert-Mayer in 1935 [24], and the decay has now been observed
in ten nuclides. Double beta decay half-lives for nuclei that undergo the process
are very long, on the order of 1019–1024 y, since the decay is second order in the
weak interaction. The measured half-lives of double beta decaying isotopes are
listed in Table 2.1 based on Ref. [25].

In principle, a nucleus (A,Z) can decay by double beta decay as long as the
nucleus (A,Z + 2) is lighter. However, if the nucleus can also decay by single
beta decay to (A,Z + 1), the branching fraction for double beta decay will be
so small that it is practically impossible to observe the double beta decays in an
experiment due to the overwhelming background rate from single beta decays.
Therefore, candidate nuclei for experimental detection of double beta decay are
even-even nuclei that, due to the nuclear pairing force, are lighter than the odd-
odd (A,Z + 1) nucleus, making single beta decay kinematically forbidden. This
situation is shown schematically in Fig. 2.1 and shown concretely for the A = 130
isobars in Fig. 2.2. The lightest, and therefore the only stable, A = 130 nuclide
is 130Xe; 130Te is stable against single beta decay since 130I is heavier, so it can
only decay by double beta decay to 130Xe. Two additional double beta decay
candidates are 48Ca and 96Zr, for which single beta decay is kinematically possible
but is greatly suppressed by a large difference in nuclear spin.

If neutrinos are Majorana fermions, there is an additional double beta decay
mode, (A,Z)→ (A,Z + 2) + 2e−, with no (anti)neutrinos in the final state. This
decay mode is known as neutrinoless double beta (0νββ) decay and has never been
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Table 2.1: Recommended half-life values for double beta decaying isotopes from
Ref. [25].

Nuclide T 2νββ
1/2 (y)

48Ca 4.4+0.6
−0.5 × 1019

76Ge (1.5± 0.1)× 1021

82Se (9.2± 0.7)× 1019

96Zr (2.3± 0.2)× 1019

100Mo (7.1± 0.4)× 1018

116Cd (2.8± 0.2)× 1019

128Te (1.9± 0.4)× 1024

130Te 6.8+1.2
−1.1 × 1020

150Nd (8.2± 0.9)× 1018

238U (2.0± 0.6)× 1021

0+

0+

2+

0+
Z

Z+1

Z+2

ββ

Figure 2.1: Schematic diagram of energy levels involved in double beta decay.
Figure from Ref. [26].
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Figure 2.2: Masses of A = 130 isobars relative to 130Xe. The values on the vertical
axis are (m(AZX) − m(130Xe))c2 in keV. Figure from the Table of Radioactive
Isotopes [27].
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Figure 2.3: Feynman diagrams for (a) two-neutrino double beta decay and (b)
neutrinoless double beta decay mediated by light neutrino exchange. Figure from
Ref. [26].

observed (except for one controversial claim discussed in Sect. 2.3.1). Neutrinoless
double beta decay was first considered by Raccah in 1937 [28] soon after Majo-
rana put forward his symmetric theory of particles and antiparticles. The first
calculations of the rate for 0νββ decay, performed by Furry [29], yielded a much
faster rate than for 2νββ decay, which prompted initial interest in experimental
detection of 0νββ decay. However, at that time the chiral nature of the weak
interaction was not yet known so a severe suppression of the 0νββ rate, discussed
below, was not incorporated in the calculations.

Neutrinoless double beta decay is forbidden in the Standard Model since it
manifestly breaks lepton number conservation (and B − L). Of course lepton
number conservation is broken anyway if neutrinos are Majorana particles. Feyn-
man diagrams for 2νββ and 0νββ decay are shown in Fig. 2.3. The 2νββ diagram
contains only Standard Model interactions. The 0νββ diagram requires only the
known V − A interactions in addition to a massive Majorana neutrino. One can
think of the virtual neutrino in the diagram as being produced as an antineutrino
(equal to a neutrino since it is Majorana) at one vertex and absorbed as a neu-
trino at the other vertex. In addition to the Majorana equivalence of neutrino
and antineutrino, a nonzero neutrino mass is required to flip the helicity since
antineutrinos are right-handed and neutrinos are left-handed. The helicity flip
and the smallness of the neutrino mass cause the rate of 0νββ decay, if it occurs
at all, to be much lower than the rate of 2νββ decay.

The rate of 0νββ decay driven by the exchange of light Majorana neutrinos is
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given to a good approximation by [26]

1

T 0νββ
1/2

= G0ν(Q,Z)|M0ν |2m2
ββ, (2.1)

where G0ν(Q,Z) is a phase space factor proportional to Q5, M0ν is a nuclear
matrix element, and mββ is the effective Majorana mass defined as

mββ ≡
∣∣∣∣∣

3∑
i=1

U2
eimi

∣∣∣∣∣ . (2.2)

The particle physics information is contained in mββ. The phase space factor,
G0ν(Q,Z), is calculable. Calculation of the nuclear matrix element, M0ν , is a
challenging problem in nuclear theory (discussed further in Sect. 2.1). Experi-
ments attempt to measure T 0νββ

1/2 , and in the absence of a signal, they set a lower
limit. Combining the measurement and the calculations, the value of mββ is de-
duced or an upper limit is set.

If neutrinos are Majorana particles, measuring or constraining the effective
Majorana mass provides information on the neutrino mass scale and hierarchy.
This is possible because there is a relationship between the effective Majorana
mass and the mass of the lightest neutrino. The relationship depends on whether
the hierarchy is normal or inverted because which neutrino mass eigenstate is the
lightest depends on which hierarchy is realized in nature, as indicated in Fig. 1.3.
For the normal hierarchy, m1 is the lightest and therefore

mββ ≡ |U2
e1m1 + U2

e2m2 + U3
e3m3|

=

∣∣∣∣U2
e1m1 + U2

e2

√
∆m2

12 +m2
1 + U2

e3

√
|∆m2

13|+m2
1

∣∣∣∣
=

∣∣∣∣cos2 θ12 cos2 θ13e
iα1m1 + sin2 θ12 cos2 θ13e

iα2

√
∆m2

12 +m2
1

+ sin2 θ13e
−2iδ
√
|∆m2

13|+m2
1

∣∣∣∣ .
(2.3)

A similar expression is easily derived for the inverted hierarchy in which m3 is the
lightest mass eigenvalue. Plugging in the measured values of the neutrino mixing
angles and mass-squared differences from Table 1.1, a value for mββ is obtained
for each value of the lightest neutrino mass, m1 for the normal hierarchy or m3

for the inverted hierarchy, and for a given set of values for the phases. Figure 2.4
shows the range of allowed values for mββ for each value of the lightest neutrino
mass, obtained by allowing the unknown phases to vary over their possible values
from 0 to 2π. There are distinct bands of allowed mββ depending on the hierar-
chy, though the bands overlap in the quasi-degenerate mass regime. Neutrinoless
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Figure 2.4: Allowed values of the effective Majorana mass as a function of the
lightest neutrino mass based on the neutrino mixing parameters in Table 1.1.
The width of the hatched regions is due to the unknown phases. The dashed
lines show how the allowed regions expand if the neutrino mixing parameters are
allowed to vary within their 2σ experimental errors.

double beta decay experiments set upper limits on mββ and therefore exclude a
region from the top of Fig. 2.4. In this way, 0νββ decay experiments can rule
out the quasi-degenerate mass regime under the assumption that neutrinos are
Majorana particles. Future 0νββ decay experiments may have the sensitivity to
rule out the inverted hierarchy.

Direct counting experiments search for double beta decay by measuring the
sum of the electron energies and, in some experiments, the energy of the nuclear
recoil. In a double beta decay, the total decay energy, or Q-value, is shared
among all of the final state particles. The amount of the decay energy that goes
into the kinetic energy of the daughter nucleus is negligible since the nucleus is
so much heavier than the electrons (and the antineutrinos in the 2νββ case). In
the spectrum of summed electron energies, 2νββ decay appears as a continuum
from 0 up to the Q-value of the decay since the decay energy is shared among
the electrons and the antineutrinos. In the 0νββ case, the electrons carry away
all of the decay energy except for the negligible kinetic energy of the nuclear
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Figure 2.5: Summed electron energy spectral shapes for 2νββ decay (continuum)
and 0νββ decay (peak). Figure from Ref. [26].

recoil. Therefore, 0νββ decay produces a mono-energetic peak at the Q-value in
the summed electron energy spectrum (Fig. 2.5). The 0νββ peak will be spread
only by the energy resolution of the detector. Experiments attempt to discover
0νββ decay by searching for this peak at the Q-value of the candidate nucleus.
Bolometric experiments, such as CUORE, measure the nuclear recoil energy in
addition to the electron energies; since the nuclear recoil energy is negligibly small,
the spectral signatures of double beta decay in bolometric detectors are the same
as for experiments that measure only the electron energies.

2.1 Nuclear matrix elements

The most significant source of uncertainty in drawing conclusions about neu-
trino masses from an experimental value of T 0νββ

1/2 for a particular isotope comes

from theoretical uncertainty in the nuclear matrix element, M0ν in Eq. (2.1).
The calculation of nuclear matrix elements for double beta decay is a notori-
ously difficult problem in nuclear theory involving complicated operators acting
on structurally complex nuclei. It requires a detailed description of the second-
order weak transition from the parent to daughter nucleus through virtual states
of an intermediate nucleus. The nuclear matrix element for 0νββ decay is a sum
of Fermi and Gamow-Teller contributions:

M0ν = M0ν
GT −

M0ν
F

g2
A

, (2.4)

where gA is the effective axial coupling in nuclear matter, not necessarily equal
to the free nucleon value gA = 1.25 [30]. The Fermi and Gamow-Teller matrix
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elements connect the 0+ ground states in the initial and final nuclei as follows:

M0ν
F = 〈0+

f ||
∑
n,m

h(r)tn−tm− ||0+
i 〉 (2.5)

M0ν
GT = 〈0+

f ||
∑
n,m

h(r)(~σn · ~σm)tn−tm−||0+
i 〉. (2.6)

The sum in the matrix elements is over nucleons. The neutrino propagator arising
from the presence of a virtual neutrino in the Feynman diagram leads to the
neutrino potential, h(r).

Approaches to evaluating M0ν have generally fallen into two categories, the
quasiparticle random phase approximation (QRPA) and the interacting nuclear
shell model (NSM). The two kinds of models take complementary approaches
in the approximations they make. The QRPA calculations [30] include a large
number of single particle states but allow only a limited set of configurations of
the states. On the other hand, NSM calculations [31] take into account all possible
nucleon configurations but using a very restricted single particle basis. Because
of the factorial growth in computational complexity of NSM calculations as the
size of the nucleus under consideration increases and because double beta decay
occurs in medium to heavy nuclei, most calculations of 0νββ matrix elements have
employed the QRPA technique or a refinement of it.

There has been significant progress in the calculations of M0ν in recent years.
Calculations with QRPA performed by different groups have approximately con-
verged. Rodin et al. have shown that if the particle-particle interaction strength,
gpp, is tuned so that measured 2νββ half-lives are correctly obtained, then almost
all modern QRPA calculations of M0ν agree to within about 30% [32, 33]. Fig-
ure 2.6 shows the spread of nuclear matrix element calculations for several 0νββ
decay candidates. The two QRPA calculations shown in the figure agree well with
each other and with an interacting boson model (IBM) calculation, while a recent
NSM calculation is roughly a factor of two lower.

2.2 0νββ decay implies Majorana neutrinos

The exchange of a light Majorana neutrino, the diagram in Fig. 2.3b, is the
minimal mechanism for 0νββ decay in that it requires no new particles or inter-
actions beyond neutrinos being Majorana particles. It is not the only possible
mechanism for 0νββ decay, however. Grand unified theories of particle physics
beyond the Standard Model present several mechanisms that could drive 0νββ
decay (see Ref. [34] and references therein). Mechanisms involving lepton number
violating quark-lepton interactions can drive 0νββ decay in both R-parity con-
serving and R-parity non-conserving supersymmetric extensions of the Standard
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Figure 1: Current status of calculations of M0ν for the light neutrino exchange
mechanism (with the Jastrow-like s.r.c. and gA = 1.25) within different nuclear
structure models (QRPA: [8] (T’07) and [12] (J’07); NSM [13]; IBM2 [14]).

A comparison of the results by different groups (with the Jastrow-like short-range
correlations (s.r.c.) and with the unquenched value gA = 1.25) is represented in
Fig. 1. One can see in the figure that the matrix elements M0ν of different groups
calculated within the QRPA seem to converge. At the same time, the M0ν of the
NSM are systematically and substantially smaller (up to a factor of 2 for lighter
nuclei like 76Ge) than the corresponding QRPA ones. There is now an active dis-
cussion in literature on what could be the reason of such a discrepancy, a too small
single-particle model space of the NSM or a neglect of complex nuclear configura-
tions within the QRPA. The recent results obtained within the IBM method [14]
agree surprisingly well with the QRPA ones of Ref. [8].
As already mentioned, all models employ truncations: the NSM severely truncates
the s.p. model space whereas the QRPA does so with respect to the configuration
space. The question relevant for calculation of the 0νββ nuclear matrix elements is
which truncation induces the smallest error in M0ν .
In Ref. [13] the difference between the NSM and the QRPA results is attributed to a
neglect of a subset of ground state correlation in the latter. The claim as it appears
in [13] is “the QRPA can be said to be a ”low seniority approximation”, roughly
equivalent to the s ≤ 4 ISM truncations, that overestimate the NME’s ...”. However,

Figure 2.6: Nuclear matrix elements calculated by four different groups. Figure
from Ref. [30].

Model. There is also a possible mechanism based on leptoquark exchange. If the
symmetry responsible for lepton number conservation is spontaneously broken,
there exists a Nambu-Goldstone boson associated with the spontaneous symme-
try breaking, known as the Majoron. The Majoron, φ, couples to neutrinos,
and its existence would lead to another possible mode of double beta decay:
(A,Z) → (A,Z + 2) + 2e− + φ. This neutrinoless double beta decay mode with
a Majoron is easily distinguished from neutrinoless double beta decay without a
Majoron by the spectrum of summed electron energies, which is continuous in the
case that the decay energy is shared with the Majoron and mono-energetic in the
standard case.

Experiments attempt to measure the partial half-life, T 0νββ
1/2 , for 0νββ decay

for some nuclide. Such a measurement is model-independent. Making a determi-
nation of the absolute neutrino mass scale and hierarchy, however, requires the
assumption that the dominant mechanism driving 0νββ decay is the exchange of
a light Majorana neutrino. Only under this assumption can Eq. (2.1) be used to
turn a value of T 0νββ

1/2 into a value for mββ. Nevertheless, Schechter and Valle [10]
have shown that if 0νββ decay occurs in nature, neutrinos must be Majorana
fermions, even if the 0νββ decay is dominantly driven by a mechanism other than
light Majorana neutrino exchange. They constructed the diagram in Fig. 2.7, in
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Figure 2.7: If 0νββ decay occurs, regardless of the dominant mechanism, this di-
agram (from Schechter and Valle [10]) modifies the neutrino propagator, inducing
a Majorana mass term for neutrinos.

which whatever mechanism is responsible for 0νββ decay goes inside the “black
box.” By connecting the external lines appropriately, a contribution to the neu-
trino propagator is obtained that turns an anti-neutrino into a neutrino thereby
inducing a Majorana mass term for the neutrino. Thus, an experimental obser-
vation of 0νββ decay would provide model-independent proof that neutrinos are
Majorana fermions. To determine the mechanism driving 0νββ decay, measure-
ments of T 0νββ

1/2 for multiple nuclides and well as accurate nuclear matrix elements
will be necessary.

2.3 Status of experimental searches for 0νββ de-

cay

The experimental signature for 0νββ decay is a mono-energetic peak, spread
only by the detector resolution, in the spectrum of summed electron energies lo-
cated at the Q-value of the nucleus undergoing the decay. The two principal
requirements of an experiment designed to observe this peak are a very low back-
ground level and the capability to measure electron energies with high resolution.
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A low background level is required to make a statistically significant discovery of
a 0νββ decay signal, which is expected to be very small based on limits set by pre-
vious experiments. A high energy resolution prevents the tail of the 2νββ decay
continuum spectrum from burying a small 0νββ decay peak, and an improvement
in energy resolution directly reduces the background level by narrowing the region
of interest in which the 0νββ peak is expected.

Several candidate isotopes are available for neutrinoless double beta decay
searches. The choice of isotope used in an experiment is guided by the candidate
isotope’s Q-value, nuclear matrix element, and natural isotopic abundance, as
well as the detector technology available to study the isotope. These properties
for several isotopes of experimental interest are listed in Table 2.2. An ideal 0νββ
decay candidate would feature a high Q-value, large nuclear matrix element, and
large natural isotopic abundance. High Q-values are important so that the 0νββ
decay peak occurs at a higher energy than natural gamma backgrounds, which
extend up to 2615 keV. Higher Q-values also increase the expected number of 0νββ
decay events because the phase space factor scales as Q5. Higher nuclear matrix
elements likewise increase the expected number of signal events. The natural
isotopic abundance of a candidate isotope greatly affects the cost of an experiment.
In order to field an experiment with a large source mass while keeping the total
size of the apparatus within practical limits, the isotope of interest must usually
comprise a significant fraction of the total mass, which requires isotopic enrichment
for most candidates. The notable exception is 130Te, the candidate isotope chosen
for CUORICINO and CUORE. At 33.8% the natural isotopic abundance of 130Te
is far greater than that of the other 0νββ decay candidates with large Q-val-
ues. This feature of 130Te allows CUORICINO and CUORE to achieve a high
sensitivity per dollar by using natural, unenriched tellurium.

The most sensitive current limits on 0νββ decay have been set by the Hei-
delberg-Moscow and IGEX experiments using 76Ge and by the CUORICINO ex-
periment using 130Te. These experiments utilized approaches in which “source
= detector” to reduce backgrounds from natural radioactivity of detector compo-
nents. “Source = detector” means that the double beta decaying isotope functions
as an active part of the detector and makes up a large fraction of the total detector
mass. The CUORICINO experiment, on which this dissertation is focused, used
the bolometric technique to operate TeO2 crystals as high resolution calorime-
ters (Chapter 3). The 76Ge experiments built high-purity germanium (HPGe)
detectors out of germanium enriched in 76Ge.

The Heidelberg-Moscow Collaboration operated five HPGe detectors enriched
to 86% in 76Ge with a total source mass of 10.96 kg. Located in the Gran Sasso un-
derground laboratory, the experiment ran from 1990 to 2003 and collected 71.7 kg·
y exposure of 76Ge [35]. It achieved a background level of 0.11 counts/(keV ·kg ·y)
in the energy region around the 76Ge Q-value of 2039 keV. In 1999 the Heidelberg-
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Table 2.2: Properties of candidate isotopes for 0νββ decay. The Q-values and
natural isotopic abundances, η, are from the Table of Radioactive Isotopes [27].
The last column is the expected partial half-life for 0νββ decay if mββ = 50 meV,
taken from Ref. [33]; it provides a measure of the nuclear matrix element combined
with the phase space factor.

Nuclide Qββ (keV) η (%) T 0νββ
1/2 (mββ = 50 meV) (y)

48Ca 4276 0.2
76Ge 2039 7.4 8.6× 1026

82Se 2992 8.7 2.4× 1026

96Zr 3351 2.8 9.8× 1026

100Mo 3034 9.6 2.4× 1026

116Cd 2902 7.5 2.9× 1026

128Te 867 31.7 4.5× 1027

130Te 2527 33.8 2.2× 1026

136Xe 2467 8.9 4.6× 1026

150Nd 3368 5.6 2.2× 1025

Moscow Collaboration produced a limit of T 0νββ
1/2 (76Ge) > 5.7 × 1025 y (90%

C.L.) [36]. Later a subset of the collaboration claimed discovery of 0νββ with the
Heidelberg-Moscow data. This claim of discovery is discussed below in Sect. 2.3.1.

The International Germanium Experiment (IGEX) was similar to Heidelberg-
Moscow in that it used 86% isotopically enriched HPGe detectors to search for
0νββ decay of 76Ge. The collaboration originally operated detectors at three
different underground laboratories: the Homestake gold mine in the United States,
the Canfranc Tunnel in Spain, and the Baksan Neutrino Observatory in Russia.
Then, three 2 kg detectors were operated at Canfranc [37]. The resulting limit on
0νββ decay was T 0νββ

1/2 (76Ge) > 1.6× 1025 y (90% C.L.) [38].
Results from experimental searches for 0νββ decay in several other isotopes

are listed in Table 2.3. The NEMO-3 experiment is notable because it has the
capability to track charged particles and perform particle type identification. In
the NEMO-3 detector, which is not a “source = detector” design, the double
beta decaying source is contained in thin foils. Particles emitted from the foils
are tracked inside a wire ionization chamber and their energies are measured by
plastic scintillator calorimeters [45]. This type of detector provides a richer set of
information than the “source = detector” experiments, including the number and
type of particles in the decay, independent measurements of the energy of each
final state particle, and angular distributions of decay products. This information
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Table 2.3: Selection of current 0νββ decay half-life limits.

Nuclide T 0νββ
1/2 (y) Experiment

48Ca > 1.4× 1022 (90% C.L.) ELEGANT VI [39]
76Ge > 5.7× 1025 (90% C.L.) Heidelberg-Moscow [36]
82Se > 1.0× 1023 (90% C.L.) NEMO-3 [40]
96Zr > 9.2× 1021 (90% C.L.) NEMO-3 [41]

100Mo > 4.6× 1023 (90% C.L.) NEMO-3 [40]
116Cd > 1.7× 1023 (90% C.L.) Solotvina [42]
130Te > 3.0× 1024 (90% C.L.) CUORICINO + TTT [this work]
136Xe > 1.2× 1024 (90% C.L.) DAMA [43]
150Nd > 1.8× 1022 (90% C.L.) NEMO-3 [44]

greatly helps to disentangle signal events from backgrounds. It also allows for
searches for 0νββ decay in many isotopes by changing the source foil. Thanks to
its background suppression capabilities and module source design, NEMO-3 has
made precision measurements of the 2νββ half-lives of several isotopes [40, 41, 44].
However, this approach is limited to relatively small source masses and has limited
energy resolution.

2.3.1 Claim of discovery

In 2001 a subset of the Heidelberg-Moscow Collaboration, led by Klapdor-
Kleingrothaus, announced 3.1σ evidence for 0νββ decay of 76Ge in the Heidelberg-
Moscow experiment [46]. Because this result was not endorsed by the full collab-
oration and because of several technical criticisms of the analysis [47, 48, 49], the
claim of discovery has not been fully accepted by the community. Its proponents
reasserted their claim with more data, more sophisticated analyses, and results
with greater statistical significance [50, 51, 35]. In particular, they developed a
pulse shape discrimination capability to distinguish between single-site events and
multi-site events in their germanium detectors. Double beta decay events deposit
the decay energy within a small, localized region and are therefore single-site
events, whereas gamma backgrounds typically Compton scatter in the detector at
least once before being fully absorbed and are therefore usually multi-site events.
Pulse shape discrimination is in principle a powerful tool for separating a double
beta decay signal from background in a germanium detector.

Application of pulse shape discrimination to the Heidelberg-Moscow data pro-
duced an extremely low background spectrum that contains a peak at the Q-value
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Fig. 8. The pulse shape selected spectrum (selected by neuronal net-NN) with detectors 2, 3, 4,
5 from 1995 to 2003 in the energy interval 2000–2100 keV (see Refs. 3 and 4). The signal at Qββ

has a confidence level of 6.4σ (7.05 ± 1.11 events).
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Fig. 9. The sum of the neuronally selected (NN) pulses and of the spectrum selected by the
zero range library, measured with detectors 2, 3, 4, 5 from 1995 to 2003 in the energy range of
(2000–2060) keV. Shown are the events observed in the full detector (a) and cutting the detector
boundaries by 1, 2 mm. Signals near Qββ are found on a 5.2σ (10.64± 2.06 events), 6.5σ (11.32±
1.75 events) and 6.8σ (10.75± 1.58 events) confidence level (a, b, c, respectively).

Figure 2.8: The Heidelberg-Moscow spectrum of single site events near the Q-val-
ue of 76Ge after application of pulse shape discrimination. Figure from Ref. [35].

of 76Ge with a statistical significance of greater than 6σ (Fig. 2.8) [35]. Klapdor-
Kleingrothaus et al. obtain a measured value for the partial half-life for 0νββ
decay of 76Ge of T 0νββ

1/2 (76Ge) = (2.23+0.44
−0.31)× 1025 y, corresponding to an effective

Majorana neutrino mass (assuming the light Majorana neutrino exchange mech-
anism dominates) of mββ = 0.32 ± 0.03 eV [35]. The community has still not
found the analysis conclusive due in part to questions of validation of the pulse
shape discrimination method. The method appears however to produce the cor-
rect shape for the 2νββ spectrum, as shown in Fig. 2.9. It is clear that the issue
will only be settled by confirmation or refutation of the claim with data from
future next generation experiments.

2.3.2 Next generation experiments

In the next few years, several next generation 0νββ decay experiments will
start running. These experiments aim for the sensitivity to reach an effective
Majorana mass of ∼50 meV in order to cover the quasi-degenerate neutrino mass
regime and perhaps to begin to probe the inverted hierarchy (see Fig. 2.4). To
reach this goal within a few years of running will require hundreds of kilograms
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of source mass. Table 2.2 indicates the half-life to which an experiment must be
sensitive to reach mββ = 50 meV.

The GERmanium Detector Array (GERDA) experiment will search for 0νββ
decay of 76Ge and is currently being commissioned at Gran Sasso [52, 53]. In its
first phase, the enriched HPGe detectors from Heidelberg-Moscow and IGEX are
being redeployed, providing ∼18 kg of 76Ge. GERDA employs a novel scheme
to cool the HPGe detectors: The bare semiconductor detectors are submerged in
liquid argon. In addition to keeping the detectors cool, the liquid argon serves as a
shield against external radioactivity. In Phase I the background level is expected
to be as low as 10−2 counts/(keV·kg·y). An exposure of about 30 kg·y of 76Ge will
be collected in Phase I in order to test the Klapdor-Kleingrothaus et al. claim of
observation. For the second phase, new segmented detectors are being developed
that will bring the total source mass up to about 40 kg. Backgrounds causing
multi-site energy depositions will be suppressed with pulse shape analysis. The
possibility of reading out the liquid argon scintillation light is being investigated
in order to turn the liquid argon bath into an active shield. The background level
in Phase II is expected to be 10−3 counts/(keV·kg·y). The GERDA Collaboration
plans to collect a total exposure of at least 100 kg · y.

The Majorana experiment also seeks to observe 0νββ decay of 76Ge using
HPGe detectors [54, 55]. It will be located in the Sanford Underground Lab-
oratory, the first stage of the new Deep Underground Science and Engineering
Laboratory (DUSEL) in the Homestake mine in South Dakota. The Majorana
project is taking a phased approach. The first phase, termed the Majorana
Demonstrator, will consist of a 60 kg module of high-purity Ge, of which 30 kg
will be enriched to 86% in 76Ge. The goals of the first phase are to demonstrate
a background level at or below 1 count/(ton · y) in a 4 keV wide region of interest
and to test definitively the claim of observation of 0νββ decay of 76Ge. The Ma-
jorana Collaboration is engaged in R&D on detector design, especially p-type,
point-contact Ge detectors, and on signal processing for identifying multi-site in-
teractions in segmented Ge detectors. The collaboration eventually aims to build
a ton-scale experiment and may join with the GERDA Collaboration to undertake
the larger experiment.

The Enriched Xenon Observatory (EXO) experiment will use a Xe time pro-
jection chamber to search for 0νββ decay of 136Xe [56]. The first phase, EXO-200,
consists of a 200 kg detector currently being set up in laboratory space in the
Waste Isolation Pilot Plant (WIPP), which is an underground facility in New
Mexico for the long-term storage of nuclear waste from military applications. The
EXO Collaboration eventually plans to construct a one-ton detector. An R&D
effort is underway to develop a technique to tag double beta decay events by
atomic spectroscopy of the daughter 136Ba++ ions. The Ba tagging would provide
the capability to reject all backgrounds except for 2νββ decay events.
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The CUORE experiment, currently under construction at Gran Sasso, will
search for 0νββ decay of 130Te. It is a larger and more radiopure version of the
CUORICINO detector containing 204 kg of 130Te. Data taking is expected to
begin in 2012. The CUORE detector is described in detail in Sect. 3.2.3.

Several other next generation 0νββ decay experiments have been proposed or
are in the R&D phase. SuperNEMO is a proposed upgrade of NEMO-3 with at
least 100 kg of source mass of 48Ca, 82Se, or 150Nd [57]. The SNO+ Collaboration
plans to fill the SNO acrylic vessel with neodymium-loaded liquid scintillator in
order to search for 0νββ decay of 150Nd [58]. In a similar fashion, the KamLAND
Collaboration plans to turn the KamLAND detector into a 0νββ decay experiment
by dissolving 136Xe in the liquid scintillator [59]. The CANDLES project (CAlcium
fluoride for the study of Neutrinos and Dark matters by Low Energy Spectrometer)
uses undoped CaF2 scintillators to attempt to detect 0νββ decay of 48Ca [60].
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Chapter 3

Bolometric detectors

A bolometer is a low temperature detector that measures the energy of an
incident particle by the induced rise in temperature of the detector. Such small
energy depositions result in measurable temperature changes because at low tem-
perature the heat capacity, C, of a dielectric and diamagnetic crystal of mass m
and molar mass M behaves according to the Debye law as

C =
m

M

12

5
π4NAkB

(
T

ΘD

)3

, (3.1)

where ΘD is the Debye temperature, which depends on the material [61]. The
temperature change, given by ∆T = E/C for an energy deposition E, becomes
large enough to be measured to high precision when C is made sufficiently small
by cooling the detector to a very low temperature on the order of 10 mK.

Since most of the energy transferred from a particle to a detector is eventu-
ally converted into heat, a bolometer has a higher intrinsic resolution than other
types of nuclear radiation detectors that measure the component of a particle’s
energy that goes into ionization or excitation of atomic electrons. Aside from
the possibility of energy loss due to excitation of metastable states in the lattice,
the theoretical resolution of a bolometer is limited only by fluctuations in the
number of phonons exchanged with the heat sink that maintains the bolometer’s
base temperature. An estimate of this thermodynamic limit on the resolution of
a bolometer may be obtained by considering that the elementary excitation, the
energy required to create one phonon, is about ε = kBT so that the number of
phonons in a bolometer with energy E = CT is N = E/ε = CT/kBT . Assuming
this number of phonons fluctuates according Poisson statistics, the variation in
the energy is

∆E =
√
N · ε =

√
kBCT 2, (3.2)

a quantity that is independent of energy. Plugging in typical values for CUORE
bolometers (C ≈ 1 MeV/0.1 mK and T ≈ 10 mK) yields an energy fluctuation
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of ∆E ∼ 10 eV. While this value is impressive, roughly two orders of magnitude
better than conventional detectors, it should be stressed that this is merely the
thermodynamic limit on the detector technology. In a real detector, the energy
resolution is degraded due to extrinsic sources of noise, and the contribution of
Eq. (3.2) is negligible.

3.1 The CUORE bolometer module

CUORE and its predecessor experiments, including CUORICINO and the
Three Towers Test, are arrays of independent bolometer modules. A bolome-
ter module consists of three essential parts: an energy absorber, a temperature
sensor, and a Joule heater for monitoring the gain. When the bolometer modules
are assembled into arrays, Teflon spacers between the crystals and the copper
structure of the array provide the low thermal conductivity connection between
the energy absorber and the heat sink.

3.1.1 Energy absorber: TeO2 crystal

The energy absorber is a TeO2 crystal, which is also the source of double beta
decaying 130Te. For CUORE each crystal will be 5 × 5 × 5 cm3 with a mass of
750 g. The CUORICINO crystals were of two types: 44 were slightly larger with
an average mass of about 790 g, and 18 were smaller, 3× 3× 6 cm3 and 330 g. A
photograph of four of the 5×5×5 cm3 CUORICINO crystals is shown in Fig. 3.1.
The Debye temperature of TeO2 is (232 ± 7) K [62], leading to a heat capacity
of about 1 MeV/0.1 mK for the larger crystals at an operating temperature of
10 mK. Crystals of tellurium dioxide are preferred over pure tellurium crystals
because of their thermal and mechanical properties. Pure tellurium was tested
as a bolometer, but the mechanical stress of thermal contraction caused excessive
damage to the crystal [63]. Tellurium dioxide crystals, on the other hand, can un-
dergo repeated thermal cycling with no observable damage or decrease in perfor-
mance as bolometers. Moreover, TeO2 crystals have a higher Debye temperature
than pure tellurium crystals, yielding a lower heat capacity and therefore larger
pulse amplitudes at the same working temperature. Tellurium dioxide crystals
are also advantageous because they are readily available from experienced com-
mercial manufacturers due to their use as acousto-optic materials in industrial
applications. The TeO2 crystals for CUORICINO and CUORE were grown by
the Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS).



31

Figure 3.1: A CUORICINO floor with four 5× 5× 5 cm3 TeO2 crystals.

3.1.2 Temperature sensor: NTD Ge thermistor

The temperature sensor that converts the thermal variation into an electrical
signal is a neutron transmutation doped (NTD) germanium semiconductor ther-
mistor. A semiconductor thermistor is a high resistance semiconductor with a
doping density below the metal-insulator transition [64]. Conduction occurs when
charges tunnel across the potential barrier between impurity sites. Different im-
purity sites have different energy levels, and the charges acquire or give up the
necessary energy difference by absorbing or emitting a phonon. At low tempera-
tures, with few high energy phonons available, charges may tunnel, or “hop,” not
only to nearest neighbor sites but over longer ranges in order to find a site with
an energy difference matched to an available phonon. This conduction regime is
known as variable range hopping. The resistivity of a semiconductor thermistor
in the variable range hopping regime depends on its temperature as

ρ = ρ0e
(T0/T )γ , (3.3)

with γ = 1/2. The parameters ρ0 and T0 must be determined experimentally.
The NTD technique produces germanium thermistors with highly homoge-

neous concentrations of dopants and good reproducibility [65]. To produce an
NTD Ge thermistor, a wafer of natural germanium (Fig. 3.2) is exposed to the
thermal neutron flux from a nuclear reactor. Neutron capture reactions on the
stable germanium isotopes create unstable germanium isotopes that subsequently
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Figure 3.2: Germanium wafers used to make NTD Ge thermistors.

decay to the desired dopant elements. The nuclear processes that take place are:

70Ge (21%) + n→ 71Ge (σT = 3.43± 0.17 b, σR = 1.5 b)
71Ge→ 71Ga (t1/2 = 11.4 d) Acceptor

(3.4)

74Ge (36%) + n→ 75Ge (σT = 0.51± 0.08 b, σR = 1.0± 0.2 b)
75Ge→ 75As (t1/2 = 83 min) Donor

(3.5)

76Ge (7.4%) + n→ 77Ge (σT = 0.16± 0.01 b, σR = 2.0± 0.35 b)
77Ge→ 77As (t1/2 = 11.3 h)
77As→ 77Se (t1/2 = 38.8 h) Double donor

(3.6)

where σT and σR are the thermal and epithermal neutron capture cross sections,
respectively. Since the neutron interaction probability is low, the entire volume of
germanium is exposed to a nearly uniform neutron flux, leading to very uniform
doping levels. The thermistors for CUORICINO were irradiated at the Missouri
University Research Reactor (MURR), and the thermistors for CUORE were ir-
radiated at the MIT Nuclear Reactor Laboratory (MIT-NRL).

After a waiting period of at least six months for the activity of the 71Ge in the
sample to decay to an acceptable level, the germanium wafers are cut into pieces
to make individual thermistors. From Eq. (3.3) the resistance of a thermistor at
temperature T is given by

R = R0e
(T0/T )γ (3.7)
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with R0 = ρ0`/A where ` and A are the thermistor’s length and cross sectional
area, respectively. The thermistors are characterized by measuring their resistance
as a function of temperature by gluing the thermistor to a low temperature heat
sink with a high thermal conductivity epoxy. The temperature of the heat sink is
varied and monitored with a calibrated thermometer. From a fit to the R(T ) data
points, the parameters R0 and T0 are obtained. Characteristic values for CUORE
thermistors are R0 = 1.15 Ω and T0 = 3.35 K, corresponding to a resistance of
approximately 100 MΩ at 10 mK. A parameter quantifying the performance of a
thermistor is the logarithmic sensitivity, η, defined by

η =

∣∣∣∣d lnR(T )

d lnT

∣∣∣∣ . (3.8)

Using Eq. (3.7), the logarithmic sensitivity of a CUORE thermistor is given by

η = γ

(
T0

T

)γ
, (3.9)

which usually evaluates in the range 2–10.
The NTD Ge thermistor is glued to a TeO2 crystal with Araldit Rapid epoxy.

The glue is applied in nine spots, arranged in a 3 × 3 grid, of 0.5 mm diameter.
The spacing between the thermistor and the crystal is 50 µm. Compared with a
single large glue spot, this arrangement of nine glue spots reduces the mechanical
stress on the thermistor due to differences in thermal contraction between the
thermistor and the crystal. Mechanical stresses can affect the resistance of the
thermistor and degrade its performance as a thermometer.

3.1.3 Joule heater

The third element of a CUORE bolometer module is a silicon resistor, glued
to the TeO2 crystal with the same Araldit Rapid epoxy used to bond the ther-
mistor. The resistor is used as a Joule heater to inject a constant energy into
the bolometer at regular intervals, usually once every 5 minutes. The resistor,
typically 50–100 kΩ, is very stable with temperature and is pulsed with an ultra-
stable pulser [66]. The heat is injected over a very short time compared with
the response time of the detector, simulating the energy deposition of a particle
interaction. The heater pulses are used to obtain frequent calibrations of the gain
of the detector, which varies with temperature. Using the heater pulses, the gain
is stabilized as part of the offline analysis (discussed in Sect. 4.7) [67].

3.1.4 Bolometer operation

To read out the signal from the NTD Ge thermistor, the thermistor is biased
with the circuit shown in Fig. 3.3. The biasing circuit consists of a voltage source
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RL/2

RL/2

VbiasRth(T)Vth(T)

Figure 3.3: Biasing circuit for an NTD Ge thermistor.

and two load resistors in series with the thermistor. The total resistance of the load
resistors is chosen to be much greater than the resistance of the thermistor at the
working temperature so that an approximately constant current I = Vbias/(RL +
Rth) ≈ Vbias/RL flows through the thermistor. The voltage across the thermistor,
Vth = IRth ≈ VbiasRth/RL, is proportional to the thermistor resistance. The
thermal information contained in the thermistor resistance is read out by recording
the voltage across the thermistor.

The optimal bias voltage is determined independently for each bolometer. As
the bias voltage is increased from zero and current flows through the thermistor,
power P = IVth is dissipated as heat in the thermistor. The Joule heating of the
thermistor increases its temperature and decreases its resistance, a phenomenon
known as electrothermal feedback. The I-V relationship, or load curve (Fig. 3.4),
for the thermistor begins approximately linearly at low bias voltages where elec-
trothermal feedback is negligible. As the bias voltage increases, the slope of the
I-V curve increases until reaching the inversion point where the thermistor volt-
age is maximal. At higher bias voltages, the curve reverses direction, and the
thermistor voltage decreases while the current in the biasing circuit continues to
increase. The working point of the thermistor is a particular point on the load
curve set by the bias voltage. The optimal working point is the one where the ratio
of signal amplitude to noise level is maximized. In practice the optimal working
point is found approximately by scanning the bias voltage in steps and selecting
the value for which the signal amplitude is maximized (Fig. 3.5).

Energy released in the crystal from particle interactions is dissipated as heat
through a copper mounting structure, which is thermally linked to the mixing
chamber of a dilution refrigerator. Since the crystals are large and the connection
between the crystal and the copper frame has low thermal conductivity, the heat
generated in a crystal by a particle interaction dissipates slowly, resulting in a
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Figure 3.6: A 2614 keV pulse from CUORICINO channel 15, run 174 (event
#1240).

temperature pulse with a characteristic decay time on the order of 1 second. A
typical pulse is shown in Fig. 3.6.

3.2 Bolometric experiments for neutrinoless dou-

ble beta decay searches

Since Fiorini and Niinikoski first proposed the use of bolometers for rare decay
searches in 1984 [68], members of the CUORE Collaboration have operated a se-
ries of 0νββ decay experiments based on the bolometric technique. Starting with
a single crystal bolometer [69], the detectors were increased in size to arrays of 4,
8, and 20 crystals [70, 71], leading up to the recently completed 62-crystal CUORI-
CINO experiment [72]. Based on this experience, the CUORE Collaboration is
currently engaged in constructing a much larger array, CUORE, which will consist
of 988 crystals. In addition to the long-running experiments aimed at producing
physics results, many short-time-frame R&D experiments have been conducted
with the primary goal of reducing backgrounds from radioactive contaminations.

3.2.1 CUORICINO

The CUORICINO experiment was operated from 2003 to 2008 at the Labora-
tori Nazionali del Gran Sasso (LNGS), an Italian national laboratory in Assergi,
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Figure 3.7: Layout of the underground laboratory at LNGS. CUORICINO and
CUORE are located in Hall A, and a dedicated R&D facility for CUORE is located
in Hall C.

Italy. The laboratory is located about 3500 meters water equivalent underground
beneath the Gran Sasso mountain range. The rock overburden reduces the muon
flux by a factor of ∼106 in the underground laboratory compared with the surface.
LNGS contains three large experimental halls hosting many large experiments for
neutrino physics and dark matter physics; CUORICINO was located in Hall A
(Fig. 3.7).

CUORICINO was comprised of 62 bolometer modules arranged in a tower
structure with 13 floors. A picture of the tower is shown in Fig. 3.8. Eleven of the
floors contained four 5 × 5 × 5 cm3, 790 g crystals. Two of the floors contained
nine 3 × 3 × 6 cm3, 330 g crystals. The smaller crystals were reused from the
previous 20-crystal array, and the larger crystals were produced specifically for
CUORICINO. All of the 790 g crystals and 14 of the 330 g crystals were made
from natural tellurium. Two of the smaller crystals were enriched to 75% in 130Te,
and two were enriched to 82.3% in 128Te. The purpose of the enriched crystals was
to facilitate a measurement of the 2νββ decay rate of 130Te by using the crystals
enriched in 128Te as blanks for obtaining the background spectrum. The detector
contains 40.7 kg of TeO2, of which 11 kg is 130Te.

The detector was housed in a cryostat and cooled to ∼8 mK by a dilution
refrigerator. The tower was suspended from a 25 mm copper bar connected to
a steel spring attached to the 50 mK plate of the cryostat. Hanging the tower
from a spring mechanically decouples the detector from the cryostat, helping to
prevent vibrations of the refrigerator from propagating to the detector and causing
heating or inducing thermal noise. To shield against environmental radioactivity,
lead shielding was placed outside and inside the cryostat, as shown in Fig. 3.9.
To keep costs manageable, a layered approach was taken, using less costly but
higher activity lead farther from the detector. Surrounding the cryostat were
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Figure 3.8: Photographs of the CUORICINO tower and two of the individual
floors. On the top right is a floor of 5 × 5 × 5 cm3 crystals, and on the bottom
right is a floor of 3× 3× 6 cm3 crystals.
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Figure 3.9: Diagram of internal lead shielding for CUORICINO.

two layers of commercial lead, each with 10 cm minimum thickness. The outer
layer was common low radioactivity lead, and the inner layer was a special lead
whose 210Pb activity was measured to be (16± 4) Bq/kg. Inside of the cryostat,
shielding the detector from the radioactive contaminations of the dilution unit, a
10 cm layer of “Roman” lead was located directly above the tower and below the
dilution unit; the bar from which the tower was hanging passed through a gap in
the center of this lead. The Roman lead was recovered from an ancient Roman
shipwreck. The 210Pb content in Roman lead has decayed, according to its 22.3 y
half-life, to negligible levels (< 0.004 Bq/kg) over the millennia since the lead
was separated from other elements. The thermal shields of the cryostat, made of
electrolytic copper totaling at least 2 cm thickness, acted as both a shield against
external radiation and a source of radioactive contaminations. A lateral 1.2 cm
thick internal layer of Roman lead encircled the detector to shield it from activity
from the thermal shields of the cryostat. The cryostat was enclosed in a Plexiglas
box flushed with clean N2 from a liquid nitrogen evaporator to expel radon from
the vicinity of the detector. The setup was surrounded by a borated polyethylene
neutron shield with a minimum thickness of 10 cm and enclosed inside a Faraday
cage to suppress electromagnetic interference.

The crystals for CUORICINO were grown by SICCAS using low radioactivity
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materials previously assayed by the collaboration. They were shipped from China
to Italy by sea to minimize the exposure to cosmic rays, which can activate the
isotopes of tellurium and oxygen in the crystals. At LNGS the crystals were
lapped with a low contamination polishing compound.

The CUORICINO detector was assembled in a clean room located directly
above the cryostat where the experiment operated. The assembly was carried
out in a glove box that was continuously flushed with nitrogen from liquid N2

boil off in order to avoid contamination from radon. Crystals were mounted into
floors, as shown in Fig. 3.8. The mounting structure was made of oxygen-free high
conductivity (OFHC) copper. Copper was chosen as the material for the frame
because OFHC copper has low levels of radioactive contaminations and because
the thermal contraction of copper is well matched to that of TeO2. The copper
frame was thermalized with the mixing chamber of the dilution refrigerator by
means of a metallic strip connecting the two components. Holding the crystals in
the frame were Teflon spacers, which served as a weak thermal link between the
crystals and the copper frame in addition to providing mechanical support.

Electrical connections to the thermistors were made by 50 µm gold wires
bonded to metallic contacts on the thermistors. The 50 µm wires were crimped
inside copper pins mounted near the crystal through holes in the copper frame
with glue. On the other side of the pins, a twisted pair of wires carried the signal
along the tower up to the mixing chamber. From there the signal was carried
out of the cryostat by a pair of twisted coaxial cables, which plugged into the
front-end electronics boards through a Fischer connector.

The front-end electronics include the biasing circuit, amplifiers, and an an-
tialiasing Bessel filter [73]. The two load resistors for each bolometer’s biasing
circuit were 27 GΩ each. The bias voltage was adjustable in the range 0–10 V
and was set independently for each bolometer as described in Sect. 3.1.4. The
thermistor signal of approximately 200 µV/MeV was amplified by a differential
voltage preamplifier with a gain of 220 V/V and by a second stage programmable
amplifier with a gain between 1 and 45 V/V. The signal was then passed through
an antialiasing 6-pole Bessel filter with an attenuation of 120 db/decade and a
cutoff of 12 Hz. The filtered signal was acquired by a 16-bit analog-to-digital
converter (ADC) sampling at 125 Hz (8 ms period). The dynamic range of the
ADC was 0–10 V, and the gain of the amplifier was adjusted to match this range,
with acquired pulses having amplitudes on the order of 1 V/MeV. A trigger with
threshold typically in the range 20–100 keV, depending on the noise level of the
bolometer, selected events to record to disk. For each triggered event, 512 data
points (4.096 s) were recorded, including 1 s before the time of the trigger. The
DC level of the detector before the triggering event provides a measure of the
detector temperature at the time of the event, which is used for the offline gain
stabilization. The front-end electronics for all of the small crystals and for 20 of
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the large crystals were at room temperature. For the other 24 large crystals, the
preamplifier and load resistors were located near the detector at ∼100 K to reduce
preamplifier noise and microphonic noise. One electronics channel was used for
an electrothermal feedback system for stabilizing the tower temperature [74].

The CUORICINO experiment began collecting data in March 2003. In Novem-
ber 2003 the detector was removed from the cryostat to repair connections to 13
thermistors that were broken during the initial cooling down. It was redeployed
in May 2004 with all but two thermistors and one heater functional and was op-
erated without opening the cryostat until May 2008 when the experiment was
completed. The two deployment phases of CUORICINO, before and after the
repairs, are referred to as Run I and Run II.

During 2009–2010 the data from Run II were reprocessed using newly devel-
oped analysis software. Since the live time in Run I was small compared to Run II
and since improvements were made to the data acquisition for Run II, we decided
not to include Run I data in the reprocessing. The analysis procedures applied
during the reprocessing campaign to produce calibrated energy spectra from the
raw data are described in Chapter 4. The data collected in CUORICINO Run II
constitute an exposure of 18.6 kg · y of 130Te.

3.2.2 Three Towers Test

The Three Towers Test (TTT) was an R&D experiment for CUORE designed
to compare the surface contamination levels of copper cleaned by three different
methods. The detector consisted of three 12-crystal arrays (the three towers) sep-
arated from one another by copper shields (Fig. 3.10). The surfaces of the copper
parts of the three towers were treated by three different procedures to remove
radioactive contaminants. The detector was installed in the cryostat previously
occupied by CUORICINO, and it collected data from September 2009 through
January 2010. While the primary goal of the TTT was to measure the radioactive
contamination levels of the copper parts facing the crystals, I have used the TTT
data in combination with the CUORICINO data to increase the statistics avail-
able for the 0νββ decay search. The TTT augments the exposure of 18.6 kg · y
of 130Te from CUORICINO with an additional 1.3 kg · y with a slightly lower
background level than CUORICINO.

Since this dissertation is focused on the 0νββ decay analysis with the TTT
data, only a brief description of the copper cleaning techniques is given here. The
copper for the top tower (Fig. 3.11a) was treated following the procedure that
produced the best result in previous R&D tests. The copper pieces were cleaned
with soap, treated with H2O2 + H2O + citric acid, and wrapped with seven layers
of polyethylene. The middle tower (Fig. 3.11b) was cleaned at LNGS by a new
chemical process, starting with simple soap and water, followed by electroerosion
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(a) (b)

Figure 3.10: Photographs of (a) the Three Towers Test detector suspended from
the dilution refrigerator and (b) a closer view of the three towers. The polyethylene
tower is on top, the LNGS tower is in the middle, and the Legnaro tower is on
the bottom.
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(a) (b) (c)

Figure 3.11: Photographs of the three 12-crystal arrays (the three towers) without
their cylindrical shields: (a) the polyethylene tower, (b) the LNGS tower, and (c)
the Legnaro tower.

with 85% phosphoric acid, 5% butanol, and 10% water, followed by chemical
etching with nitric acid, and finally passivation with H2O2 + H2O + citric acid.
The copper for the bottom tower (Fig. 3.11c) was cleaned with a sophisticated
multi-step procedure at the Laboratori Nazionali di Legnaro, abbreviated TECM
for tumbling, electropolishing, chemical etching, and magnetron. The magnetron
step is a plasma cleaning technique. The TECM procedure is the baseline for
CUORE.

The setup of the TTT detectors was very similar to CUORICINO. The TTT
crystals came from CUORICINO and other R&D tests. The crystals were lapped
and polished following the CUORE procedure before being installed in the TTT.
Many of the crystals were outfitted with two thermistors for redundancy in case
some electrical connections were lost. Unfortunately, we did lose a large number of
electrical connections during the cooling down. Circuits that were tested success-
fully at room temperature became broken as the temperature dropped to 10 mK.
The cause of the broken channels is not completely understood but was traced to
connectors on the towers that when subjected to thermal contraction must have
severed the electrical contact. We attempted to repair the broken channels after
the TTT had to be warmed up to room temperature because a strong earthquake
struck near the laboratory in L’Aquila on April 6, 2009, forcing the underground
laboratory to close for several days. Some of the channels that were broken at
10 mK even regained functionality as the temperature increased. Nevertheless,
after the detector was cooled again, 10 of the 36 crystals had no operational ther-
mistors, and 10 of the 26 active crystals did not have a working heater. The
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Table 3.1: Active crystals in the Three Towers Test.

Tower Number of crystals with at
least one working thermistor

Number of crystals with a
working thermistor and a
working heater

Polyethylene 12 9
LNGS 7 3
Legnaro 7 4

working channels are illustrated on the channel map in Fig. 3.12, and a summary
is provided in Table 3.1. Since there were enough active crystals in each tower to
reach the sensitivity required to test the copper surface contaminations and since
attempting another repair would have caused a delay of several weeks, we decided
to proceed with the experiment and tolerate the loss of 10 crystals.

A significant difference in the TTT with respect to CUORICINO was the data
acquisition system. Instead of the CUORICINO DAQ, the TTT used a new DAQ
developed for CUORE and dubbed Apollo. Details of the Apollo system may
be found in Ref. [75]. The Apollo DAQ features an expanded ADC range of
−10.5 V to +10.5 V, compared to 0 V to 10 V for CUORICINO, and a longer
acquisition window of 626 samples, compared to 512 samples for CUORICINO.
As for CUORICINO, the Apollo ADCs sample at 125 Hz. Also, in addition
to triggered data, Apollo stores the continuous readout from the bolometers,
although this feature is not used in this analysis.

3.2.3 CUORE

The CUORE experiment is a next generation 130Te 0νββ decay experiment
based on the experience with CUORICINO [76]. It is funded by the INFN of
Italy, the United States Department of Energy, and National Science Foundation
of the United States. Infrastructure for CUORE is currently under construction in
Hall A at LNGS next to the CUORICINO building, and components for CUORE
are being manufactured around the world. The CUORE detector will be a tightly
packed array of 988 TeO2 bolometer modules, each 5 × 5 × 5 cm3 and 750 g, for
a total mass of 741 kg of TeO2. Since the tellurium is unenriched, 204 kg of the
total mass is the isotope of interest, 130Te.

The bolometer modules will be arranged in 19 towers of 13 floors each, with 4
crystals per floor (Fig. 3.13a). Each of the 19 towers is similar to CUORICINO
in size and arrangement. The CUORE detector will be housed in a specially
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Figure 3.12: Channel map for the Three Towers Test. The towers are: top –
Polyethylene, middle – LNGS, bottom – Legnaro. Crystals labeled with two
channel numbers have two thermistors, called thermistor left and thermistor right.
The horizontal band at the bottom of each crystal represents the heater. Green
indicates working; gray indicates not working. Heaters on crystals without a
working thermistor are shaded gray; we cannot tell whether they were working or
not.
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(a) (b)

Figure 3.13: CAD renderings of (a) the CUORE detector array and (b) the
CUORE cryostat with the detector array inside.

built cryostat and cooled to ∼10 mK by a pulse-tube-assisted dilution refrigerator
(Fig. 3.13b).

CUORE aims for a sensitivity on the order of 1026 y for the partial half-life
for 0νββ decay of 130Te in 5 years of running. To achieve this goal, the CUORE
Collaboration has made an intense effort to understand and control the sources of
backgrounds in CUORICINO and other cryogenic bolometer R&D experiments.
Improvements in the cleanliness of materials and detector shielding lead to an
expected background level for CUORE of 0.01 counts/(keV · kg · y) in the region
of interest around 2527.5 keV.

The main sources of backgrounds in CUORE are expected to be surface con-
taminations of the copper materials facing the crystals, bulk and surface con-
taminations of the TeO2 crystals, and 232Th contaminations in the copper radia-
tion shields of the cryostat. External gamma, neutron, and muon induced back-
grounds are estimated by simulations to contribute less than 0.01 counts/(keV ·
kg · y) [77, 78]. Copper surface contaminations will be reduced by the TECM
procedure described in Sect. 3.2.2 and tested in the Three Towers Test. The pro-
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duction of radiopure TeO2 crystals has been the subject of extensive research and
development by CUORE collaborators [79]. Dedicated production lines were set
up at SICCAS for the growth and surface processing of CUORE crystals. Raw
materials, reactants, consumables, ancillaries, and intermediate products used in
the production of the crystals are screened for radioactive contaminations. The
crystals are shipped from SICCAS to Italy by sea to minimize exposure to cosmic
rays, and upon arrival at Gran Sasso, the crystals are immediately stored under-
ground. As a final quality control procedure, four crystals are randomly selected
from each production batch (of approximately 60 crystals) to undergo a bolo-
metric test in the CUORE R&D cryostat in Hall C of LNGS. In the bolometric
test, which lasts for a few weeks and is known as a CUORE Crystal Validation
Run (CCVR), the crystals are operated as bolometers as they will be for CUORE
and used to count their own radioactive contaminations. The bulk contamination
levels of 238U and 232Th are measured (or upper limits set), and the bolometric
performance is evaluated in terms of the energy resolution. Three CCVR tests
have been completed so far, and the fourth is currently under way. All crystals
tested have met the CUORE specifications.

The CUORE detectors will be shielded from environmental radioactivity and
radioactive contaminations of the dilution refrigerator by several layers of lead
shielding both inside and outside the cryostat, with Roman lead constituting
the innermost layer [76]. The cryostat radiation shields will be built from high
purity copper that has been stored underground at LNGS to prevent cosmogenic
activation; the copper material will be brought to the surface just in time for
the construction of the cryostat. The cryostat and lead shielding will be enclosed
within a neutron shield made of 10 cm thick borated polyethylene, which will be
continuously flushed with dry nitrogen to exclude radon from the space near the
detectors.

The geometry of the CUORE bolometer array provides an intrinsic advantage
over a single tower like CUORICINO for rejecting backgrounds that deposit energy
in multiple crystals. Many backgrounds, such as alpha decays near the surface of
a crystal and Compton-scattered gammas, cause interactions in multiple crystals
that are effectively simultaneous. An anti-coincidence cut will be highly effective
at suppressing these backgrounds in CUORE. Furthermore, the inner crystals are
shielded by the outer crystals.

Other advances in the CUORE design relate to the mechanical structure and
assembly. The tower design has been optimized to reduce the amount of copper
near the crystals. The NTD thermistors feature a new design for the electrical
contacts, which will make the assembly of the bolometer modules much easier and
less error prone. The NTD thermistors for CUORICINO had electrical contacts
on the sides, requiring the 50 µm signal wires to be bonded to a thermistor before
the thermistor was glued onto a crystal. The fragile connections of the signal
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wires to the thermistors were prone to break during the procedure of gluing a
thermistor to a crystal. For CUORE the electrical contacts wrap around from the
sides onto the top of the thermistors, which allows a thermistor to be glued to
the crystal first and the signal wires to be bonded to the top of the thermistor
already attached to the crystal. The detector assembly will be carried out in a
dedicated cleanroom in the underground laboratory. The bolometer modules and
towers will be assembled in custom glove boxes flushed with nitrogen so that the
crystals and other components of the towers do not come into contact with air.
The final installation of the towers in the cryostat requires too large a space to
be performed within a nitrogen environment and therefore will be performed in a
section of the CUORE cleanroom containing nearly radon-free air supplied by an
activated charcoal filtration system.

The CUORE goal for the energy resolution is 5 keV FWHM, which is a modest
improvement over the 7 keV average for the CUORICINO 5 × 5 × 5 cm3 crys-
tals. The improvement is due mainly to minimization of mechanical vibrations
of the crystals. The CUORE crystals have more stringent tolerances on their
dimensions than the CUORICINO crystals in order to ensure they fit snuggly in
their holders, and the detector will be mechanically decoupled from the building
structure, pumps, and cryocoolers by a carefully designed suspension system in
order to suppress the propagation of vibrations to the crystals. In addition to im-
proving the average energy resolution, these improvements in crystal uniformity
and mechanical vibrations are expected to lead to much less variation in energy
resolution between different detectors compared with CUORICINO.
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Chapter 4

First-level data analysis

This chapter describes sequence of computational procedures applied to the
raw data to reconstruct the energy of the events in the detectors. The main steps
involved are pulse amplitude evaluation by a signal processing technique that
mitigates the influence of noise, stabilization of pulse amplitudes to correct for gain
variation using heater pulses, and determination of the calibration coefficients for
converting stabilized pulse amplitudes to energies. The primary requirement on
these first-level analysis procedures is to maintain the approximately 0.2% energy
resolution of which the bolometric detectors are capable. A secondary requirement
is that the computational procedures should be automated to the fullest extent
possible in order to handle several years worth of data. In view of CUORE and
its 988 channels, automation and robustness of low-level analysis procedures are
of critical importance for the timely production of results.

4.1 Raw data

The data are organized into events defined by a trigger. The trigger is based on
a threshold: If the thermistor voltage exceeds its baseline value by a programmable
amount, the trigger fires and the corresponding voltage pulse is recorded. The
value of the threshold is tuned for each channel independently and is set as low
as possible without producing an unreasonably high trigger rate due to noise
spikes firing the trigger. In CUORICINO and the TTT, the trigger thresholds
are generally in the range of 30 to 50 keV. The raw data recorded for each event
consists of pulse samples, the trigger time, the channel number, and a unique
event number.

For both CUORICINO and the TTT, the thermistor voltage is digitized with
an 8 ms sampling period (125 Hz). In CUORICINO 512 pulse samples are stored
for each event, and in the TTT 626 pulse samples are stored. The first approxi-
mately 1 s of the acquisition window is used to store the pre-pulse baseline level of
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Figure 4.1: Left: A 2615 keV pulse in CUORICINO (channel 6, run 1203,
event #396). Right: A 2615 keV pulse in the TTT (channel 11, run 100045,
event #48751). On some CUORICINO channels, such as the one displayed here,
the pulse does not fully recover to the baseline level within the acquisition window.
Therefore, a longer acquisition window is used for the TTT.

the detector in order to have a measure of the detector temperature at the time of
the pulse. The remaining ∼3 s of a CUORICINO acquisition window is not long
enough for the pulses on some channels to recover to the baseline level within the
acquisition window; an example of such a channel is shown in Fig. 4.1. For this
reason a longer acquisition window is used in the TTT.

The data collection is organized by runs, with a run lasting approximately one
day. The daily runs, with a lowercase “r,” should not be confused with the two
deployments of CUORICINO, Run I and Run II with a capital “R.” Runs are
grouped into data sets defined by calibration runs. A data set generally contains
about one month of data and ideally starts and ends with calibration runs. Some
data sets have only an initial calibration or only a final calibration due to problems
such as power outages in the laboratory forcing a warm up of the cryostat before
the planned final calibration.

4.2 Analysis software framework

The number of channels in CUORE will be over an order of magnitude greater
than in CUORICINO. To meet the challenges of more channels and higher data
rates posed by CUORE, the collaboration has developed in recent years a new
analysis software framework, named Diana, which is employed for the analysis
in this thesis. The Diana framework defines the event class and standard data
storage format and provides a mechanism for the work flow of reading events from
a file, calling user-created code for each event, and writing the (possibly modified
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or appended to) events back to file. All of the code is written in C++. The frame-
work supports a flexible approach to data processing through a design in which
user code is placed in modules, which are C++ classes inheriting from a common
base class. Modules can be selected at run-time via plain text configuration files.
A collection of Diana configuration files drives the analysis procedures.

4.3 Analysis database

The collaboration maintains a database for storing information about the de-
tectors and about each run, including electronics and DAQ parameters, run type,
start and stop times, bad time intervals, and other information relevant for the
analysis. It is a relational database implemented with the open-source PostgreSQL
Database Management System [80]. The database server is currently hosted on
cuoredb.lngs.infn.it. Analysis code connects remotely to the database server
to retrieve the parameters needed for the computation being carried out. The
Diana framework supplies a set of standard database interface functions to allow
access to information in the database using only C++ code.

4.4 Pulse amplitude evaluation

To a good approximation, the shape of a bolometer pulse is independent of
the pulse amplitude. The acquired voltage signal as a function of time can be
expressed as

V (t) = b+ a · s(t− t0) + n(t), (4.1)

where b is the baseline DC level of the detector, a is the pulse amplitude, t0 is
the start time of the pulse, s(t) is the detector response function (the pulse shape
without noise, normalized to unit height), and n(t) is the stochastic noise. The
baseline, b, is estimated by averaging over the ∼1 s pre-pulse interval. The sim-
plest estimate of the pulse amplitude is the pulse maximum minus the baseline
value. An estimate with better signal-to-noise ratio can be obtained since the
whole pulse contains information that can be exploited in estimating the ampli-
tude of the pulse. A commonly used technique to calculate the amplitude of a
signal superimposed with stochastic noise is the optimal filter. The optimal filter
technique weights different Fourier components of the pulse differently depending
on the expected relative signal-to-noise ratio of each frequency component. Fre-
quencies that are highly influenced by noise are down-weighted, thus mitigating
the influence of the noise on the pulse amplitudes. The optimal filter is imple-



52

mented as a digital filter with transfer function

H(ω) =
S∗(ω)

N(ω)
e−iωtM , (4.2)

where S(ω) is the Fourier transform of the ideal pulse without noise, N(ω) is
the average noise power spectrum, and tM is the time of the pulse maximum.
An approximate representation of the ideal pulse for each channel is obtained
by point-wise averaging in the time domain over many high energy pulses. In
computing the point-wise average, the pulses are shifted so that their maxima
are aligned by the following procedure. Since bolometer pulses have very flat
tails, the derivative of the signal is assumed to go to zero at the beginning and
at the end of the acquisition window. The derivative of each pulse contributing
to the average is cyclicly shifted so that the position of the maximum of the raw
signal falls at a chosen reference point, and the derivative is integrated to recover
the pulse shape. The average noise power spectrum for each channel is obtained
by averaging the power spectrum of many noise samples that are acquired by a
random trigger and determined not to contain a pulse. In CUORICINO all data
sets use the same set of average pulses and average noise power spectra, but in
the TTT separate collections of average pulses and average noise power spectra
are produced for each data set. Figure 4.2 displays the average pulse and average
noise power spectrum for CUORICINO channel 1. The pulse amplitude can be
evaluated in the time domain by applying Eq. (4.2), transforming back to the time
domain, and measuring the amplitude based on the maximum of the filtered pulse.
The amplitude can also be evaluated in the frequency domain by integrating over
frequency components after applying Eq. (4.2). The time domain amplitude is
the standard one used in CUORICINO and the TTT.

4.5 Identification of re-triggered pulses

It can happen that the same pulse is contained in two or more acquisition
windows if it is preceded within ∼3 seconds by another pulse or a noise spike that
also causes the trigger to fire. An example is shown in Fig. 4.3. This may lead to
the amplitude of the same pulse being attributed to more than one triggered event
because the optimal filter algorithm measures the amplitude of the largest pulse
in the acquisition window. If the situation is actually a pileup of physical pulses,
the pileup is rejected by a pulse shape cut. In the case where the preceding trigger
corresponds to a noise spike rather than a physical pulse, this multiply acquired
pulse is called a re-triggered pulse, and it is not rejected by the pulse shape cut
since its shape is good. To avoid double counting the same event, an algorithm is
run after the optimal filter that identifies re-triggered pulses and selects the best
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Figure 4.2: Top: The average pulse for CUORICINO channel 1. Bottom: The
average noise power spectrum (red) and the modulus of the discrete Fourier trans-
form of the average pulse (blue) for CUORICINO channel 1 (scaled to be equal
at the lowest frequency).
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Figure 4.3: Example of a re-triggered pulse. On the left the trigger was fired by
a noise spike. The trigger time is roughly indicated by the black triangle. The
large pulse ∼1.8 seconds after the noise trigger also has its own triggered event,
which is on the right. The optimal filter evaluates the amplitude of both triggered
events as the amplitude of the same pulse; the amplitude evaluates to 694.3 mV
for the event on the left and 694.4 mV for the event on the right. Events are from
channel 21, run 540 (event #16573 and #16575).

triggered event for each one, rejecting the other triggered events containing the
same pulse. The algorithm identifies re-triggered events based on the absolute
time of the pulse maximum for the pulse chosen by the optimal filter. It chooses
the best acquisition of the same pulse by picking the one with the pulse closest to
the expected trigger time within the acquisition window but not earlier.

4.6 Offline heater flagging

Heater pulses, bolometer events induced by heat injected via the Si resistor,
are flagged by the CUORICINO DAQ after run 293. Before run 293 the heater
pulses are not flagged in the raw data and must be identified and flagged offline
in order to remove them from the spectrum and to select the heater events for use
in gain stabilization. Furthermore, after run 293 the hardware flagging of heater
pulses by the DAQ is not 100% efficient, leaving some heater pulses flagged as
signal events. The Apollo DAQ used for the TTT identifies all heater pulses.
An offline heater flagging algorithm was developed to identify heater pulses in
CUORICINO with virtually 100% efficiency and negligible false positive rate.

The algorithm is based on the regular timing of the heater pulses and the
grouping of heaters into heater channels. The heaters on the same heater channel
are connected in parallel so those heaters always fire in coincidence. Table 4.1 lists
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Table 4.1: CUORICINO heater channels. Heaters on the same channel are con-
nected in parallel and therefore fire in coincidence.

Heater channel Bolometer channels

E1-0 7, 16, 31, 39, 46, 55, 63, 67
E1-1 9, 18, 19, 23, 36, 37, 48, 53, 61
E1-2 8, 10, 15, 17, 21, 24, 32, 34, 38, 47, 51, 62
E1-3 11, 12, 20, 22, 33, 35, 49, 50, 52
E2-1 1, 2, 13, 42, 43, 59, 60, 66
E2-2 3, 4, 14, 41, 44, 57, 58, 65
E2-3 5, 6, 40, 45, 54, 56, 64, 68

Table 4.2: Time intervals between stabilization heater pulses during CUORICINO
Run II.

Runs Interval between stabilization heater pulses

174–293 300.224 s
294–1218 305.536 s
1219–1226 300.200 s

the heater channels and corresponding bolometer channels. The pattern and the
spacing of heater pulses varied during the experiment. In addition to stabilization
heater pulses (medium energy pulses intended to be used for gain stabilization),
there were sometimes high energy heater pulses and low energy heater pulses.
Table 4.2 summarizes the time intervals between stabilization heater pulses. The
most common heater pattern, active during runs 409–1218, consisted of eight
stabilization heater pulses separated by 305.536 s, then a gap of 267.224 s followed
by a high energy heater pulse, then a gap of 305.536 s followed by a low energy
heater pulse, and finally a gap of 343.848 s before the pattern repeats.

The offline heater pulse identification algorithm operates on each run as fol-
lows:

1. Do this step for every event in the run. Let t denote the time of the event
under consideration, and let T denote the interval between stabilization
heaters from Table 4.2. Consider the set of times separated from t by a



56

multiple of T :

T = {t+ nT | n = . . . ,−2,−1, 0, 1, 2, . . . }. (4.3)

Let N denote the number of times in T that are within ±1 s of an event
on the same channel with an amplitude greater than 1000 mV. If the event
under consideration is a stabilization heater pulse, N will be large, roughly
equal to the number of stabilization heater events in the run. If the event
under consideration is not a heater pulse, N will be close to 0.

2. Repeat the previous step but adjust the time of each event by −267.244 s
because the high energy heater is separated by an interval of 267.244 s from
the preceding stabilization heater on some channels. That is, consider

T ′ = {t− 267.244 s + nT | n = . . . ,−2,−1, 0, 1, 2, . . . }. (4.4)

Let N ′ denote the number of times in T ′ that are within ±1 s of an event
on the same channel with an amplitude greater than 1000 mV.

3. Define a goodness parameter G ≡ max{N,N ′}, which is large for heater
events and small for non-heater events.

4. Set a cut on G based on a maximum false positive rate of 0.1% under
the hypothesis that the events with amplitudes greater than 1000 mV are
randomly distributed. Under the random distribution hypothesis, the prob-
ability of an event occurring within ±1 s of any specified time is given by
p = 1 − e−2r(1 s), where r is the average event rate (here the rate of events
with amplitude greater than 1000 mV). The probability of k of the times
in T being within ±1 s of an event with amplitude greater than 1000 mV
is given by the binomial distribution, P (k) = Binomial(k; p, n), where the
number of trials, n, is the number of times in T that are within the start
and stop times of the run. The probability that N > k under the random
distribution hypothesis is given by

n∑
k′=k+1

P (k′), (4.5)

which is also the probability that N ′ > k. If the cut on G is set at G > k,
then to fail the cut requires both N ≤ k and N ′ ≤ k. Therefore, the
probability of failing the cut under the random distribution hypothesis is
given by (

k∑
k′=0

P (k′)

)2

. (4.6)
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The cut on G is set at the smallest goodness parameter value, k, such that
the false positive rate (the probability of passing the cut) under the random
distribution hypothesis is less than 0.1%:

1−
(

k∑
k′=0

P (k′)

)2

< 0.1%. (4.7)

5. In addition to requiring G > k to flag an event as a heater event, there is a
coincidence requirement. If G > k and there are at least two other events
on the same heater channel in coincidence (within ±50 ms) with the event
under consideration, flag the event as a heater event.

6. As an independent method for identifying heater events, flag an event as a
heater event if it is highly likely to be a heater event based on coincidence
events alone: If there are at least 5 other events on the same heater channel
in coincidence (within ±50 ms) with the event under consideration and no
more than 2 other coincident events not on the same heater channel, flag
the event as a heater event.

The effect of the offline heater identification on the spectrum of one data set
is illustrated in Fig. 4.4. The figure shows that many heater events that were
not identified by the hardware flag at the time of data acquisition are successfully
identified offline. The hardware flag fails to identify heater events when the heater
events occur at slightly the wrong time, which happens when the PC that instructs
the pulser to fire the heaters becomes busy and delays the firing instruction past
the scheduled time. Usually, the delay is less than 1 s so the heater events pass
the cut on the timing goodness parameter, G. If the delay is greater than 1 s,
the heater events are identified by the independent method based on coincident
events on the same heater channel.

An example of a situation the offline heater identification algorithm cannot
handle is the sharp peak in Fig. 4.4 just below 6000 keV, which is due to heater
events on channel 66 and is not identified by the offline algorithm. The offline
algorithm does not flag those events because they were not triggered by heater
pulses. The heater pulses are contained in the acquisition window of a previous
trigger, as shown in Fig. 4.5. The situation is similar to a re-triggered pulse
(Sect. 4.5), but these heater pulses are not re-triggered pulses because there is
not an acquisition window triggered by the heater pulse itself. The acquisition
window in Fig. 4.5 is the only acquisition window containing that heater pulse.
The DAQ does not trigger on the heater pulse itself because the voltage level
is rising between the previous trigger and the pulse, and the trigger algorithm
requires the voltage level to reach a local maximum before it will trigger twice
within 4 s.
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Figure 4.4: The spectrum of data set 32 before (top) and after (bottom) ap-
plication of the offline heater identification algorithm. The sharp peaks above
5000 keV in the top figure are due to heater events that were not flagged by the
data acquisition. They are effectively removed by the offline heater identification
algorithm, except for a heater peak just below 6000 keV, due to channel 66, which
is not eliminated by the offline algorithm because the events were contained in
acquisition windows that triggered before the start of the heater pulses, as shown
in Fig. 4.5.
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Figure 4.5: A pulse from the unidentified heater peak just below 6000 keV in
Fig. 4.4. The pulse, from channel 66, was contained in the acquisition window
of a previous trigger before the pulse itself could trigger the DAQ. The pulse
itself does not cause the trigger to fire because the voltage level continually rises
between the trigger position (indicated by the triangle) and the start of the pulse;
the trigger will only fire again after the voltage level reaches a local maximum or
at least 4 s elapse since the previous trigger.
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4.7 Gain stabilization

The gain of a bolometer depends on its temperature, primarily because of the
highly nonlinear dependence of the thermistor resistance on temperature and also
because of the temperature dependence of the heat capacities and thermal conduc-
tances of the detector components. Since the temperature of the detector drifts
over time, to maintain the optimal energy resolution, it is necessary to stabilize the
gain against variations induced by a varying temperature [67]. The stabilization
heater pulses are used to monitor the gain and establish its dependence on tem-
perature. The pre-pulse baseline level, b, of the detector provides a measure of the
detector temperature at the time of the pulse. The gain stabilization procedure
consists of plotting the heater pulse amplitude vs. baseline (Fig. 4.6) and fitting
a line to the points. For CUORICINO it is observed empirically that a straight
line provides a good fit even when the baseline changes by a large amount. The
best fit line establishes the heater amplitude, ah(b), as a function of baseline. The
heater amplitude is related to the (constant) energy of the heater event, Eh, by
the baseline-dependent gain, G(b):

ah(b) = G(b)Eh. (4.8)

The assumption underlying the stabilization method is that the gain, G(b), is
independent of the amount of energy deposited in the crystal. Empirically, this
assumption is at least approximately true, and any small deviations can be cor-
rected by the calibration function. Once the heater amplitude trend is established,
it is used to factor out the gain from the amplitude of a particle pulse. Considering
a pulse of energy E, amplitude a, and baseline b,

a = G(b)E = ah(b)
E

Eh
. (4.9)

Therefore, the ratio a/ah(b) is a constant function of baseline. It is proportional
to the energy of the underlying event, up to small nonlinear corrections to be
established by calibration. The stabilized amplitude is defined as

as ≡ a/ah(b)× 5000. (4.10)

The scaling by 5000 is done for convenience so that one unit of stabilized amplitude
is O(1 keV).

It sometimes happens that the amplitude vs. baseline trend of the heater
events abruptly changes during a run. The reason this happens is not completely
understood but may be due to a shift in the offset of the front-end electronics
or due to a higher order effect of the temperature of part of the tower suddenly
changing. An algorithm was developed to identify multiple trends in amplitude
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Figure 4.6: Example of a stabilization fit (channel 8, run 1214).
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vs. baseline within the same run. The algorithm operates on one channel at a
time and takes a brute-force approach. It first performs a single linear fit to the
amplitude vs. baseline graph of heater points and records the sum of squared
errors from the best fit line. Let SSE(0) denote the sum of squared errors from
the fit without splitting the run. It then tries splitting the run into two contiguous
segments. It finds the best time to split the run by attempting to divide it at every
possible time (that is, the time of every heater pulse); the best time to divide the
run is the time such that the total sum of squared errors from the two best fit lines
in the two segments is minimized. Let SSE(1) denote the total sum of squared
errors for the best single split. Similarly, the algorithm is allowed to try two and
three splits, finding the best times to divide the run into three or four contiguous
segments and computing SSE(2) and SSE(3). To decide how many splits the
data actually prefer, for each number of splits an error on the points is estimated
by setting the χ2 per degree of freedom equal to 1 and solving for σ:

χ2
i

N − 2(i+ 1)− i =
SSE(i)

σ2
i

1

N − 2(i+ 1)− i = 1

⇒ σ2
i =

SSE(i)

N − 2(i+ 1)− i ,
(4.11)

where N is the number of points. The smallest of the σi values, σmin, is taken as
the estimate for the error on the points. Then, χ2

i for i = 0, 1, 2, 3 is recomputed
using σmin as the error: χ2

i = SSE(i)/σ2
min. Also, the p-value associated with each

of these χ2 values with N − 2(i + 1)− i degrees of freedom is computed; that is,
the probability of obtaining a larger value of χ2 by chance. The number of times
to split the run is chosen to be the minimum number with a p-value greater than
1%. Figure 4.7 shows an example of a run that was split twice for the stabilization
fit.

In the Three Towers Test, 10 of the 26 active bolometers did not have func-
tioning heaters. Therefore, an alternative mechanism was employed to reduce or
eliminate the gain variation. This mechanism is described in Sect. 4.10.

4.8 Energy calibration

Calibration sources were inserted near the detector approximately once per
month in order to obtain the calibration function that maps the stabilized ampli-
tude of a pulse to the energy deposited in the detector. The sources consisted of
two thoriated tungsten wires that were inserted on opposite sides of the detector
between the external lead shields and the cryostat. Each calibration typically
lasted about two days. Figure 4.8a shows the spectrum of stabilized amplitudes
recorded by a single CUORICINO channel with the calibration sources in place.
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Figure 4.7: Example of a run split twice for stabilization with best fit lines (chan-
nel 8, run 1209). The colors in the plot of baseline vs. time indicate the intervals
into which the run is split and correspond to the colored points and lines in the
plot of heater amplitude vs. baseline.
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The peaks in Fig. 4.8a are identified as gamma lines from the decay of nuclei in
the 232Th decay chain. The most intense gamma lines, listed in Table 4.3, are
used to establish a set of points, {(as, E)}, which the calibration function should
pass through; these points are represented by the red dots in Fig. 4.8b.

For CUORICINO we parameterize the calibration function in two ways. The
standard parameterization used in this analysis is a third-order polynomial,

E = c0 + c1 as + c2 a
2
s + c3 a

3
s. (4.12)

The third-order polynomial is viewed as the leading terms of the Taylor series
expansion of the true calibration function. Since the calibration function is close
to linear in the energy region up to the highest calibration peak at 2614.5 keV,
including up to third-order terms in the parameterization provides a good approxi-
mation to the true calibration function up to 2614.5 keV. However, the third-order
polynomial function does not extrapolate well up to the energies of alpha particles,
which are greater than 4000 keV. The other parameterization that we compute
for the calibration function is a second-order log polynomial defined by

ln(E/(1 keV)) = c0 + c1 ln as + c2 (ln as)
2, (4.13)

which has been found phenomenologically to produce good energy estimates when
extrapolated up to the energies of alpha particles. For the Three Towers Test, since
we apply the thermal response transformation (discussed in Sect. 4.10), which
removes the nonlinearities due to the thermistor, we parameterize the calibration
function as a second-order polynomial.

For each channel and data set, the calibration coefficients, ci, are calculated
by an automatic code developed by collaborator Laura Kogler that determines
the locations of the calibration peaks in the stabilized amplitude spectrum and
fits each parameterization of the calibration function to the collection of (as, E)
points. The algorithm divides the calibration peaks into two classes, primary and
secondary, as indicated in Table 4.3. The primary peaks are the strongest and
are clearly present in virtually every calibration spectrum. The secondary peaks
are weaker and may or may not be discernible in a given calibration spectrum,
depending on the length of exposure, relative positions of the sources and the
crystal, and the energy resolution of the channel. The code first locates the
primary peaks either by an automated peak search or by inverting an existing
calibration function supplied by the user. After the primary peaks are found,
the locations of the secondary peaks are estimated by interpolation. Then, an
unbinned maximum likelihood fit is performed to each peak with the line shape
listed in Table 4.3 plus a linear background. The line shapes are Gaussian except
for two cases of nearby peaks separated by approximately the detector resolution,
which are fit jointly with a double Gaussian line shape. Examples of the line shape
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(a) Stabilized amplitude spectrum of calibration sources recorded by one channel.

Stabilized Amplitude
400 600 800 1000 1200 1400 1600 1800 2000

E
n

er
g

y 
(k

eV
)

500

1000

1500

2000

2500

Calibration Graph

(b) Calibration function fit to graph.

Stabilized Amplitude
400 600 800 1000 1200 1400 1600 1800 2000

E
n

er
g

y 
D

if
fe

re
n

ce
 (

ke
V

)

-1

-0.5

0

0.5

1

1.5

Residuals

(c) Difference between the calibration function evaluated at the stabilized amplitude of each
calibration peak and the known energy of the peak.

Figure 4.8: Calibration spectrum, calibration fit, and fit residuals. Figure from
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Table 4.3: Gamma lines in the 232Th decay chain used for calibration.

Source Energy (keV) Line shape Classification

208Tl 2614.5 Gaussian Primary

2614.5 keV single escape 2103.5 Gaussian Secondary

2614.5 keV double escape 1592.5
Double Gaussian Secondary228Ac 1588.2

228Ac 969.0
Double Gaussian Primary228Ac 964.8

228Ac 911.2 Gaussian Primary

208Tl 583.2 Gaussian Secondary

e+e− annihilation
511.0 Gaussian Primary208Tl

fits to the calibration peaks are shown in Fig. 4.9. After the peak fits have been
performed, a graph is produced of the known energy of each peak versus the mean
stabilized amplitude returned by the line shape fit; Figure 4.8b is an example of
one such graph. Calibration peaks that fail statistical significance criteria are
omitted from the graph. The points in the graph include horizontal error bars,
which represent the error on the mean returned by the fitter. The calibration
coefficients, ci, are computed by fitting the parameterization of the calibration
function to the graph.

As mentioned above, this analysis uses energies calibrated with the third-
order polynomial parameterization of the calibration function for CUORICINO.
However, the third-order polynomial calibration was unsuccessful for 17 (channel,
data set) pairs, which constitute approximately 1% of the data, where the second-
order log polynomial calibration succeeded. For these few cases, the energies from
the second-order log polynomial calibration are used instead of the third-order
polynomial calibration.
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Figure 4.9: Calibration peaks with line shape fits. The plot titles indicate the
energies of the peaks. Figure from Laura Kogler.
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4.9 Pulse shape discrimination

Some of the triggered events are spurious signals, which include radioactive de-
cays inside the thermistor, vibration-induced rapid temperature variations, elec-
tronics crosstalk, and pileup of multiple pulses. Examples of spurious signals are
shown in Fig. 4.10. The energies of these spurious signals are typically evaluated
to be small (less than ∼100 keV), but in rare cases their energies may be evaluated
in the region of interest for 0νββ decay. In a low background experiment, the con-
tribution of spurious events to the total background level may not be negligible.
For CUORICINO, we discriminate between real physical events and spurious sig-
nals based on pulse shape parameters using a technique developed by collaborator
Marco Carrettoni.

The pulse shape parameters that are considered are the rise time (tr), decay
time (td), and the ratio ROF ≡ aTD/aFD, where aTD and aFD are the pulse am-
plitude calculated by the optimal filter in the time domain and in the frequency
domain, respectively. All physical pulses from a single detector have approxi-
mately the same rise time and decay time, except for a slight energy dependence
that becomes most evident at high energies, as shown in Fig. 4.11. The energy-
dependent trends of the rise time and decay time are fitted with second order
polynomials, ftr(E) and ftd(E), respectively. The fit employs a robust regression
method that is less sensitive to outliers than a least squares fit. The rise and
decay times are then transformed to linearized, energy-independent quantities,
tlin.
r ≡ tr/ftr(E) and tlin.

d ≡ td/ftd(E). Physical pulses have tlin.
r ≈ tlin.

d ≈ 1.
For physical pulses, the ratio ROF is close to 1 since the shape of physical pulses

is close to the shape of the average pulse used in the optimal filter calculation.
This ratio deviates from 1 for spurious signals since their shape does not match
the shape of the average pulse. However, this ratio has a complicated energy
dependence due to a subtle variation of the pulse shape with energy. In a similar
manner as for the rise and decay times, ROF is linearized by mapping out the
main trend, fROF

(E), and transforming to Rlin.
OF ≡ ROF/fROF

(E); three examples
are shown in Fig. 4.12. The algorithm implemented by Mr. Carrettoni to establish
fROF

(E) in an automated fashion for a wide variety of possible trends and in the
presence of many outliers is one of the keys to the success of this method.

In order to set a cut on Rlin.
OF to select physical pulses, the mean and standard

deviation of Rlin.
OF for physical pulses are estimated as a function of energy. First,

the events are binned in equal steps in ln(E/1 keV). Then, for each bin, a his-
togram of the values of Rlin.

OF is produced; the histogram is expected to contain a
peak centered at 1 due to the physical pulses and a continuum background due to
spurious signals. Each histogram is fit with a Gaussian to estimate the mean and
standard deviation of Rlin.

OF for physical pulses in the corresponding energy bin.
The parameter used to make a cut for selecting physical pulses and rejecting spu-
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Figure 4.10: Examples of spurious signals: pile-up (top), pileup with a non-particle
event (middle), and a spike possibly due to a radioactive decay in the thermistor
(bottom). Figure from Marco Carrettoni.
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Figure 4.11: Scatter plot of the logarithm of the rise time versus the logarithm
of the energy. The energy range is 0–10 MeV, and the red dots identify intervals
of 500 keV. The nonlinearity becomes most pronounced at high energies. Figure
from Marco Carrettoni.

rious ones is the number of sigma deviation from the mean, nPS
σ ≡ (Rlin.

OF − µ)/σ,
where µ and σ are the mean and sigma of the Gaussian fit, respectively. An
example of the result of this procedure is shown in Fig. 4.13.

The pulse shape cut used in this analysis is a logical combination of cuts
on several variables. The first requirement is a simple cut on the time of the
pulse maximum for the pulse whose amplitude is evaluated by the optimal filter;
the pulse maximum is required to be less than 1.4 s from the beginning of the
acquisition window to ensure that enough of the pulse shape is contained in the
acquisition window for an accurate estimation of the amplitude. A very loose anti-
coincidence requirement is included in the pulse shape cut to eliminate a class of
spurious heater events caused by noise pickup in the heater circuit that resulted
in almost every detector receiving simultaneous impulses from the heaters: The
number of coincident events with energies greater than 80 keV within a 10 ms
time window is required to be less than or equal to 7. The linearized rise and
decay times are required to be within 20% of their nominal values: |tlin.

r −1| < 0.2
and |tlin.

d − 1| < 0.2. Finally, we require nPS
σ < 2, which is the most powerful

component of the pulse shape cut. The efficiency of this combination of cuts for
0νββ decay signal events is evaluated in Sect. 6.2.2.
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Figure 4.12: Examples of the ROF parameter (denoted OFT in the plots) energy
dependence and the functions fROF

(E) (blue curves) used in the linearization.
The energy range is 30–7000 keV, and the red dots identify intervals of 500 keV.
Outliers are most likely pileups and vibration-induced rapid temperature varia-
tions, while the high density regions far from the main trends are spikes or low
energy noise events. Figure from Marco Carrettoni.
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Figure 4.13: Example of the process of linearization and normalization of the ROF

parameter (denoted OFT in the plot). The energy range is 30–7000 keV, and the
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bins of equal size in ln(E/1 keV); the points with vertical error bars indicate mean
and standard deviation computed by the method described in the text. Bottom:
The distribution of nPS

σ as a function of energy. Figure from Marco Carrettoni.
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4.10 Thermal response transformation

For the Three Towers Test, we applied an additional processing step at the
very beginning of the first-level processing sequence. Because 10 of the 26 ac-
tive crystals did not have a working heater, we needed an alternative method to
correct for the gain instabilities due to temperature fluctuations of the cryostat.
For the first TTT data set, 40K sources were placed in the positions of the usual
calibration sources so that the 1461 keV gamma line of 40K could be used in place
of the heaters for the stabilization fits. Unfortunately, with the 40K sources being
relatively far from the crystals, outside of the lead shield, the continuum of Comp-
ton scattered gammas below 1461 keV was large compared to the photopeak, and
relatively strong sources were required to produce enough events in the photo-
peak. Because the high event rates produced by the 40K sources could obscure
some of the features of surface contaminations of the copper parts, including low
energy gammas from the 238U and 232Th decay chains, we decided to remove the
40K sources after the first TTT data set and to use a newly developed analysis
technique to mitigate the gain instabilities induced by varying temperature.

The technique, developed by collaborator Marco Vignati, transforms the volt-
age samples recorded by the ADC into “thermal response” (TR) samples pro-
portional to the thermistor temperature variation [81]. The thermal response
transformation deconvolves the effect of the thermistor and the electrical proper-
ties of its biasing circuit. It is shown in Section 3.2.8 of Ref. [81] that the dominant
cause of the pulse amplitude variation with detector temperature is the nonlinear
response of the thermistor, despite the dependence of intrinsic thermal properties
of the detector, such as the heat capacity, on temperature. For the TTT analysis,
we replaced the thermistor voltage samples with TR samples as the first step in
the data processing. An example of a TR transformed pulse is shown in Fig. 4.14.
The details of the transformation, which is rather complicated, are described in
Chapters 4 and 5 of Ref. [81]. We applied the optimal filter as usual to the TR
samples but did not do any gain instabilities correction (except for the first data
set, which we stabilized with the 40K source).
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Figure 4.14: Comparison between a pulse before (blue) and after (red) the thermal
response transformation (channel 7, run 100294, event #693).
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Chapter 5

Data quality checks and data
selection criteria

This chapter describes the data selection criteria and the checks that were
performed to ensure that the detector was operating normally while the data
used in the analysis were acquired. Of particular concern is the stability of the
detector resolution. Following the steps described here, we identified periods when
the detector was experiencing a problem that degraded the resolution or caused
an artificial dead time. Data acquired during problematic periods were excluded
from the analysis.

The first level of data quality checks were performed using the CUORE On-
line/Offline Run Check (CORC) system, which is a tool that we developed to
monitor the detector operation and data quality. For every run we checked the
CORC output described in Sect. 5.1. If a problem was found, then in the analysis
database, we either marked the whole run as bad or marked a channel as bad for
a certain time interval within the run. The types of bad runs and bad intervals
are described in Sect. 5.2. The procedure we followed for the CORC checks is
described in Sect. 5.3.1. After the CORC checks were completed, we reprocessed
all of the data so that certain parts of the analysis code could ignore data in bad
intervals if desired. For example, if a channel was saturated (pulses exceeding the
maximum range of the ADC) for half of a run, the stabilization fit to establish the
heater amplitude vs. baseline trend is performed on only the good half of the run.
During the reprocessing, the events that occured in bad intervals were flagged so
that they may be removed from the final analysis with a cut. After the reprocess-
ing, we checked the consistency of the detector resolutions for every run using the
heater events. The procedure for the resolution consistency check is described in
Sect. 5.3.2. Finally, we checked the consistency of the calibrations taken at the
beginning and end of each data set. The calibration consistency requirements are
described in Sect. 5.3.3.
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5.1 CUORE Online/Offline Run Check (CORC)

The purpose of CORC is to provide a web-based collection of standard plots
and automated warnings for identifying and diagnosing problems with the detec-
tor. It is used by the on-site shifters during data taking and by collaborators
working on analyses of the data. The current location of the CORC webpages is
http://cuoreweb.lngs.infn.it/~cuore/corc/.

For each run several CORC webpages are generated. At the top of each page
is a header that lists the data set(s) to which the run belongs, the number of
days since the last calibration, the run type (background, calibration, or test),
the stopstatus (which indicates whether the whole run has been flagged as bad),
and a link to the database webpage for the run.

5.1.1 CORC pages

The pages currently available on CORC are:

History The History page displays summary data about each channel for the
selected run and the previous nine runs in a tabular format. An example is
shown in Fig. 5.1. The variables available to be displayed on the History page
are listed in Table 5.1. The layout of the History page facilitates comparison
of current values with recent historical values to allow for recognition of
abnormal values and determination of when a problem began. An optional
reference value with a minimum and maximum range may be specified. If
a reference exists, it is displayed in the left-most column and the cells in
the table are color-coded depending on whether the value is within (green),
below (blue), or above (red) the reference range.

History Graph The History Graph page displays the same data as the History
page in a graphical format. There is a page for each channel that displays
a scatter plot for each of the summary variables in Table 5.1. The plot
includes the previous twenty-four runs and gives a visual presentation of
how the variable has been changing over time. Some examples of the plots
are shown in Fig. 5.2.

Summary The Summary page facilitates identifying problematic channels in a
particular run. It consists of bar graphs of the summary variables in Ta-
ble 5.1. Each bar graph provides a quick look at the values for all the
channels of one run and allows easy comparison among channels and com-
parison with reference ranges. The reference ranges are indicated with a
gray band in the background. Examples of plots from the Summary plot
page are shown in Fig. 5.3.

http://cuoreweb.lngs.infn.it/~cuore/corc/
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Figure 5.1: Example of a CORC History display of average baselines at the end
of CUORICINO, cropped to fit the page. The channels are arranged by floor in
the tower.
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Figure 5.2: Examples of CORC History Graph plots for channel 1 and run 1000.
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Figure 5.3: Examples of CORC Summary plots for run 1000.
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Table 5.1: Summary variables available on CORC History, History Graph, and
Summary pages.

Summary variable Description

Rate Trigger rate (mHz)
Average Baseline Average pre-trigger level of all acquired

pulses (mV)
Baseline Fluctuation RMS spread of baselines of all acquired

pulses (mV)
Average Baseline RMS Average baseline RMS of all acquired

pulses (mV)
Median Heater Amplitude Median amplitude of stabilization heater

pulses (mV)
RMS Stabilized Heater Amplitude Gaussian σ of fit to histogram of stabilized

heater amplitudes (arbitrary units)

Report The CORC Report page is where automatically generated warnings are
presented to the user. Warnings are generated when a bolometer is saturated
(i.e. the amplified thermistor voltage exceeds the range of the analog-to-
digital converter), when there is a time hole in signal events greater than
two hours, when there are coincident triggers on more than eight channels,
and when the yield of a Gaussian fit to the stabilized heater amplitude peak
deviates from the expected number of heater events by more than 5%. The
automated warnings alert the on-site shifters to potential problems with the
detector and help with the quality checks of data collected before the CORC
system was in place.

Channel While the previously described CORC pages display summary informa-
tion about each channel for each run, the Channel page presents a detailed
picture of the behavior of each channel during a run. A CORC Channel page
currently displays eight plots: baseline vs. time, baseline RMS vs. time, am-
plitude vs. time, heater amplitude vs. baseline, energy vs. time, stabilized
heater amplitude vs. baseline, stabilized heater amplitude vs. time, and a
histogram of stabilized heater amplitude. The Channel page can be used,
for example, to observe noisy periods within a run, to check the normal op-
eration of the heater, and to verify the success of the stabilization. Part of
a Channel plot may have a gray background, which indicates an interval of
time that was flagged as bad. The plot of heater amplitude vs. baseline also
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shows the stabilization fits. If a run was broken into multiple time intervals
for the purpose of stabilization, all the Channel plots and the stabilization
fits are color-coded by time interval. Clicking on one of the plots brings up
a high resolution pdf version. Examples of plots from a Channel page are
shown in Fig. 5.4.

Floor The CORC Floor pages display the same plots as the Channel pages but
organized by the floor of the crystal in the tower rather than by channel
number. Looking at the same kind of plots for all the channels on a floor
can help identify and diagnose some problems, such as elevated noise levels,
that tend to be correlated with position in the tower. The Floor page also
provides a more efficient way to step through all the channel-by-channel
plots of a certain type for the whole detector.

5.1.2 CORC technology and operation

To produce its output, CORC utilizes a collection of technologies. The first
step is a set of Diana modules that extract the relevant summary quantities from
the data and produce the plots for the Channel page using ROOT [82, 83]. The
CORC modules can be run in online mode or offline mode. The online mode is
used while a run is in progress and the modules are running within the Apollo
DAQ process. The online mode is more restrictive in order to lessen the CPU
demands on the DAQ computer, and the online mode cannot include quanti-
ties that require post-processing of the whole set of data collected during a run.
Therefore, the online mode computes amplitudes with a simple maximum-minus-
baseline algorithm and does not compute quantities requiring the stabilization
step. After a run is finished, CORC is executed in offline mode for that run as
part of the prompt data reconstruction code, which includes a preliminary ap-
plication of the full data processing chain. The CORC summary quantities are
stored in the CUORE analysis database, which is implemented in PostgreSQL
and hosted on the computer cuoredb.lngs.infn.it. In offline mode, the CORC
Diana modules communicate directly with the database to write the summary
quantities. In online mode, in order not to make the DAQ process dependent
on the network connection to the PostgreSQL server, the summary quantities are
written to a plain text file. The summary files and the channel-by-channel plots
are updated and written out periodically, typically once per hour. A script on
the computer cuorehome.lngs.infn.it periodically checks for updated CORC
output on the DAQ machine, and when it finds new output, it copies the files to
the web-accessible area, parses the text file with summary quantities, and fills the
database with the values from the file.

The CORC webpages are written in PHP, a server-side scripting language.
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Figure 5.4: Examples CORC Channel plots for channel 1 and run 1000.
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When a user accesses a CORC webpage, the PHP code communicates with the
database to lay out the page with the appropriate selection of channels, depending
on the detector, which is deduced from the first digit of the run number. The plots
of summary quantities on the History, History Graph, and Summary pages are
generated dynamically when the webpage is requested based on the data in the
database. The dynamic generation of plots with PHP is implemented with the
JpGraph package [84]. The database-driven nature of the CORC webpages makes
it easy to update the output by updating the database; separate updating of
the webpages is not required. Similarly, implementing new detector setups, such
as Hall C tests, does not necessitate any modification to the CORC webpages
because the layout is inferred from the detector information in the database,
which is already required for the analysis software.

5.2 Bad runs and bad intervals

The infrastructure for keeping track of bad runs and bad time intervals is im-
plemented in the analysis database. The runs table, where the basic information
about each run is stored, contains a column stopstatus that serves as the flag
that indicates whether the run is good or bad. The stopstatus is initially set
by the on-site shifters. When the shifters terminate a run, the DAQ program
asks if the run ended normally, and if it did not end normally, the program asks
for the reason for the abnormal end. The shifters’ response became the basis for
the stopstatus until we verified it by our data quality checks. Good runs have
stopstatus = OK or stopstatus = CRASH, and bad runs have a stopstatus

that indicates why they are bad. The CRASH designator means that there was no
stop file (one of the standard files written by the DAQ when the run ends) for this
run; without a stop file, the stopstatus could not be determined because the stop
file contains the shifters’ answer to whether the run ended normally. A missing
stop file could indicate that the DAQ program crashed upon terminating the run,
but the data may still be good. The DAQ configuration for early CUORICINO
runs did not produce stop files so all runs before 295 have stopstatus = CRASH
or one of the bad run indicators. The values of stopstatus that we used are
listed in Table 5.2.

Bad intervals within a run are stored in the bad channels table. A row in the
bad channels table specifies the run, channel, type of bad interval, start time,
and stop time of the bad interval. The current possible types of bad intervals are
listed in Table 5.3. The current entries in the bad channels table can be viewed
on a webpage at:
http://cuoreweb.lngs.infn.it/~cuore/corc/hallA/bad_channels.php

In the stabilization and anti-coincidence steps of the first-level analysis pro-

http://cuoreweb.lngs.infn.it/~cuore/corc/hallA/bad_channels.php
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Table 5.2: Types of bad runs indicated by the stopstatus column of the runs

table in the analysis database.

stopstatus Description

OK Good run
Bad for analysis Run not suitable for analysis but not for one of the fol-

lowing problems
CRASH No stop file but the run is good
Cryogenics Bad run due to problems with cryogenics
DAQ Bad run because of data acquisition problems
Electronics Bad run due to problems with electronics

Table 5.3: Types of bad intervals in the bad channels table in the analysis
database.

Bad interval type Description

bad calibration resolution calibration peak FWHM too large
bad heater resolution heater resolution too large, possibly due to

bad stabilization
corc: saturated high baseline too high, as determined by CORC
corc: saturated low baseline too low, as determined by CORC
incompatible calibrations initial and final calibration peaks shifted
inverted polarity thermistor bias voltage was reversed, re-

sulting in upside down pulses
large calibration uncertainty cannot identify 2615 keV peak or residual

at 2615 keV is too large
no triggered events there were no signal events recorded, possi-

bly due to incorrect DAQ or front-end set-
tings

noisy too much noise
saturated high baseline too high
saturated low baseline too low
unable to calibrate calibration spectrum has no discernible

peaks and cannot be calibrated
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cessing, it is desirable not to use data contained in certain types of bad intervals.
For the stabilization fits, all types of bad intervals are rejected if at least 3000 s
of live time remain for the channel under consideration after rejection of all bad
intervals. This amount of time is enough for at least eight stabilization heater
events with which to perform the linear fit to the heater amplitude vs. baseline
plot. If rejecting all bad intervals would result in less than 3000 s of live time,
bad intervals of type “bad calibration resolution,” “bad heater resolution,” “in-
compatible calibrations,” “large calibration uncertainty,” “noisy,” and “unable to
calibrate” are not rejected when creating the graph of heater amplitude vs. base-
line for the stabilization fit. For anti-coincidence, bad intervals are rejected except
those of type “bad calibration resolution,” “bad heater resolution,” “incompatible
calibrations,” “large calibration uncertainty,” and “noisy.” That is, if there are
coincident events on channels C and C ′ but the event on channel C ′ is in a bad
interval other than one of the listed types, the event on channel C will not be
rejected by the anti-coincidence cut.

5.3 Data selection

5.3.1 CORC check

We began the CORC check for each run by looking over the CORC Report
page. For any channels referenced in the automatic reports of saturated intervals,
time intervals of longer than two hours without triggered events, or the number
of observed heater events being inconsistent with the expected number of heater
events, we investigated the problem by checking the CORC Channel page. Satu-
rated intervals can be an indication of a very noisy channel. A time hole without
triggered events can signal rare problems with the DAQ setup or front-end elec-
tronics settings. The comparison of the observed number of heater events with
the expected number is a powerful global check that the DAQ was operating nor-
mally, the heater was firing normally, there was not excessive noise degrading the
pulse amplitude evaluation, and the stabilization fits were successful.

We also looked over the CORC Summary page for each run. For any channels
outside of the normal range for any variable, we checked the channels on the
CORC Channel page to determine if there was a real problem with the detector.
We used the CORC History and History Graph pages to compare abnormal values
with historical values for the same channel.

If there was a clear problem with the detector, such as an extremely high noise
level or an absence of triggered events, we inserted into the analysis database the
corresponding type of bad interval from Table 5.3 for the affected channel for a
time period covering the duration of the problem. If the entire run was unusable
for all channels, we changed the stopstatus to one of the bad types in Table 5.2.
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We only marked data as bad if it was obviously unusable and would amount to an
artificial dead time or severe degradation of the energy resolution. By marking the
data as bad, we can explicitly treat bad intervals as dead time when computing the
live time of a run and channel. Marginal cases in which a channel appeared worse
than normal but not clearly unusable were not marked as bad. These marginal
channels are handled by the signal efficiency calculations in Sect. 6.2.

Detailed logs of the CORC checks are kept on a web page accessible to the
CUORE Collaboration at:
http://wiki.hep.wisc.edu/cuore/AnalysisTopics/FirstLevelAnalysisNotes

Additional logs about problems with CUORICINO runs are available at:
http://wiki.hep.wisc.edu/cuore/AnalysisTopics/RunNotes

5.3.2 Resolution consistency requirements

In the 0νββ decay analysis presented in Chapter 6, we assume the resolutions
measured during calibration runs are representative of the resolutions during the
whole data set. If a run is very noisy, the resolution may be degraded such that
this assumption is violated. To check the consistency of the resolutions of the
background runs, we monitored the resolutions of the heater peaks. For every run
and channel, CORC fits a Gaussian to the heater peak in the stabilized amplitude
spectrum and records the σ of the fit in the analysis database. An example of one
of the fits is the plot at the lower right in Fig. 5.4. For each data set and channel,
we plot the Gaussian σ of the heater peak as a function of run number, and we
compute the median of the Gaussian σ values and the median absolute deviation
(m.a.d.) from the median.

For a set of points {xi}, the m.a.d. is defined as

m.a.d. ≡ median{|xi −median{xi}|}. (5.1)

The m.a.d. provides a robust estimator of the width of a distribution; unlike the
r.m.s. of the distribution, the m.a.d. is insensitive to outliers. For a Gaussian
distribution, 1.4826×m.a.d. is equivalent to one sigma.

For each data set and channel, we set a cut on the Gaussian σ of the fit to the
stabilized heater amplitude peak at σ < median + 5× 1.4826×m.a.d. Figure 5.5
shows an example of one of the plots of resolution consistency with the cut value.
If a run in the data set failed the cut, the channel and run were marked “bad
heater resolution” in the database. The cut is rather loose from a statistical
point of view; it is possible to make a loose cut on the heater resolution because
the particle resolution at 2615 keV (or 2527 keV) is much larger than the heater
resolution. The reason the particle resolution is worse is not fully understood,
but there is evidently an intrinsic resolution for particle interactions, while the
heater resolution is primarily determined by the noise. At 2527 MeV the intrinsic

http://wiki.hep.wisc.edu/cuore/AnalysisTopics/FirstLevelAnalysisNotes
http://wiki.hep.wisc.edu/cuore/AnalysisTopics/RunNotes
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Figure 5.5: Example of a resolution consistency check for data set 2,
channel 1. The points represent the heater resolution, retrieved from the
rms stab heater amplitude column of the corc summary table of the analysis
database. The horizontal line represents the cut at median + 5× 1.4826×m.a.d.

resolution dominates over the noise resolution, so the noise resolution measured
on the heater peak may deviate a large amount from its average value without
significantly affecting the particle resolution. Therefore, with this check we were
mainly looking for instances of severe degradation of the noise resolution.

5.3.3 Calibration quality and consistency requirements

As described in Sect. 4.8, the calibration function that maps the stabilized
amplitude of a pulse to the energy deposited in the detector was determined
independently for each channel and data set. The results were checked according
to the criteria described in this section, and the bad channels database table was
updated with the channels and data sets that failed the acceptance criteria.

For the cases where the automatic peak finding algorithm did not succeed, the
calibration peaks were located by hand with the help of a GUI tool, leaving only
a small number of channels and data sets that could not be calibrated because
too few peaks were distinguishable from the background due to poor statistics.
These channels and data sets were flagged as “unable to calibrate” in the analysis
database.

A check was performed on the residual of the calibrated energy the 2615 keV
peak, defined as the difference between the calibration function evaluated at the
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fitted mean of the peak in the stabilized amplitude spectrum and the known
energy. Channels and data sets with an absolute value of the residual greater
than 1 keV were flagged as “large calibration uncertainty.” Additionally, channels
and data sets for which the 2615 keV peak could not be located in the calibration
spectrum were flagged as “large calibration uncertainty.”

Instabilities in the energy injected by the heater, possibly due to ground loops
or noise pickup by the heater circuit, can cause a shift in the calibration function.
We checked for a shift in the calibration function by comparing the initial and final
calibrations for each data set that has both. If the calibration peaks are shifted by
an amount that is smaller than the detector resolution, when the initial and final
spectra are added together to obtain the combined calibration spectrum, the small
shift results in an enlargement of the combined peak width, as shown in Fig. 5.6a.
If the distance between the center of the initial and final calibration peaks is large
compared to their widths, the peak fitting algorithm is able to resolve both peaks,
and the result of the fit is not representative of the whole data set (Fig. 5.6b). A
noticeable incompatibility between the initial and final calibrations is undesirable
because it is clear evidence of heater instabilities during the background runs.
The parameter used to quantify the compatibility is |xi − xf |/FWHM, where
xi and xf represent the fitted mean of the 2615 keV peak in the initial and
final calibrations, respectively, and FWHM is the mean FWHM resolution of this
peak for the corresponding channel over all the data sets. Figure 5.7 shows the
distribution of this parameter. Channels and data sets with |xi−xf |/FWHM > 1
were flagged as “incompatible calibrations” in the analysis database. For a channel
and data set with |xi − xf |/FWHM < 1, the combined data from the initial and
final calibrations form a single peak; the width of this peak, possibly broadened
by a small shift between initial and final calibrations, is used in the 0νββ decay
analysis as the energy resolution for the corresponding channel and data set.

An additional flag in the bad channels database table was set to mark chan-
nels and data sets with poor resolutions. The flag is called “bad calibration
resolution” and was set for channels and data sets with FWHM > 11 keV for the
big crystals or FWHM > 20 keV for the small crystals, where the FWHM was
measured on the 2615 keV calibration peak. However, the 0νββ decay analysis in
this dissertation does not consider this flag because there is no loss of sensitivity
from including data with poor resolutions. The “bad calibration resolution” flag
may be useful for other analyses that sum spectra from different channels and
data sets.

Table 5.4 summarizes the calibration acceptance criteria and the corresponding
dead time introduced by excluding the data that failed the criteria.
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(a) (b)

Figure 5.6: Two examples of channels and data sets for which the initial and final
calibrations (red and green lines, respectively) are shifted. The horizontal axis is
the stabilized amplitude, and the peak is the 2615 keV gamma line of 208Tl. The
blue line is the result of the calibration peak fitting algorithm. In example (a),
the shift is small, and the initial and final calibration peaks merge into a single
broader peak. In example (b), the shift is large, both peaks are resolved, and the
calibration peak fit returns an incorrect estimate of the average position of the
2615 keV events and of the overall resolution. Figure from Maria Martinez.

(a) Big crystals (b) Small crystals

Figure 5.7: Distribution of the calibration compatibility parameter. Figure from
Maria Martinez.
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Table 5.4: Types of bad intervals in the bad channels table in the analysis
database related to the calibration acceptance criteria and the corresponding dead
time. The 0νββ decay analysis in this dissertation does not reject data flagged as
“bad calibration resolution,” but other CUORICINO analyses may choose to.

Bad interval type Description Dead
time

unable to calibrate calibration spectrum has no discernible
peaks and cannot be calibrated

0.85%

large calibration uncer-
tainty

cannot identify 2615 keV peak or residual
at 2615 keV is > 1 keV

1.0%

incompatible calibrations |xi − xf | > FWHM @ 2615 keV 3.6%

bad calibration resolution FWHM2615 keV > 11 keV (Big crystals) 4.6%
FWHM2615 keV > 20 keV (Small crystals)

5.3.4 Selection criteria for analysis

Only runs with stopstatus = OK or stopstatus = CRASH are used in the
analysis. Bad intervals in the bad channels table are excluded from the analysis
except for those of type “bad calibration resolution” because this analysis can
assign a poor resolution to a channel for an individual data set without worsening
the overall sensitivity. Other types of analyses may prefer to exclude all bad inter-
vals, including those of type “bad calibration resolution.” CUORICINO channels
2 and 3 are not used because they were too noisy and problematic. CUORICINO
channel 50 is not used because it did not have a working heater. The two crystals
enriched in 128Te, CUORICINO channels 35 and 52, are not used because they
contribute a negligible amount of 130Te. The live time for each run and chan-
nel is computed by subtracting the length of the bad intervals that are excluded
(avoiding double counting overlapping bad intervals) from the run duration.
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Chapter 6

CUORICINO 0νββ decay fit and
limit

In addition to a combined analysis of data from CUORICINO and the Three
Towers Test, an analysis of only the CUORICINO data has been carried out so
that it can be compared with an independent analysis of the CUORICINO data
by collaborators at the University of Milano-Bicocca. This chapter presents the
results of the measurement of the 130Te 0νββ decay rate with the CUORICINO
data and the statistical approach used to obtain them. The general strategy is to
treat each crystal as an independent detector and to perform a simultaneous fit to
all the detectors. In the fit the response function of each detector is matched to the
resolution of the respective detector measured during calibration runs. The data
are further subdivided by time according to data set because the energy resolution
varies over time. The combined analysis of CUORICINO and the Three Towers
Test is presented in the next chapter.

The chapter is organized as follows: First, in Sect. 6.1 the cuts used in the
analysis are described. Then, in Sect. 6.2 the calculation of the efficiency for
detecting 0νββ decays is discussed. In Sect. 6.3 the approach for obtaining the
resolutions used in the fit is presented. The fitting technique and the probabil-
ity density function that defines the simultaneous fit are presented in Sect. 6.4.
Section 6.5 contains the results of the fit for the 0νββ decay rate of 130Te includ-
ing the statistical errors. Systematic errors on the decay rate are considered in
Sect. 6.6. The technique employed to set an upper limit, incorporating systematic
errors, on the 0νββ decay rate (or lower limit on the partial half-life) of 130Te is
explained in Sect. 6.7 together with the results. Finally, toy Monte Carlo studies
to validate the fitting procedure and to compute the expected sensitivity of the
experiment are presented in Sect. 6.8.
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6.1 Cuts

In addition to the data selection criteria in Sect. 5.3.4, the following cuts are
applied. The re-triggered pulses algorithm introduced in Sect. 4.5 is used to iden-
tify pulses that are present in more than one acquisition window and to select
only one instance of each multiply acquired pulse. Events that are consistent with
being heater events according to the offline heater flagging algorithm described
in Sect. 4.6 are removed from the spectrum. The pulse shape cut discussed in
Sect. 4.9 is applied with nPS

σ < 2 to reject spurious events and pileup. An anti-
coincidence cut is applied to reduce backgrounds from alpha decays on the crystal
surfaces that deposit energy in two neighboring crystals, from gammas that Comp-
ton scatter in one crystal before interacting in another crystal, and from gammas
that are part of a cascade of gammas emitted in a radioactive decay (e.g. the decay
of 208Tl). The anti-coincidence cut rejects events that occurred within ±100 ms
of a non-heater event on another bolometer that passed the pulse shape cut; the
time difference is based on the trigger times of the events. A fixed dead time
around each heater event is imposed so that the efficiency loss due to pileup with
heater events can be calculated exactly. The fixed dead time begins 3.1 s before
a heater event and lasts until 4.0 s after the heater event.

6.2 Signal efficiency

The signal efficiency is the probability that a 0νββ decay event is detected,
its energy is reconstructed accurately, and it passes the data selection cuts. The
average signal efficiency is evaluated to be (81.7 ± 3.3)% for the CUORICINO
big crystals and (80.0 ± 3.3)% for the small crystals. Mechanisms for loss of
signal efficiency are escape of a β from the crystal, the pulse shape cut, the anti-
coincidence cut, signal degradation due to noise, and pileup. These mechanisms
are studied in the following sections, and their contributions to the signal efficiency
are summarized in Table 6.1.

6.2.1 Escape of a β

If a 0νββ decay event occurs near the surface of a crystal (within ∼2 mm),
one or both of the β-particles may escape from the crystal before depositing their
full kinetic energy in the crystal. Since only a fraction of the Q-value would
be registered in the bolometer, the event would fall outside of the region in the
spectrum where a 0νββ decay peak is expected and therefore would not be counted
as a signal event. The efficiency loss due to decays near the surface is evaluated
using a Geant4-based Monte Carlo simulation. In the simulation 0νββ decays
are generated uniformly throughout the volume of a crystal with the correct energy
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Table 6.1: Contributions to the CUORICINO 0νββ decay signal efficiency.

Source Signal efficiency (%)

Escape of a β
86.3± 3.5 (big crystals)

84.5± 3.5 (small crystals)

Pulse shape cut 98.5± 0.3
Anti-coincidence cut 99.3± 0.1

Noise 99.1± 0.1 (average of all channels and data sets)
Pileup with heater pulses 97.7± 0.0

Total
81.7± 3.3 (average of big crystals)

80.0± 3.3 (average of small crystals)

spectrum and angular distribution for the individual electrons. The efficiency is
the number of decays for which both β-particles stop in the crystal divided by
the total number of simulated decays. Since the probability of escape depends
on the crystal geometry, in particular the ratio of surface area to volume, the
efficiency is slightly different for the big (5 × 5 × 5 cm3) crystals and the small
(3 × 3 × 6 cm3) crystals. From the Monte Carlo simulation, the efficiency due
to escape is evaluated to be 86.3% for the big crystals and 84.5% for the small
crystals. Based on variations in the efficiency result depending on threshold cuts
for secondaries production in Geant4 and depending on the version of the Monte
Carlo code, I assign a conservative error of 3.5% on the efficiency estimates.

6.2.2 Pulse shape cut

A pulse shape cut is applied to remove events that are not consistent with
a single physical pulse in the acquisition window. Some events rejected by the
pulse shape cut are spurious fluctuations of the thermistor voltage due to noise
or temperature instabilities that are large enough to trigger the data acquisition.
The pulse shape cut also removes pileup involving multiple events in the same
acquisition time interval, including most cases of pileup on the rise of the pulse,
except when two events in the same crystal occur so close in time as to be indistin-
guishable from a single event with the sum of their energies. Efficiency loss occurs
if the pulse shape cut rejects any good events. The pulse shape cut is designed
to be conservative, in the sense that good events should be retained with close to
100% efficiency.

To evaluate the efficiency of the pulse shape cut, the background photopeak
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at 2615 keV due to 208Tl is used as a proxy for the 0νββ decay peak expected at
2527.5 keV. The 2615 keV peak is chosen because the pulse shape cut is energy-
dependent, and the 2615 keV peak is the closest to 2527.5 keV of all of the large
background peaks. The peak provides a large number of good events with which
to compute the efficiency of the cut. The region of the spectrum containing the
2615 keV background peak is plotted with the pulse shape cut applied and also
with the complementary cut applied (that is, the events that are rejected by the
pulse shape cut). Figure 6.1 shows the two spectra with the accepted events on
the top and the rejected events on the bottom. The efficiency, εPS, of the pulse
shape cut is determined from a simultaneous fit to both spectra.

The simultaneous fit is parameterized in terms of the total number of signal
events, Nsignal; the signal efficiency, εPS; the total number of background events,

Nbkg; and the background efficiency, εbkg
PS . The signal yield for the accepted events

is εPSNsignal, and the signal yield for the rejected events is (1− εPS)Nsignal. Simi-

larly, the background yield for the accepted events is εbkg
PS Nbkg, and the background

yield for the rejected events is (1 − εbkg
PS )Nbkg. By including εPS directly in the

parameterization of the fit, correlations among the fit parameters are automati-
cally taken into account by the fitter when it determines the error on εPS. The
advantage of fitting accepted and rejected events rather than accepted and total
events is that the numbers of accepted and rejected events are uncorrelated since
the number of events is a random variable following a Poisson distribution; the
number of accepted events is correlated with the total number of events, which
would lead to an incorrect error on the efficiency if the correlation is not taken
into account.

The same signal and background shapes are used to fit both spectra. The
signal shape is taken to be a sum of two Crystal Ball functions. A Crystal Ball
function is a Gaussian with a power law tail to account for energy loss defined
by [85]

f(x;α, n, x̄, σ) =

{
exp

(
− (x−x̄)2

2σ2

)
, for x−x̄

σ
> −α

A ·
(
B − x−x̄

σ

)−n
, for x−x̄

σ
≤ −α

(6.1)

where

A =

(
n

|α|

)n
· exp

(
−|α|

2

2

)
,

B =
n

|α| − |α|.
(6.2)

The two Crystal Ball signal components have the same Gaussian mean but dif-
ferent Gaussian sigmas and different values of the Crystal Ball parameters α and
n. The sum of two Crystal Ball functions with different widths better represents
the signal shape than a single Crystal Ball function since the signal is obtained by
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Figure 6.1: Fit to the 208Tl spectrum to determine the pulse shape cut efficiency.
On the top are the events that are accepted by the pulse shape cut, and on the
bottom are the events that are rejected. The efficiency of the cut is determined
from a simultaneous fit to the two spectra.
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summing many detectors with different resolutions. All signal shape parameters,
including the relative fraction of the two Crystal Ball components, are floating
in the fit. The background shape is taken to be linear. The result from the
fit is εPS = (98.5 ± 0.3)% for CUORICINO. The efficiency for background is
εbkg

PS = (64± 2)% for CUORICINO. From these results the pulse shape cut is seen
to be very powerful, rejecting approximately 36% of the events in the continuum
background while retaining 98.5% of the signal events in the peak.

6.2.3 Anti-coincidence cut

An anti-coincidence cut is applied to suppress backgrounds from alpha decays
on the crystal surfaces and gamma interactions in multiple crystals. The anti-
coincidence cut rejects any events that occur within 100 ms of an event in another
crystal. Since 0νββ decay events that would lead to a bolometer signal at the
Q-value are inherently single-crystal events (unlike the events with a β-particle
escaping described in Sect. 6.2.1), the only efficiency loss from the anti-coincidence
cut is due to the possibility of a random coincidence with another event. The
probability of an event randomly occurring within ±∆t of a particular event is
given by

Prob(random coincidence) = 1− e−2r∆t, (6.3)

where r is the total event rate on all other bolometers. The signal efficiency, being
the probability that a random coincidence does not occur, is e−2r∆t ≈ 1 − 2r∆t.
For typical values of r ≈ 1 mHz/crystal×56 crystals = 56 mHz and ∆t = 100 ms,
the expected signal efficiency evaluates to 98.9%.

For this analysis the efficiency due to the anti-coincidence cut is evaluated
directly on the largest background peak, the photopeak at 1461 keV due to 40K,
following the same procedure used for the pulse shape cut efficiency in Sect. 6.2.2.
The spectra of events accepted and rejected by the anti-coincidence cut are fit si-
multaneously using the sum of two Crystal Ball functions and a linear background.
As in Sect. 6.2.2, the anti-coincidence cut efficiency, εAC, is directly included in
the parameterization of the fit. The fit is shown in Fig. 6.2. For CUORICINO
the fit result for the efficiency of the anti-coincidence cut is εAC = (99.3± 0.1)%.

6.2.4 Signal degradation due to noise

The noise superimposed on the signal pulses distorts the pulse shape and
introduces an error on the reconstructed energy of the event that grows with the
size of the noise. For this reason very noisy runs are rejected from the analysis
as described in Chapter 5. Within generally good runs used in the analysis, some
channels occasionally experience momentary periods of elevated noise levels due,
for example, to mechanical vibrations from the dilution unit. Figure 6.3 shows
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Figure 6.2: Fit to the 40K spectrum to determine the anti-coincidence cut effi-
ciency. On the top are the events that are accepted by the anti-coincidence cut,
and on the bottom are the events that are rejected. The efficiency of the cut is
determined from a simultaneous fit to the two spectra.
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an example of the onset of a period of increased noise and the corresponding
degradation of the energy resolution for heater events. A representative pulse
from the noisy period is shown in Fig. 6.4; distortion of the pulse shape leads
to a large error in the pulse amplitude evaluation as well as a large error in the
baseline estimation.

To estimate the efficiency loss due to noise degrading the signal and spoiling
the energy reconstruction, the number of events in the heater peak in the spectrum
is compared to the expected number of heater events: εnoise = Nobserved/Nexpected.
Since the prevalence of elevated noise levels depends on the channel and the data
set, a separate efficiency due to this effect is computed for each channel and data
set; that is, one for each subset of the 0νββ decay simultaneous fit. The observed
number of heater events is obtained from a fit to the heater peak in the spectrum
of stabilized amplitudes. The fit function is a sum of two Gaussians with their
means fixed to 5000 (where the heater peak is expected in the stabilized amplitude
spectrum) but different widths and a flat background. The Gaussian widths are
required to be less than the width of the signal response function used for the 0νββ
decay fit. The expected number of heater events is carefully reconstructed based
on the expected time of each heater event and whether that time is contained in
a bad time interval that is rejected. The error on the efficiency for each channel
and data set is calculated from

σεnoise
=

√
εnoise(1− εnoise)

Nexpected

, (6.4)

which is valid for a binomial process with a fixed number of trials. Figure 6.5
shows the distribution of efficiencies due to noise for all channels and data sets.
The average efficiency due to noise is 〈εnoise〉 = 99.1%, and the average error on
the efficiency is 〈σεnoise

〉 = 0.1%. Most channels and data sets have efficiencies
greater than 99%, and almost all are greater than 95%. Figure 6.6 depicts the
channels and data sets with an efficiency less than 95%.

6.2.5 Pileup

Pileup is the occurrence of two or more events in the same crystal within a time
period comparable to the length of a pulse. The optimal filter cannot accurately
estimate the amplitude of events involved in pileup, and pileup events are rejected
by the pulse shape cut. The probability of an event randomly occurring on a
particular channel within a time interval of length ∆t is given by 1− e−r∆t, where
r is the event rate on the same channel. For pileup considerations, the relevant
time interval extends from about 3 s before an event to about 3 s after the event
for CUORICINO, resulting in ∆t ≈ 6 s. For a typical single-crystal event rate of
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Figure 6.3: Example of noisy time intervals on channel 60 in run 640. The baseline
r.m.s. measures the noise level. After ∼9 h into the run, the noise level spikes sev-
eral times. The scatter in measured heater energies demonstrates the degradation
of the energy reconstruction caused by the noise.
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Figure 6.4: Example of a heater pulse from a noisy time interval in Fig. 6.3. Dis-
tortions superimposed on the normal pulse shape impede accurate measurements
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pulses lowers the signal efficiency since it can cause the reconstructed energy of
0νββ decay events to fall outside of the expected peak location.
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r ≈ 1 mHz, the probability of a given event having another event within a window
of length ∆t ≈ 6 s around it is about 0.6%. Therefore, the contribution to the
signal efficiency from pileup is expected to be about 99.4%. This contribution
to the signal efficiency is already incorporated into the efficiencies evaluated for
the signal degradation due to noise (Sect. 6.2.4) and due to the pulse shape cut
(Sect. 6.2.2). If a pileup occurs, the underlying events may be lost from the signal
if either there is a large error in the energy evaluation or there is not a large
error in the energy but the event is rejected by the pulse shape cut. The former
possibility is accounted for in the fit of the heater events used to estimate the
efficiency loss due to noise, and the latter possibility is accounted for in the fit to
the background peaks used to evaluate the efficiency loss due to the pulse shape
cut. Therefore, there is no independent contribution to the efficiency budget from
pileup with non-heater pulses.

A special kind of pileup is pileup with a heater pulse, which is not a random
process. Heater events occur every approximately 305 s, and any signal event
within about 3 s before or about 4 s after a heater event will be lost due to pileup.
A fixed dead time of 3.1 s before and 4 s after every heater event is imposed by a
cut, resulting in an efficiency of (305− 7.1)/305 ≈ 97.7%.
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6.3 Energy resolutions

The detector response function used in the 0νββ decay fit requires the en-
ergy resolution of every bolometer for every data set. The energy resolutions are
measured using calibration data collected while the detectors were exposed to a
232Th source. The spectrum of the calibration source includes a strong photo-
peak at 2615 keV due to the decay of 208Tl, which is part of the thorium decay
chain. Since 2615 keV is close to the 130Te Q-value of 2527.5 keV, the measured
resolution of the 2615 keV calibration peak is used as the detector resolution for
the 0νββ decay fit. An unbinned maximum likelihood fit with a Gaussian signal
shape and a linear background measures the full width at half maximum (FWHM)
of the 2615 keV peak. Examples of the fits are shown in Fig. 6.7. The FWHM
resolutions for each channel and data set are listed in Tables B.2, B.3, and B.4
in Appendix B, and histograms of the resolutions for the big crystals and small
crystals are plotted in Fig. 6.8.

6.4 Probability density function

The 0νββ decay rate is measured using a simultaneous, unbinned maximum-
likelihood fit. In a simultaneous fit, the data are divided into subsets according to
one or more discrete observables, and one or more fit parameters are shared among
the subsets. For the 0νββ decay fit, the data are split into subsets according to
channel and data set, and the 0νββ decay rate parameter is shared among all
subsets. A subset contains the data from one channel and one data set. Many
subsets are empty since the background rates are extremely low, but this is not
a problem for the fit. The probability density function (p.d.f.), f(E,C,D), is a
function of one continuous observable, energy (E), and two discrete observables,
channel (C) and data set (D):

f(E,C,D) =
Nbkg(C,D)

Ntotal

polynomial(E)

+
N60Co(C,D)

Ntotal

Gaussian(E;µ60Co, σ(C,D)) (6.5)

+
N0νββ(C,D)

Ntotal

Gaussian(E;Q, σ(C,D)).

The first term in Eq. (6.5) represents the continuum background, modeled by
a polynomial function for each subset. The polynomial function of degree N ,
normalized to unit area over the energy range used in the fit, is defined as

polynomial(E) =

∑N
n=0 cnE

n∫ Emax

Emin

∑N
n=0 cnE

′n dE ′
, (6.6)
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Figure 6.7: Examples of fits to the 2615 keV calibration peak for determining the
energy resolution.
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where Emin and Emax are the minimum and maximum energies in the fit range,
respectively. The standard version of the fit models the continuum background
as a flat, 0-degree polynomial. Higher degree polynomial background models are
considered in Sect. 6.6 on systematic errors. The expected number of background
events in the subset corresponding to channel C and data set D is

Nbkg(C,D) = rbkg(C)×∆E ×m(C)× T (C,D), (6.7)

where rbkg(C) is the background rate in counts/(keV · kg · y) for channel C, ∆E
is the width of the energy window used in the fit (nominally 2465–2595 keV,
∆E = 130 keV), m(C) is the mass of crystal C, and T (C,D) is the live time for
channel C and data set D. The background rate, rbkg(C), is floating in the fit
and is constrained to be the same for all crystals of the same type. The types of
crystals are big, small (natural tellurium), and enriched. Therefore, there are three
background rates floating in the fit. The parameters ∆E, m(C), and T (C,D) are
fixed in the fit.

The second term in Eq. (6.5) represents the sum peak of the 1173.2 keV and
1332.5 keV gammas that are emitted in a cascade in the β decay of 60Co. The
60Co was produced by cosmogenic activation of the copper parts of the detec-
tor mounting structure and cryostat thermal shields while the copper was above
ground. Since the 60Co nuclei are contained within the bulk of the copper, the
electron emitted in the β decay, which has a relatively low endpoint energy of
318 keV, is stopped within the copper. Therefore, the detector may observe one
or both of the 1173.2 keV and 1332.5 keV gammas but does not detect the elec-
tron. The individual gamma peaks are prominent in the background spectrum
(Fig. A.1) and do not show any evidence of a high energy tail that would be
present if the electron entered the detector. The 60Co sum peak is due to the si-
multaneous energy deposition of both gammas in the same crystal. It is modeled
by a Gaussian for each subset with the Gaussian sigma fixed to the value obtained
from a Gaussian fit to the 2615 keV calibration peak for the same subset. The
Gaussian function, normalized to unit area, is defined as

Gaussian(E;µ, σ) =
1√
2πσ

e−(E−µ)2/2σ2

. (6.8)

The peak is expected to be centered at 2505.7 keV, but the mean of the Gaussian
function, µ60Co, is allowed to float in the fit to accommodate a small degree of
uncertainty in the calibration. The expected number of 60Co events in the subset
corresponding to channel C and data set D is

N60Co(C,D) = r60Co(C)×m(C)× T (C,D)× (1/2)t(D)/t1/2 , (6.9)

where r60Co(C) is the rate of 60Co events in counts/(kg · y) at time t = 0 (the
beginning of the experiment). Like the continuum background rate, r60Co(C) is
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floating in the fit and is constrained to be the same for all big crystals and the
same for all small crystals. No 60Co peak is included for the enriched crystals (the
rate is fixed to 0) because the statistics from the two enriched crystals are too
limited to resolve the 60Co peak. In the last factor in Eq. (6.9), which accounts
for the exponential decay of 60Co with a half-life of t1/2 = 5.3 y, t(D) is the time
at the start of data set D since the beginning of the experiment. To be exact, the
exponential function representing the decay of 60Co should be averaged over the
data set, omitting bad intervals that are not used, but since the 60Co half-life of
5.3 y is much longer than the length of any data set, the rate of 60Co events is
nearly constant within a single data set, so it is a good approximation simply to
use r60Co(C)× (1/2)t(D)/t1/2 as the 60Co rate for data set D.

The third term in Eq. (6.5) represents 0νββ decay of 130Te modeled by a
Gaussian centered at the double beta decay Q-value of 130Te. The Gaussian
function is normalized to unit area and is defined according to Eq. (6.8). Two
precise measurements of the 130Te double beta decay Q-value have recently been
made: 2527.518 ± 0.013 keV [86] and 2527.01 ± 0.32 keV [87]. For this analysis,
the Q-value has been taken to be 2527.518 keV. The uncertainty on the Q-val-
ue measurement has a negligible effect on this analysis since it is much smaller
than the energy resolution of the CUORICINO detectors. For each subset, the
Gaussian sigma is fixed to the value obtained from a Gaussian fit to the 2615 keV
calibration peak for the same subset. The expected number of 0νββ decay events
in the subset corresponding to channel C and data set D is related to the 0νββ
decay rate, Γ, as

N0νββ(C,D) = Γ×N130Te(C)× T (C,D)× ε(C,D), (6.10)

where N130Te(C) is the number of 130Te nuclei in crystal C and ε(C,D) is the
signal efficiency for channel C and data set D. The number of 130Te nuclei in each
crystal and the signal efficiencies are fixed in the fit.

The total expected number of events, Ntotal, is the sum of the expected number
of events in each subset:

Ntotal =
∑
C,D

Nbkg(C,D) +N60Co(C,D) +N0νββ(C,D). (6.11)

The p.d.f., f(E,C,D), represents a joint probability distribution in the three
observables, energy (E), channel (C), and data set (D). It is normalized to unit
probability, as any p.d.f. must be:

∑
C,D

∫ Emax

Emin

f(E,C,D)dE = 1, (6.12)
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where Emin and Emax are the minimum and maximum energies in the fit range,
respectively, and the C and D indices run over all channels and data sets, respec-
tively. The p.d.f. enables a simultaneous fit because of the presence of the discrete
observables, channel (C) and data set (D).

With the p.d.f. constructed in this way, the simultaneous fit is carried out
following the standard procedure for an unbinned, extended maximum likelihood
fit [88]. The likelihood function is constructed from the p.d.f. and the data as

L(Γ, ~p) = Poisson(Nobs;Ntotal)×
∏

i∈{data}
f(Ei, Ci, Di), (6.13)

where Γ, the decay rate, is the parameter of interest and ~p is the vector of all
other floating parameters, and the index in the product runs over all data points
with energies in the fit range. The fit contains seven floating parameters: Γ, three
continuum background rates (for big, small, and enriched crystals), two 60Co
rates (for big and small crystals), and the 60Co Gaussian mean. In an extended
maximum likelihood fit, the number of events observed in the experiment, Nobs,
is treated as a Poisson distributed observable, which contributes the factor of

Poisson(Nobs;Ntotal) =
(Ntotal)

Nobse−Ntotal

Nobs!
(6.14)

in the likelihood function. The best fit values of the floating parameters are those
that maximize the likelihood function or, equivalently, minimize the negative log
likelihood. The statistical uncertainties on the parameters are obtained from
the variation of the negative log likelihood function around the minimum. The
fit is implemented in RooFit [89], a toolkit for statistical data analysis built on
ROOT [82, 83].

6.5 Fit results

Table 6.2 lists the results of the simultaneous fit applied to the CUORICINO
data with a total exposure of 18.6 kg · y of 130Te. No signal attributable to 0νββ
decay is observed, and Γ is consistent with 0.

Figure 6.9 shows the fit projected onto the spectrum summed over all channels
and data sets. Figure 6.10 shows the profile negative log likelihood function for the
0νββ decay rate, Γ. The profile negative log likelihood function is defined as the
negative log likelihood function minimized over all other floating parameters with
Γ held fixed at each point; similarly, the profile likelihood function is the likelihood
function maximized over all parameters besides Γ. The profile likelihood function
is used in Sect. 6.7 for setting an upper limit on Γ.
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Table 6.2: Results of the CUORICINO 0νββ decay fit. Errors are statistical only.

Parameter Fit result

Γ (−0.2± 1.5)× 10−25 y−1

rbkg(big) 0.161± 0.005 counts/(keV · kg · y)
rbkg(small) 0.163± 0.014 counts/(keV · kg · y)

rbkg(enriched) 0.47± 0.05 counts/(keV · kg · y)
r60Co(big) 3.1± 0.36 counts/(kg · y)
r60Co(small) 2.9± 1.1 counts/(kg · y)

r60Co(enriched) 0.0 counts/(kg · y) [fixed]
µ60Co 2506.5± 0.32 keV

Energy (keV)
2480 2500 2520 2540 2560 2580

E
ve

n
ts

 / 
( 

2 
ke

V
 )

0

10

20

30

40

50

60

70

80

CUORICINO summed spectrum

Energy (keV)
2480 2500 2520 2540 2560 2580

E
ve

n
ts

 / 
( 

2 
ke

V
 )

0

10

20

30

40

50

60

70

80

-1 y-25 10× 1.5) ± = (-0.2 Γ

/NDF = 30.9/582χ

CUORICINO summed spectrum

Figure 6.9: CUORICINO 0νββ decay fit projected onto the summed spectrum of
all channels and data sets. The χ2 and number of degrees of freedom (NDF) for
this graph are displayed to provide a measure of the goodness-of-fit, although this
χ2 is not the quantity that is minimized to determine the fit parameters.
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Table 6.3: Contributions to the CUORICINO systematic error on the 0νββ decay
rate, Γ. For comparison the statistical error is 1.5× 10−25 y−1.

Source Systematic error on Γ

Energy scale uncertainty 0.21× 10−25 y−1

Background parameterization 0.27× 10−25 y−1

Efficiency uncertainty 3.3%

Total 0.34× 10−25 y−1

6.6 Systematic errors

The sources of systematic errors on the 0νββ decay rate result are uncertainty
on the energy scale, uncertainty in the background shape, and uncertainty on the
signal efficiency. The contributions from each of these sources to the systematic
error are described in this section, and the procedure employed to incorporate
systematic errors in the upper limit on the 0νββ decay rate is detailed in Sect. 6.7.
Table 6.3 lists the systematic error due to each source of uncertainty. The total
systematic error is taken as the quadrature sum of the individual contributions
because the errors due to different sources are expected to be uncorrelated.

The uncertainty on the energy scale arises from lack of knowledge of the true
calibration function that maps stabilized pulse amplitudes to particle energies, as
well as statistical uncertainty in the calibration coefficients for the chosen cali-
bration function due to fitting peaks in the calibration spectrum. At the Q-value
for 130Te, the calibration uncertainty for CUORICINO has been estimated to be
about δE = 0.4 keV, but I use a more conservative value of δE = 0.8 keV taken
from the discrepancy between the best fit value of the Gaussian mean of the 60Co
peak and the expected position of the peak. Because of the energy scale uncer-
tainty, a peak due to 0νββ decay could appear in the spectrum anywhere within
δE of the Q-value. To study the dependence of the fit result on the expected lo-
cation of the 0νββ decay peak, the center of the 0νββ Gaussian is varied between
Q− δE and Q+ δE in steps of δE/10, and the fit is performed for each step. The
energy scale contribution to the systematic error is taken as the sample standard
deviation of the resulting fit values for Γ, which is 0.21× 10−25 y−1.

The uncertainty in the background shape stems from the limited number of
events in the 0νββ decay region of interest. There are not enough data points
to determine the shape of the continuum background with certainty. In the fit
the continuum background is parameterized as a uniform function of energy. The
sensitivity of the fit result for Γ to the background parameterization is estimated
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by carrying out the fit using higher order polynomials to parameterize the back-
ground. In addition to the zeroth order polynomial background function, a first
order and a second order polynomial background are considered (Fig. 6.11). Fur-
thermore, the range of the fit is chosen to be 2465–2595 keV, but there is a degree
of arbitrariness in the choice of fit range. The fit must only avoid background
peaks above and below this range. Changing the fit range affects the background
level slightly. The sensitivity of the fit result for Γ to the fit range is estimated by
varying the range used in the fit by +15 and +30 keV on the lower end and by
−15 and −30 keV on the upper end of the range. The systematic uncertainty on Γ
due to the background parameterization is taken as the sample standard deviation
of the fit results for Γ when the degree of the background polynomial and the fit
range are jointly varied. The resulting systematic error is 0.27× 10−25 y−1.

The uncertainty on the signal efficiency is reported in Sect. 6.2 to be 3.3%.
Summing the systematic error contributions in quadrature, the total system-

atic error on Γ is σΓ(syst.) = 0.34 × 10−25 y−1, which is small compared to the
statistical error of σΓ(stat.) = 1.5 × 10−25 y−1. The result of the CUORICINO
measurement of the 0νββ decay rate of 130Te is

Γ0νββ(130Te) = (−0.2± 1.5 (stat.)± 0.3 (syst.))× 10−25 y−1. (6.15)

6.7 Limit technique and results

Since no signal for 0νββ decay is observed, an upper limit on the 0νββ decay
rate is set. The calculation of the limit is complicated by two factors: First,
the best fit value is near a physical boundary since the decay rate is intrinsically
non-negative, and in principle the best fit value is equally likely to be positive
or negative if Γ = 0 in reality. Second, there are six nuisance parameters (the
floating fit parameters besides Γ). To deal with these two difficulties and to
incorporate systematic errors, this analysis uses a Bayesian technique that is based
on the profile likelihood function. Denoting by Γ̂ and ~̂p the values of the fit
parameters that minimize the negative log likelihood function, it can be shown
that the quantity,

χ2
stat.(Γ) ≡ 2

(
min
~p
{− lnL(Γ, ~p)} − (− lnL(Γ̂, ~̂p))

)
(6.16)

follows a χ2 distribution with one degree of freedom (for the true value of Γ) [90].
To include systematic errors, the following quantity is constructed:

χ2
syst.(Γ) =

(Γ− Γ̂)2

σ2
syst

. (6.17)
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Figure 6.11: Fit projected onto the summed spectrum with a first order polynomial
background (top) and a second order polynomial background (bottom). The χ2

and number of degrees of freedom (NDF) for these graphs are displayed to provide
a measure of the goodness-of-fit, although this χ2 is not the quantity that is
minimized to determine the fit parameters.
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The systematic error, σsyst., consists of absolute and fractional errors, which sum
in quadrature as σ2

syst. = σ2
syst.,abs. + σ2

syst.,frac.Γ
2. The absolute systematic error

is equal to the quadrature sum of the errors due to the energy scale and the
background parameterization, while the fractional systematic error is equal to the
uncertainty on the efficiency. Motivated by the goal of summing the statistical
and systematic errors in quadrature, the χ2-like quantities due to statistical and
systematic errors are combined as

1

χ2
total

=
1

χ2
stat.

+
1

χ2
syst.

. (6.18)

The function χ2
total/2 is similar to the profile negative log likelihood (cf. Eq. (6.16))

but is broadened to account for the systematic error (Fig. 6.12). Therefore, χ2
total/2

is used as the profile negative log likelihood function would be in a Bayesian
analysis. It is exponentiated to obtain the profile likelihood function, e−χ

2
total(Γ)/2,

which is treated as a p.d.f. for Γ with a Bayesian prior, π(Γ), equal to zero in the
unphysical (Γ < 0) region and flat in the physical (Γ ≥ 0) region:

π(Γ) =

{
0, Γ < 0
1, Γ ≥ 0

(6.19)

Figure 6.13 shows the profile likelihood function before and after the inclusion of
systematic errors. The upper limit on the decay rate at a given confidence level
(C.L.) is the value of Γlimit such that∫ Γlimit

0
e−χ

2
total(Γ)/2dΓ∫∞

0
e−χ

2
total(Γ)/2dΓ

= C.L. (6.20)

Following this procedure, the upper limit on the 0νββ decay rate from CUORI-
CINO is determined to be

Γ0νββ(130Te) < 2.7× 10−25 y−1 (90% C.L.), (6.21)

and the corresponding lower limit on the partial half-life for 0νββ decay, calculated
as T limit

1/2 = ln 2/Γlimit, is

T 0νββ
1/2 (130Te) > 2.6× 1024 y (90% C.L.). (6.22)

Without systematic errors, the limits would be

Γ0νββ(130Te) < 2.6× 10−25 y−1 (90% C.L.) (6.23)

and
T 0νββ

1/2 (130Te) > 2.7× 1024 y (90% C.L.). (6.24)
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Figure 6.14: Pull distribution from toy Monte Carlo simulations. The pull dis-
tribution for an unbiased fit procedure with correct error estimation should be
Gaussian with mean equal to 0 and sigma equal to 1.

6.8 Fit validation with toy Monte Carlo simula-

tions

For small data samples, a maximum likelihood fit is not guaranteed to produce
unbiased parameter estimates and to yield correct errors [90]. To check the fitting
procedure for bias and the correctness of the errors returned by the fitter, 1000
toy Monte Carlo data sets are generated from the p.d.f. described in Sect. 6.4 with
Γ = 0 and the background parameters set to the values in Table 6.2. The fit is
then performed on each of the simulated data sets. The pull distribution is plotted
in Fig. 6.14. For each toy data sample, the pull is equal to (Γ̂−Γtrue)/σ

stat.
Γ , where

Γ̂ is the best fit value, Γtrue is the true value used to generate the Monte Carlo
(Γtrue = 0 in this case), and σstat.

Γ is the statistical error on Γ calculated by the
fitter. If the fit is unbiased and the errors are correctly estimated, the distribution
of the pulls should be Gaussian with mean equal to 0 and sigma equal to 1. Based
on the Gaussian fit in Fig. 6.14, the pull distribution is consistent with these
criteria except that the mean is only marginally consistent with 0 (the mean is
2.3σ less than 0), which may indicate a negligibly small negative bias.

The toy Monte Carlo data are also used to quantify the expected sensitivity
of the experiment by calculating the distribution of possible results from many
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identical experiments. Figure 6.15 shows the distributions of best fit values and
errors for the decay rate for the 1000 Monte Carlo data sets with the true decay
rate equal to 0. Figure 6.16 plots the distributions of upper limits on Γ0νββ(130Te)
and lower limits on T 0νββ

1/2 (130Te) obtained from the simulated data sets. Given
the distribution of possible results, the results obtained for CUORICINO are
reasonable in the sense that they fall at a point of high probability within the
distribution. The distributions of decay rate limits and half-life limits are rather
broad, with r.m.s. values greater than 1/3 of the mean. This shows that the limit
obtained from an experiment like CUORICINO is highly dependent on statistical
fluctuations of the background and can easily deviate by up to ∼50% from the
expected sensitivity of the experiment, where the expected sensitivity is defined
as the expectation value of the limit. On the other hand, as a measure of the
sensitivity of the experiment, the statistical error on the decay rate is robust,
varying by only ∼10% from its average value. The statistical fluctuation of the
best fit value for Γ leads to the fluctuation in the half-life limit, as demonstrated
in Fig. 6.17.
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Figure 6.15: Distributions of decay rate best fit values (top) and errors (bottom)
from toy Monte Carlo simulations.
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Chapter 7

Three Towers Test and
CUORICINO combined analysis

In this chapter the 0νββ decay analysis performed for CUORICINO in Chap-
ter 6 is extended to a combined analysis of CUORICINO and the Three Towers
Test. The analysis technique remains the same: A simultaneous fit is performed
to each channel and data set. The 26 channels and four data sets from the TTT
add 26× 4 = 104 new subsets to the simultaneous fit. As indicated in Table 7.1,
the TTT data contribute an additional 7% of 130Te exposure with a slightly lower
background level than CUORICINO.

In Sect. 7.1 the cuts applied to the TTT data are described, and in Sect. 7.2
their efficiencies are calculated. Section 7.3 contains information on the energy res-
olutions of the TTT detectors. The results from the combined fit and systematic
errors are given in Sect. 7.4. Finally, Sect. 7.5 contains the limit on T 0νββ

1/2 (130Te)
obtained from the combined analysis.

7.1 TTT cuts

In the combined CUORICINO and TTT analysis, the cuts in Sect. 6.1 are
applied to the CUORICINO data. In this section the cuts applied to the Three
Towers Test data are described. For the TTT detectors with two thermistors,
the thermistor with better resolution was chosen to be used in the analysis. The
selected channels for crystals with two thermistors are (in the order shown on
the channel map in Fig. 3.12): 49, 13, 1, 17, 27, 16, 14, 3, 5, 18, 19, 61, and
58. Intervals of data that do not satisfy the data selection criteria in Sect. 5.3
are rejected. Double counting of re-triggered pulses is avoided as described in
Sect. 4.5. The offline heater flagging code is not applied to the TTT data because
the Apollo DAQ flags heater events with 100% efficiency. The anti-coincidence
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Table 7.1: Exposures and background levels for CUORICINO and the Three
Towers Test. The TTT data augment the CUORICINO data with about 7%
more exposure with a lower background.

Crystal type
Exposure Background

(kg · y 130Te) (counts/(keV · kg · y))

CUORICINO big 15.78 0.161± 0.005
CUORICINO small, natural Te 2.02 0.163± 0.014

CUORICINO 130Te enriched 0.77 0.47± 0.05

CUORICINO total 18.57

Three Towers Test 1.32 0.129± 0.015

cut applied to the TTT data rejects events that occurred within ±50 ms of a
non-heater event on another detector that had an energy greater than 50 keV;
the time difference is based on the trigger times of the events. A fixed dead time
is imposed around heater events, starting 4 s before a heater event and lasting
until 4 s after the heater event. The amount of dead time before each heater
event is longer than for CUORICINO (it was 3.1 s for CUORICINO) because the
acquisition window for the TTT was longer than for CUORICINO.

The pulse shape cut used for CUORICINO (Sect. 4.9) has not been computed
for the Three Towers Test. Since this analysis is concerned only with events
that have energies close to the 130Te Q-value, a greatly simplified form of the
pulse shape cut is effective. The cut is based on the ratio of the pulse amplitude
evaluated in the time domain to the pulse amplitude evaluated in the frequency
domain, aTD/aFD, which should be close to 1 for single, real pulses. This ratio is
plotted versus energy in Fig. 7.1. From the figure, it can be seen that the main
cluster of points, corresponding to good pulses, is above 0.999. Therefore, as a
pulse shape cut for the TTT data, aTD/aFD > 0.999 is required.

7.2 TTT signal efficiency

The efficiency for detection of 0νββ decay events in the Three Towers Test is
evaluated by the same procedure used for CUORICINO and described in Sect. 6.2.
The contributions to the loss of signal efficiency are summarized in Table 7.2. As
for CUORICINO, the largest source of inefficiency is the possibility that one of
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Figure 7.1: The ratio of the pulse amplitude evaluated in the time domain to
the pulse amplitude evaluated in the frequency domain, used as a pulse shape
parameter for the Three Towers Test data, plotted versus energy. The data plotted
are from all channels and all background runs in data set 1004. The pulse shape
cut applied for the TTT requires the ratio to be greater than 0.999.
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Table 7.2: Contributions to the TTT 0νββ decay signal efficiency. The efficiency
of the anti-coincidence cut depends on whether the detector was exposed to the
40K sources. There is an efficiency loss due to pileup with heater pulses only
for channels with a working heater and only for data sets 1001–1003 because the
heaters were disconnected during data set 1004.

Source Signal efficiency (%)

Escape of a β 86.3± 3.5

Pulse shape cut 97.4± 1.1

Anti-coincidence cut
97.48± 0.07 (data set 1001)

99.7± 0.3 (data sets 1002–1004)

Noise 99.1± 0.1

Pileup with heater pulses
97.3 (with heater)

100 (without heater)

the electrons emitted in a 0νββ decay escapes from the crystal. Since the TTT
crystals are the same size as the CUORICINO 5×5×5 cm3 crystals, the efficiency
due to escape of a β is (86.3± 3.5)% from Sect. 6.2.1.

The efficiencies of the pulse shape cut and the anti-coincidence cut are es-
timated by the same type of simultaneous fits described in Section 6.2.2 and
Sect. 6.2.3. The fit to determine the pulse shape cut efficiency for the TTT is
shown in Fig. 7.2, and the fit results are εPS = (97.4±1.1)% and εbkg

PS = (65±1)%.
The efficiency of the anti-coincidence cut depends on whether the 40K sources were
inserted because the event rate was much higher with the 40K sources present. The
sources were present during data set 1001 but not during data sets 1002–1004.
The fits to determine the anti-coincidence cut efficiencies for data set 1001 and
data sets 1002–1004 are shown in Fig. 7.3 and Fig. 7.4, respectively. The fit results
are εAC = (97.48± 0.07)% for data set 1001 and εAC = (99.7± 0.3)% for data sets
1002–1004.

For the efficiency loss due to noise, the average value obtained for CUORI-
CINO, (99.1± 0.1)%, is taken as an estimate for the TTT. Since the heaters were
inoperative for 10 of the 26 crystals in the Three Towers Test and the heaters
were disconnected during data set 1004, it is not possible to make a compre-
hensive evaluation of the efficiency loss due to noise using heater events as was
described in Sect. 6.2.4. Furthermore, because efficiency loss due to noise was
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Figure 7.2: Fit to determine the pulse shape cut efficiency for the Three Towers
Test. On the top are the events that are accepted by the pulse shape cut, and on
the bottom are the events that are rejected. The efficiency of the cut is determined
from a simultaneous fit to the two spectra.
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Figure 7.3: Fit to determine the anti-coincidence cut efficiency for data set 1001 of
the Three Towers Test, during which the detector was exposed to 40K sources. On
the top are the events that are accepted by the anti-coincidence cut, and on the
bottom are the events that are rejected. The efficiency of the cut is determined
from a simultaneous fit to the two spectra.
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Figure 7.4: Fit to determine the anti-coincidence cut efficiency for data sets 1002–
1004 of the Three Towers Test, during which the 40K sources were not present. On
the top are the events that are accepted by the anti-coincidence cut, and on the
bottom are the events that are rejected. The efficiency of the cut is determined
from a simultaneous fit to the two spectra.
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demonstrated not to be a significant problem for CUORICINO and because the
TTT data were closely monitored for noise during data taking, the average value
of the noise efficiency from CUORICINO is a good estimate for the Three Towers
Test.

The fixed dead time of ±4 s imposed around each heater pulse contributes an
efficiency of (300− 8)/300 ≈ 97.3% for the 16 channels with a working heater in
data sets 1001–1003. The corresponding efficiency is 100% for the 10 channels
without a working heater and for all channels in data set 1004, during which the
heaters were disconnected.

7.3 TTT energy resolutions

As for CUORICINO, the energy resolutions of the TTT detectors are mea-
sured using calibration data collected while the detectors were exposed to a 232Th
source. For each detector the resolution of the 2615 keV calibration peak, mea-
sured with an unbinned maximum likelihood fit with Gaussian signal shape and a
linear background, is used as the detector resolution for the 0νββ decay fit. The
distribution of FWHM resolutions obtained for each channel and data set is shown
in Fig. 7.5. The distribution is similar to that of the CUORICINO big crystals
(Fig. 6.8 (top)).

7.4 Combined fit results and systematic errors

The same p.d.f. defined in Eq. (6.5) is used to fit the combination of TTT and
CUORICINO data. The TTT crystals are treated as an additional crystal type;
that is, the TTT crystals share a background rate and a 60Co rate. There are nine
floating parameters in the fit: four continuum background rates, three 60Co rates
(no 60Co peak is included for the CUORICINO enriched crystals due to limited
statistics), the 60Co Gaussian mean, and the 130Te 0νββ decay rate.

The results of the combined fit are shown in Table 7.3, and the fit projected
on the summed spectrum is shown in Fig. 7.6. The best fit value for the decay
rate is Γ = (−0.6 ± 1.4 (stat.)) × 10−25 y−1. The statistical error is improved
modestly compared with the CUORICINO-only fit, as expected from adding 7%
more exposure.

Systematic uncertainties are investigated following the same approach de-
scribed in Sect. 6.6. The contributions of each of the three sources of systematic
errors are listed in Table 7.4. Adding the contributions in quadrature yields a
total systematic error of σΓ(syst.) = 0.35 × 10−25 y−1, which is small compared
to the statistical error of σΓ(stat.) = 1.4× 10−25 y−1. The result of the combined
CUORICINO and Three Towers Test measurement of the 0νββ decay rate of
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Figure 7.5: Distribution of energy resolutions for the TTT detectors. There is one
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Table 7.3: Results of the combined CUORICINO and TTT 0νββ decay fit. Errors
are statistical only.

Parameter Fit result

Γ (−0.6± 1.4)× 10−25 y−1

rbkg(big) 0.161± 0.005 counts/(keV · kg · y)
rbkg(small) 0.163± 0.014 counts/(keV · kg · y)

rbkg(enriched) 0.47± 0.05 counts/(keV · kg · y)
rbkg(TTT) 0.129± 0.015 counts/(keV · kg · y)
r60Co(big) 3.1± 0.36 counts/(kg · y)
r60Co(small) 2.9± 1.1 counts/(kg · y)

r60Co(enriched) 0.0± 0.0 counts/(kg · y) [fixed]
r60Co(TTT) 0.3± 0.6 counts/(kg · y)

µ60Co 2506.5± 0.32 keV



131

Energy (keV)
2480 2500 2520 2540 2560 2580

E
ve

n
ts

 / 
( 

2 
ke

V
 )

0

10

20

30

40

50

60

70

80

CUORICINO and TTT summed spectrum

Energy (keV)
2480 2500 2520 2540 2560 2580

E
ve

n
ts

 / 
( 

2 
ke

V
 )

0

10

20

30

40

50

60

70

80
-1 y-25 10× 1.4) ± = (-0.6 Γ

/NDF = 35.8/562χ

CUORICINO and TTT summed spectrum

Figure 7.6: Combined CUORICINO and TTT 0νββ decay fit projected onto the
summed spectrum of all channels and data sets. The χ2 and number of degrees of
freedom (NDF) for this graph are displayed to provide a measure of the goodness-
of-fit, although this χ2 is not the quantity that is minimized to determine the fit
parameters.
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Table 7.4: Contributions to the systematic error on the combined CUORICINO
and TTT measurement of the 0νββ decay rate, Γ. For comparison the statistical
error is 1.4× 10−25 y−1.

Source Systematic error on Γ

Energy scale uncertainty 0.15× 10−25 y−1

Background parameterization 0.32× 10−25 y−1

Efficiency uncertainty 3.3%

Total 0.35× 10−25 y−1

130Te is

Γ0νββ(130Te) = (−0.6± 1.4 (stat.)± 0.4 (syst.))× 10−25 y−1. (7.1)

7.5 Limit results

Since the result of the decay rate measurement in Eq. (7.1) is consistent with
zero, an upper limit on the decay rate is set, following the technique discussed
in Sect. 6.7. Figure 7.7 shows the profile negative log likelihood function with-
out systematic errors (blue) and with systematic errors included (red). The log
likelihood function is exponentiated to obtain the likelihood function, shown in
Fig. 7.8. The Bayesian posterior p.d.f. for Γ is the product of the likelihood func-
tion and a prior p.d.f. which is taken to be zero in the unphysical (Γ < 0) region
and flat in the physical (Γ ≥ 0) region. The 90% C.L. upper limit, Γlimit, is the
value such that 90% of the area under the posterior p.d.f. in the physical region
is contained between Γ = 0 and Γ = Γlimit. The result for the upper limit on the
decay rate for 0νββ decay of 130Te including systematic errors is

Γ0νββ(130Te) < 2.3× 10−25 y−1 (90% C.L.). (7.2)

The corresponding limit on the partial half-life for 0νββ decay of 130Te, calculated
as T limit

1/2 = ln 2/Γlimit, is

T 0νββ
1/2 (130Te) > 3.0× 1024 y (90% C.L.). (7.3)

Without systematic errors the limits would be

Γ0νββ(130Te) < 2.2× 10−25 y−1 (90% C.L.) (7.4)
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Figure 7.7: Profile negative log likelihood function without (blue) and with (red)
systematic errors included. The blue curve is equal to χ2

stat.(Γ)/2, and the red
curve is equal to χ2

total(Γ)/2.

and
T 0νββ

1/2 (130Te) > 3.1× 1024 y (90% C.L.). (7.5)

In comparison with the CUORICINO-only limit (Eq. (6.22)), the limit obtained
from the combined analysis benefits from a slight downward fluctuation of the
background. It was shown in Fig. 6.17 of Sect. 6.8 that the limit is very sensitive
to the best fit value for Γ. Thus, for the limit, the additional 7% of exposure has
a disproportionately large impact.
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Chapter 8

Conclusion

This dissertation has presented a measurement (consistent with zero) of the
decay rate for neutrinoless double beta decay of 130Te made from combining the
data from CUORICINO and the Three Towers Test. Since no signal was observed,
an upper limit on the decay rate and a lower limit on the partial half-life for
neutrinoless double beta decay of 130Te have been set. The principal results are
summarized in Table 8.1.

8.1 Comparison with previous CUORICINO re-

sults

The most recent published CUORICINO result on 0νββ decay was obtained
from an analysis of 11.83 kg · y (130Te) of data [72]. This analysis of all of
CUORICINO Run II together with the Three Towers Test includes 68% more
data. In order to compare the previous result directly with the one presented
here, it is useful to convert the numbers in Ref. [72] for the best fit value for the
number of signal counts and its error and for the exposure to a best fit value
and error for Γ. After the conversion, the previous result was Γ0νββ(130Te) =
(−2.9 ± 1.8 (stat.)) × 10−25 y−1. The result of this analysis, Γ0νββ(130Te) =
(−0.6 ± 1.4 (stat.) ± 0.4 (syst.)) × 10−25 y−1, has a statistical error that is re-
duced as expected from the increase in exposure. When comparing the results,
the different values used for the signal efficiency have to be taken into account.
The previous analysis used 86.3% and 84.5% as the signal efficiency for the big
crystals and the small crystals, respectively, whereas this analysis used 81.7% and
80.0% (averaged over all CUORICINO channels and data sets). Systematic errors
are explicitly included for the first time in this analysis. The calculation of sys-
tematic errors presented here verifies the previous expectation that they are small
compared with the statistical error. Furthermore, the systematic errors have a



136

Table 8.1: Principal results of this work.

CUORICINO + Three Towers Test

Γ0νββ(130Te) = (−0.6± 1.4 (stat.)± 0.4 (syst.))× 10−25 y−1

Γ0νββ(130Te) < 2.3× 10−25 y−1 (90% C.L.)

T 0νββ
1/2 (130Te) > 3.0× 1024 y (90% C.L.)

CUORICINO

Γ0νββ(130Te) = (−0.2± 1.5 (stat.)± 0.3 (syst.))× 10−25 y−1

Γ0νββ(130Te) < 2.7× 10−25 y−1 (90% C.L.)

T 0νββ
1/2 (130Te) > 2.6× 1024 y (90% C.L.)

statistical component and will therefore remain smaller than the statistical error
for CUORE.

The previous result represents a 1.6σ downward fluctuation of the background
in the signal region. In the new result, the best fit value is again negative but
only slightly, representing a 0.4σ downward fluctuation. The change in best fit
value comes from the additional data, an update of the Q-value from 2530.3 keV
to 2527.5 keV, and the reshuffling of event energies within their errors in the new
Diana processing compared with the previous processing. The change in best fit
value has a large impact on the results for the limit on T 0νββ

1/2 . The limit obtained

in the previous analysis was T 0νββ
1/2 (130Te) > 3.0 × 1024 y (90% C.L.). The limit

obtained in this work from the combination of the full CUORICINO data set and
the Three Towers Test has the same value despite the increase in exposure and
decrease in statistical error on Γ because the limit is strongly dependent on the
best fit value for Γ, as demonstrated in Fig. 6.17.

8.2 Limit on the effective neutrino mass

An upper limit on the effective Majorana neutrino mass, mββ, is obtained from

the upper limit on Γ0νββ = ln 2/T 0νββ
1/2 and the relation (reproduced from Eq. (2.1))

1

T 0νββ
1/2

= G0ν(Q,Z)|M0ν |2m2
ββ. (8.1)
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Although making a measurement of mββ requires the assumption that the domi-
nant mechanism driving 0νββ decay is the exchange of light Majorana neutrinos,
setting a limit on mββ is possible regardless of the dominant mechanism. The

conversion from 1/T 0νββ
1/2 to mββ requires knowledge of the nuclear matrix ele-

ment, M0ν . Since there is currently a significant spread in the values of M0ν

calculated with different models, a standard practice is to tabulate the limits on
mββ obtained from a set of contemporary calculations of M0ν . Table 8.2 con-
tains such a tabulation using recent calculations of the nuclear matrix element
by four groups. The list includes calculations based on the quasiparticle random
phase approximation (QRPA), renormalized QRPA (RQRPA), the interacting
shell model (ISM), and the interacting boson model (IBM). For some of these
models, different treatments of short range correlations are considered, including
the coupled-cluster method (CCM), Miller-Spencer Jastrow, and the unitary cor-
relation operator method (UCOM). For each calculation in the table, the values
used for the axial vector coupling constant, gA, and the nuclear radius parameter,
r0 (R = r0A

1/3), are listed because the nuclear matrix element and the phase space
factor, G0ν , depend on both of these parameters. Since the effect of changing gA
on the 0νββ decay half-life must be ascertained by considering both M0ν and G0ν ,
several authors of articles on nuclear matrix elements have found it convenient to
use one value of G0ν evaluated for gA = 1.25 and to absorb the g4

A dependence of
G0ν in to a modified matrix element defined as

M ′0ν =
( gA

1.25

)2

M0ν . (8.2)

Defined in this way, it is possible to consider only M ′0ν when comparing different
nuclear matrix element calculations. In Table 8.2, the matrix elements are ex-
pressed as M ′0ν . In two cases, the value of M0ν in the referenced article has been
converted to M ′0ν ; this conversion is explicitly indicated in the table with a factor
of (1/1.25)2. For the other entries in Table 8.2, the original authors present their
results in terms of M ′0ν or they use gA = 1.25 in which case M ′0ν = M0ν . The
range of limits from the calculations in Table 8.2 is

mββ < 0.25–0.68 eV (90% C.L.). (8.3)

8.3 Comparison with the claim of discovery

As discussed in Sect. 2.3.1, a subset of the Heidelberg-Moscow Collaboration
has claimed to have observed 0νββ decay of 76Ge. In this section, the statistical
significance of the discrepancy between the non-observation of 0νββ decay in this
work and the claimed observation is evaluated. In order to compare the results
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Table 8.2: Upper limits on the effective Majorana neutrino mass obtained from
T 0νββ

1/2 (130Te) > 3.0 × 1024 y (90% C.L.) and recent calculations of the nuclear
matrix element. The value of G0ν used with the models with r0 = 1.1 fm is from
Table II of Ref. [91], and the value used with the models with r0 = 1.2 fm is from
Table 6 of Ref. [92].

Model M ′0ν = gA r0 G0ν(gA = 1.25) mlimit
ββ (eV)

(gA/1.25)2M0ν (fm) (y−1 · eV−2) (90% C.L.)

(R)QRPA [93] 2.92–5.04 1.00 & 1.1 2.12× 10−25 0.25–0.43
CCM SRC 1.25

QRPA [94] −2.993 1.25 1.2 1.59× 10−25 0.48
Jastrow

QRPA [94] −4.061 1.00 1.2 1.59× 10−25 0.56
Jastrow ×(1/1.25)2

QRPA [94] −4.221 1.25 1.2 1.59× 10−25 0.34
UCOM

QRPA [94] −5.442 1.00 1.2 1.59× 10−25 0.42
UCOM ×(1/1.25)2

ISM [95] 2.12 1.25 1.2 1.59× 10−25 0.68
Jastrow

ISM [95] 2.65 1.25 1.2 1.59× 10−25 0.55
UCOM

IBM [96] 4.059 1.25 1.2 1.59× 10−25 0.36
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obtained with two different isotopes, the results for Γ0νββ(76Ge) from Klapdor-
Kleingrothaus et al. and Γ0νββ(130Te) from this work are converted into measure-
ments of m2

ββ using Eq. (8.1) because m2
ββ has Gaussian errors since it is pro-

portional to the number of observed signal events. The conversion is performed
separately for each nuclear matrix element calculation because the calculated nu-
clear matrix elements for different isotopes are highly correlated [97].

The number of observed signal events in the Klapdor-Kleingrothaus et al.
analysis of the Heidelberg-Moscow data is 11± 1.8, which leads to a partial half-
life of T 0νββ

1/2 (76Ge) = 2.23+0.44
−0.31 × 1025 y [35]. The central value for T 0νββ

1/2 (76Ge) is

equivalent to a decay rate of Γ0νββ(76Ge) = 3.11 × 10−26 y−1. From the error on
the number of counts, the error on Γ0νββ(76Ge) is calculated to be σΓ0νββ(76Ge) =
(1.8/11)× 3.11× 10−26 y−1 = 0.51× 10−26 y−1. Using this 0νββ decay rate value
and error for 76Ge and the value obtained in this work from the combination of
CUORICINO and the Three Towers Test for the 0νββ decay rate of 130Te, the
values for m2

ββ are calculated from a selection of recent nuclear matrix element
calculations, and the results are listed in Table 8.3. The comparison is presented
graphically in Fig. 8.1. The last column in Table 8.3 expresses the difference
between the values of m2

ββ obtained from the two measurements in number of
sigma; it is calculated as

∆m2
ββ

σ∆m2
ββ

=
m2
ββ(76Ge)−m2

ββ(130Te)√
σ2
m2
ββ(76Ge)

+ σ2
m2
ββ(130Te)

(8.4)

and ranges from 1.2 to 1.7 for the set of nuclear matrix element calculations in
the table. Taking the minimum, 1.2σ, as a measure of the discrepancy between
the two results, the probability of a discrepancy this large or larger happening by
chance is

Prob

(
|∆m2

ββ|
σ∆m2

ββ

> 1.2

)
= 1−

∫ +1.2

−1.2

1√
2π
e−x

2/2 dx = 23%. (8.5)

Thus, the inconsistency between the result of this work and the result of Klapdor-
Kleingrothaus et al. is not statistically significant enough to exclude the possibility
that the signal observed in the Heidelberg-Moscow experiment is due to neutrino-
less double beta decay of 76Ge driven by the exchange of light Majorana neutrinos.

Using the same approach, we can calculate how long it will take CUORE
to reach a result that is inconsistent with the claimed observation at a given
level of statistical significance, assuming that CUORE does not observe a signal
and assuming that the nuclear matrix element models are reliable at least for
calculating the ratio of the matrix elements for 76Ge and 130Te. In the absence of
a signal, the expected statistical error on Γ0νββ(130Te) for CUORE is determined
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by the Poisson fluctuations of the background. Considering a very simple counting
analysis within an energy interval of width ∆E around the Q-value, the error on
Γ from Poisson statistics is

σΓ =

√
b(∆E)m

N0ε
√
t

, (8.6)

where b is the background level in counts/(keV · kg · y), m is the total mass of
TeO2, N0 is the number of 130Te nuclei, ε is the signal efficiency, and t is the live
time. If CUORE achieves its background goal of b = 0.01 counts/(keV ·kg ·y) and
energy resolution goal of ∆E = 5 keV, plugging in the values for CUORE results
in an expected uncertainty of

σΓ =
7.9× 10−27 y−1/2

√
t

, (8.7)

assuming ε = 0.82, similar to the CUORICINO big crystals. With this precision,
after just two months of taking data, the CUORE measurement of Γ0νββ(130Te)
will be inconsistent with the claim of observation of 0νββ decay at greater than
3σ significance for all of the nuclear matrix element calculations considered here,
even if CUORE observes a 1σ upward fluctuation of the background.
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Table 8.3: Comparison between the result of this work and the claim of discovery.

Model gA Nuclide M ′0ν m2
ββ (eV2)

∆m2
ββ

σ
∆m2

ββ

(a)
RQRPA [93]

1.25
76Ge 5.440 0.050± 0.008

1.4
CCM CD-Bonn 130Te 4.400 −0.021± 0.049

(b)
RQRPA [93]

1.00
76Ge 4.620 0.069± 0.011

1.2
CCM CD-Bonn 130Te 3.380 −0.036± 0.083

(c)
QRPA [93]

1.25
76Ge 6.320 0.037± 0.006

1.4
CCM CD-Bonn 130Te 4.920 −0.017± 0.039

(d)
QRPA [93]

1.00
76Ge 5.160 0.055± 0.009

1.2
CCM CD-Bonn 130Te 3.770 −0.029± 0.067

(e)
RQRPA [93]

1.25
76Ge 4.970 0.060± 0.010

1.4
CCM Argonne 130Te 3.910 −0.027± 0.062

(f)
RQRPA [93]

1.00
76Ge 4.210 0.083± 0.013

1.2
CCM Argonne 130Te 3.020 −0.045± 0.104

(g)
QRPA [93]

1.25
76Ge 5.810 0.044± 0.007

1.3
CCM Argonne 130Te 4.370 −0.021± 0.050

(h)
QRPA [93]

1.00
76Ge 4.770 0.065± 0.010

1.2
CCM Argonne 130Te 3.380 −0.036± 0.083

(i)
QRPA [94]

1.25
76Ge −4.029 0.114± 0.018

1.2
Jastrow 130Te −2.993 −0.061± 0.142

(j)
QRPA [94]

1.00
76Ge −3.229 0.178± 0.029

1.3
Jastrow 130Te −2.582 −0.082± 0.191

(k)
QRPA [94]

1.25
76Ge −5.355 0.065± 0.010

1.3
UCOM 130Te −4.221 −0.031± 0.072

(l)
QRPA [94]

1.00
76Ge −4.168 0.107± 0.017

1.4
UCOM 130Te −3.461 −0.046± 0.106

(m)
ISM [95]

1.25
76Ge 2.300 0.351± 0.057

1.6
Jastrow 130Te 2.120 −0.121± 0.283

(n)
ISM [95]

1.25
76Ge 2.810 0.235± 0.038

1.7
UCOM 130Te 2.650 −0.078± 0.181

(o) IBM [96] 1.25
76Ge 5.465 0.062± 0.010

1.2130Te 4.059 −0.033± 0.077
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NME model
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Figure 8.1: Comparison between the result of this work and the claim of discovery
based on the m2

ββ values and one-sigma errors in Table 8.3. The labels for the
nuclear matrix element (NME) models correspond to the first column of Table 8.3.
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[93] F. Šimkovic, A. Faessler, H. Muther, V. Rodin, and M. Stauf, Phys. Rev.
C79, 055501 (2009), arXiv:0902.0331.

[94] O. Civitarese and J. Suhonen, J. Phys. Conf. Ser. 173, 012012 (2009).

[95] J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys. A818, 139
(2009), arXiv:0801.3760.

[96] J. Barea and F. Iachello, Phys. Rev. C79, 044301 (2009).

[97] A. Faessler et al., Phys. Rev. D79, 053001 (2009), arXiv:0810.5733.

[98] M. E. Wieser and M. Berglund, Pure Appl. Chem. 81, 2131 (2009).

[99] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2002).



149

Appendix A

Energy spectra from
CUORICINO and the Three
Towers Test

In this appendix, the full energy spectra from CUORICINO and the Three
Towers Test are displayed. Figures A.1, A.2, and A.3 contain the CUORICINO
spectrum. Figure A.4 contains the Three Towers Test spectrum below 2000 keV
obtained while the 40K sources were in place. Figure A.5 contains the Three
Towers Test spectrum below 2000 keV without the 40K sources. Figures A.6 and
A.7 contain the Three Towers Test spectrum above 2000 keV, combining the data
collected with and without the 40K sources. For CUORICINO, the third-order
polynomial calibration function is used to produce the spectrum below 3000 keV,
and the second-order log polynomial calibration function is used to produce the
spectrum above 3000 keV. For the Three Towers Test, the second-order polynomial
calibration function has been used for the entire spectrum. The cuts used to
produce the plots in this appendix are the same as those used for the 0νββ decay
analysis, except that no anti-coincidence cut is applied, and for the TTT no pulse
shape cut is applied.
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Figure A.1: CUORICINO spectrum calibrated with a third-order polynomial func-
tion.
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Figure A.2: CUORICINO spectrum calibrated with a third-order polynomial func-
tion below 3000 keV and calibrated with a second-order log polynomial function
above 3000 keV.
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Figure A.3: CUORICINO spectrum calibrated with a second-order log polynomial
function.
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Figure A.4: Three Towers Test spectrum with 40K sources.
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Figure A.5: Three Towers Test spectrum without 40K sources.
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Figure A.6: Three Towers Test spectrum.
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Figure A.7: Three Towers Test spectrum.
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Appendix B

Tables of physical parameters,
resolutions, and efficiencies

Values of physical parameters used in the analysis are listed in Table B.1. In
Tables B.2, B.3, B.4, and B.5, the full width at half maximum (FWHM) energy
resolutions used in the analysis are listed. The resolutions are obtained from an
unbinned maximum likelihood fit with a Gaussian signal shape and a linear back-
ground to the 2615 keV calibration peak for each channel and data set. Examples
of the fits are shown in Fig. 6.7. In Tables B.6, B.7, and B.8, the noise efficiencies
for each CUORICINO channel and data set are listed. The calculation of the
noise efficiencies is described in Sect. 6.2.4. Blank entries in the tables indicate
channels and data sets that are excluded from the analysis according to the data
selection criteria.
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Table B.1: Values of physical parameters used in the analysis. Values without
references are deduced from the other numbers.

Parameter Value Reference

Isotopic abundance of 130Te 33.80% [27]
Standard atomic weight of tellurium 127.60 [98]
Standard atomic weight of oxygen 16.00 [98]

Molar mass of TeO2 159.60 g/mol
Atomic mass of 130Te 129.91 [99]

Fraction by mass of 130Te in TeO2 27.5%
ββ decay Q-value of 130Te 2527.518± 0.013 keV [86]
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Table B.2: CUORICINO energy resolutions (FWHM in keV) at 2615 keV.

Data set

Channel 1 2 3 4 5 6 7 8 9 10 11 12

1 7.0 6.9 9.1 8.1 6.8 7.8 6.9 9.8 6.9 6.4 7.4 6.2
4 5.3 4.9 6.5 6.2 6.2 5.9 6.0 5.6 4.7 4.3 5.0 5.4
5 5.1 5.7 8.1 4.9 4.8 4.6 5.2 5.0 4.4 5.3 5.1
6 4.8 4.6 4.8 4.8 4.6 5.1 4.5 4.4 4.2 4.8 5.0 5.3
7 5.1 4.5 4.9 4.7 4.4 4.9 4.5 4.9 6.0 5.0 5.7
8 6.8 6.4 4.9 4.5 4.9 5.7 5.0 4.8 5.3 5.6 5.7 4.9
9 8.6 8.4 8.7 8.5 7.4 9.5 9.6 9.3 9.9 8.4
10 6.1 5.9 5.5 5.6 5.2 6.7 5.1 5.8 5.6 5.0 5.8 6.1
11 7.5 6.6 10.1 8.4 11.0 9.9 10.2 12.1 9.3 8.9 11.1
12 9.8 21.5 16.4 12.4 13.9 13.3 14.3 17.6 16.8 12.7 16.8 19.1
13 8.2 7.3 7.0 6.5 6.9 6.6 7.2 7.5 6.3 6.8 7.4
14 8.9 4.3 4.7 4.5 6.2 4.9 4.7 8.4 8.2
15 5.0 5.3 4.7 4.4 4.8 4.9 4.7 4.6 4.9 5.9 6.0 5.1
16 4.5 4.8 4.6 4.4 4.4 4.7 4.6 4.5 4.5 4.8 4.7 4.6
17 4.8 6.2 4.0 4.6 4.2 6.6 4.4 4.3 6.1 5.9 5.1
18 8.8 9.6 10.9 8.4 10.7 12.0 10.9 9.9 8.2 8.1 10.5
19 10.2 8.8 9.9 11.2 9.2 11.4 11.1 16.0 9.1 9.9 11.2 12.0
20 30.0 22.0 10.1 18.0 14.9 12.8 14.7 12.5 15.7 24.9 18.2 15.8
21 7.8 9.1 5.0 4.7 4.4 4.6 4.7 4.8 4.6 4.6 5.3 4.7
22 10.0 9.2 8.1 8.0 8.3 8.9 9.9 8.8 10.9
23 11.3 7.9 9.6 8.7 7.3 8.2 11.3 11.9 7.2 9.4 8.9 13.8
24 9.8 9.5 7.8 7.0 7.3 13.2 8.0 8.2 8.6 8.8 8.4 8.8
31 5.5 5.3 5.5 5.5 5.1 6.5 7.0 5.6 6.2 6.2 5.4 5.8
32 5.0 5.9 6.0 6.0 6.2 6.1 6.1 5.7 5.7 5.7 5.8 5.9
33 20.9 11.0 12.4 10.2 10.9 10.8 12.6 11.4 8.5 11.3 9.4 16.4
34 5.4 5.9 4.5 4.9 4.4 5.0 5.0 4.9 5.2 5.4 5.3
36 7.7 7.1 8.5 7.6 7.9 7.2 8.3 7.2 7.6 7.6 7.0 8.4
37 5.5 5.6 5.8 5.2 6.2 7.7 5.5 5.3 7.0 5.9 7.5
38 4.8 5.3 4.7 5.2 4.3 6.7 5.1 4.5 5.6 5.3 4.9 5.0
40 5.3 5.0 5.9 7.0 6.0 5.8 4.9 5.4 5.1 5.3 5.3 5.0
41 7.5 7.1 6.8 7.0 6.0 5.4 6.2 5.9 5.6 5.6 5.9
42 5.4 5.2 6.6 5.9 6.3 7.8 6.1 5.7 6.7 5.7 6.5 5.9
43 24.4 15.5 11.5 19.5 15.7 17.0 13.3 11.8 11.9 11.7 12.3 11.8
44 5.5 5.7 4.3 4.8 4.6 6.6 4.3 4.1 4.3 6.2 7.2 6.2
45 6.4 6.7 8.4 7.1 9.1 8.5 6.7 6.8 7.4 7.8 7.3 7.0
46 6.1 6.0 5.2 5.7 4.8 6.0 4.8 4.7 4.6 5.1 5.3 5.9
47 4.4 4.6 4.6 4.6 4.8 5.4 5.0 4.8 4.8 4.9 5.6 5.2
48 6.5 6.7 7.6 6.8 6.3 7.0 6.6 6.6 7.0 6.9 6.2 7.0
49 6.6 6.7 7.8 6.6 7.1 6.6 7.3 5.6 7.3 6.7 6.7 7.6
51 6.5 6.0 7.2 9.0 6.7 6.4 5.8 5.7 6.2 6.0 6.2 5.6
53 7.9 8.0 5.5 6.5 9.6 8.0 9.3 6.9 6.8 8.3 7.5 10.8
55 5.0 4.9 4.9 4.5 4.8 4.6 4.7 4.7 4.8 5.1 4.6 5.3
56 5.1 5.4 5.2 4.9 5.0 5.2 4.4 4.4 4.6 5.1 5.3 4.8
57 4.3 4.8 4.2 4.6 4.0 4.8 4.4 4.6 5.6 5.8 5.0
58 6.6 6.7 6.7 6.3 6.5 7.2 6.8 6.5 6.9 8.6 8.8 7.3
59 6.1 6.1 7.2 6.7 10.5 4.9 4.9 6.1 5.7 6.5 6.3
60 8.6 8.0 7.7 7.7 5.7 5.9 5.2 5.0 5.1 5.1 5.7 5.3
61 26.6 8.7 10.5 9.0 9.2 9.4 8.5 10.0
62 8.6 8.8 9.4 8.6 9.1 13.7 9.1 9.5 8.6 8.7 8.3
63 5.3 5.6 4.7 5.2 4.5 9.2 4.9 10.8 13.2 9.4 9.3 9.5
64 6.8 5.5 5.3 6.2 6.2 5.5 5.1 6.0 5.9 5.5 8.1
65 6.9 6.9 10.8 9.0 9.5 8.5 7.4 7.4 7.1 6.4 6.5 7.1
66 4.9 5.1 8.8 7.5 5.5 6.5 5.0 5.0 5.4 5.0 4.6 5.2
67 5.1 4.7 4.4 5.0 4.2 4.7 4.7 4.4 4.9 5.3 4.8 4.8
68 6.5 6.3 6.8 5.2 5.3 5.7 5.5 5.5 5.8 6.3 6.0
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Table B.3: CUORICINO energy resolutions (FWHM in keV) at 2615 keV.

Data set

Channel 13 14 15 16 17 18 19 20 21 22 23 24

1 8.5 8.0 12.5 6.1 6.8 5.9 6.0 6.3 7.3 6.7 6.9
4 5.8 4.8 4.6 4.5 7.9 4.7 4.5 4.5 4.4 5.1 5.1 5.1
5 6.3 5.2 4.7 4.5 12.8 11.2 14.5 14.4 6.1 5.4 5.8
6 5.0 4.5 4.3 5.0 6.1 5.1 4.9 4.6 4.6 5.1 5.2 4.7
7 6.8 5.1 4.9 5.3 9.5 5.2 5.2 5.2 5.3 5.7 5.2 5.2
8 6.2 5.4 5.1 5.6 5.6 5.1 5.2 5.0 6.0 5.3 5.2
9 10.6 10.7 8.6 6.8 7.5 7.2 8.4 8.6 8.9 7.6 8.7
10 7.8 6.6 5.7 6.1 16.9 6.4 5.9 5.5 5.5 7.2 5.4 5.0
11 10.2 9.2 7.9 12.5 8.3 9.2 10.4 8.8 7.9 9.3 8.1
12 20.3 13.0 16.7 8.6 30.0 21.2 17.9 17.0 16.9 15.1 15.3
13 6.9 6.8 6.9 7.4 7.8 6.5 4.2 6.4 6.3 8.1 7.5 6.9
14 7.4 6.3 5.7 5.6 8.0 5.8 5.8 5.7 5.8 5.8 5.5 4.7
15 6.5 5.2 4.6 5.2 6.1 5.6 5.9 5.9 5.1 4.6 4.8
16 5.1 4.9 4.8 6.0 5.8 4.6 4.6 4.6 4.6 5.1 4.6 4.6
17 5.5 4.6 4.6 4.4 5.3 5.1 5.0 4.8 5.6 4.2 4.4
18 9.6 8.7 10.7 10.0 12.7 13.3 11.5 11.5 11.2 10.3 10.1
19 9.5 9.7 10.8 14.4 9.5 10.4 9.5 8.8 11.1 10.2 9.4
20 18.8 16.6 14.7 17.3 18.7 19.8 17.9 14.6 15.0 19.3 18.8 12.8
21 4.9 4.5 4.4 4.3 5.5 4.9 5.2 4.7 5.2 4.6 4.5
22 10.6 10.3 8.5 8.4 7.6 8.1 7.3 7.0 7.5 7.6
23 11.3 8.4 10.4 7.7 9.1 10.5 8.7 8.7 13.5 8.5 9.2
24 8.2 8.7 8.3 9.7 8.0 7.4 7.2 7.9 7.7 9.0 9.1 9.6
31 5.8 5.4 5.5 7.2 9.3 5.8 5.0 5.6 5.6 6.1 6.1 5.8
32 6.0 5.0 5.5 5.4 9.2 6.5 5.8 6.3 6.3 6.3 6.8 6.9
33 13.7 11.7 11.2 10.9 10.4 11.1 12.6 11.5 11.3 11.6 10.3 10.2
34 6.1 5.3 4.7 4.7 5.7 5.2 5.4 5.0 5.9 4.7 4.9
36 8.6 7.5 8.1 7.4 8.0 7.4 8.0 8.2 9.1 7.4 7.2
37 6.4 6.1 7.2 6.9 5.9 5.6 5.4 5.3 5.9 5.3 5.3
38 5.4 6.2 4.9 5.0 7.3 5.8 4.6 5.5 5.4 5.6 5.8 5.4
40 5.4 5.3 5.2 5.0 7.1 5.2 5.0 5.3 5.3 5.5 5.2 5.0
41 7.9 6.4 5.7 6.3 9.4 5.9 5.2 5.7 5.7 6.1 6.2 7.2
42 6.2 5.5 6.0 7.2 6.2 5.5 4.8 7.4 7.4 6.4 5.6 5.5
43 10.8 10.8 12.3 17.2 12.1 12.3 13.0 12.3 12.2 13.4 13.1 12.5
44 6.9 6.8 5.3 4.0 6.6 5.0 4.7 4.9 5.0 4.4 4.5 4.8
45 8.0 9.7 6.2 11.0 10.4 10.6 8.2 9.9 10.2 6.6 6.1 6.6
46 6.1 6.3 5.1 7.1 5.7 5.2 5.1 5.3 5.3 5.7 5.2 5.3
47 6.1 5.9 4.6 5.3 5.7 5.2 5.5 5.4 6.3 6.1 5.9
48 6.6 6.9 7.2 6.3 7.2 7.0 6.8 6.9 6.8 6.3 6.5 6.6
49 7.3 7.5 6.9 7.2 8.6 6.3 7.4 6.6 6.6 8.3 6.7 5.8
51 6.2 6.3 6.6 5.0 9.0 7.3 5.7 6.4 6.1 6.4 6.2 6.4
53 7.6 6.4 11.1 7.8 7.0 8.0 7.9 7.6 7.4 7.1
55 5.2 4.9 5.0 6.1 5.7 4.9 5.1 5.2 5.1 5.2 4.7 4.8
56 7.4 5.1 5.2 5.0 4.7 5.0 5.0 5.0 5.8 4.8 4.9
57 6.2 4.6 3.9 3.7 4.5 4.1 4.3 4.2 5.4 5.0 5.2
58 7.7 7.4 11.7 7.4 11.5 8.4 7.5 7.9 7.9 6.5 6.3 6.9
59 6.9 4.6 4.8 5.4 7.6 5.7 5.6 5.3 5.3 5.8 5.9 6.2
60 5.1 5.8 5.8 5.1 7.7 6.0 5.3 5.0 5.0 5.4 5.3 5.7
61 8.0 8.9 10.9 7.4 8.6 8.9 10.1 10.4 8.5 7.4
62 7.8 7.7 9.0 8.7 9.0 8.1 7.5 8.1 8.1 8.3 7.4 7.4
63 11.0 14.9 17.8 6.2 6.5 5.3 5.1 5.5 5.5 5.9 5.4 5.8
64 6.2 6.1 5.4 7.8 9.5 7.8 7.9 6.3 6.3 5.9 6.0 7.3
65 7.0 6.9 7.2 6.8 8.6 7.6 7.9 7.3 7.3 8.5 7.9 7.6
66 6.8 6.0 8.8 5.1 6.7 8.3 5.4 5.4 6.2 5.6 5.8
67 5.0 5.1 4.9 5.9 5.0 4.6 5.3 5.1 5.5 5.3 5.5
68 6.7 6.0 5.8 6.1 6.9 6.1 30.0 5.7 6.1 6.3 6.0 6.5
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Table B.4: CUORICINO energy resolutions (FWHM in keV) at 2615 keV.

Data set

Channel 25 26 27 28 29 31 32 33

1 7.7 7.3 7.0 7.6 7.9 7.5 10.1 10.4
4 5.5 5.0 4.7 5.5 4.9 5.3 5.3
5 6.7 6.1 5.6 5.1 4.7 5.4
6 4.4 4.7 5.1 4.6 4.4 4.6 5.2 5.2
7 5.8 5.5 4.5 6.9 6.8 4.6 4.5
8 5.0 5.1 5.5 6.7 6.3 5.0 4.5 4.8
9 10.1 10.0 7.6 11.3 10.8 9.4 9.3 9.3
10 6.2 5.9 5.0 6.4 5.9 5.0 4.8
11 6.1 14.1 14.3 9.2 9.6 8.9 8.9
12 10.6 11.5 7.1 25.2 26.9 14.1 10.8 10.9
13 6.7 6.7 7.2 7.3 6.8 7.2 7.0
14 4.6 5.8 5.1 5.7 5.0 4.2 4.1
15 5.9 5.3 4.6 5.7 5.2 5.0 4.2 4.2
16 5.2 5.1 4.4 5.0 5.8 4.6 4.4
17 5.1 5.0 4.6 5.1 5.6 4.5 4.5
18 10.5 11.4 11.5 14.5 15.0 12.4 10.7 10.7
19 10.7 12.0 10.3 11.4 8.3 11.6 11.5
20 24.5 29.9 15.6 21.6 14.4 11.4 9.6 10.5
21 5.2 4.8 4.3 5.3 4.7 4.7 4.2 4.2
22 7.3 11.7 7.8 10.2 8.1 8.8 7.8 7.8
23 8.8 9.8 9.6 15.2 10.1 8.3 8.3 8.4
24 6.6 6.4 6.6 11.1 9.9 7.6 7.1 7.2
31 6.6 5.8 4.7 7.9 5.7 7.1 5.6 5.5
32 5.8 5.9 6.3 5.9 5.3 4.6 5.6 5.6
33 10.4 15.9 10.6 13.5 11.2 10.1 10.4 10.3
34 5.4 5.1 4.6 5.6 5.2 5.0 5.1
36 8.1 8.8 7.7 11.2 10.6 7.8 9.0 9.0
37 5.5 6.7 5.4 9.7 8.7 5.5 5.0 5.0
38 5.0 4.9 4.8 5.0 5.0 4.4 4.2 4.3
40 5.1 5.2 5.6 4.9 5.4 5.4 5.5 5.6
41 7.7 6.9 6.0 9.3 10.7 6.2 5.9 6.2
42 7.4 6.6 6.2 10.1 9.4 8.2 6.7 6.7
43 12.8 11.9 10.2 14.1 12.7 11.9 13.4 14.8
44 4.9 4.7 4.5 5.5 7.3 4.3 3.6 3.8
45 8.0 7.0 6.1 8.0 8.5 5.5 5.5
46 5.6 5.7 5.5 7.8 5.5 6.9 4.2 4.3
47 6.1 5.7 5.4 5.7 4.9 5.1 4.8 4.8
48 7.2 8.3 6.9 7.1 4.9 4.9
49 6.5 4.6 6.4 5.9 5.2 4.9
51 5.4 5.8 6.5 6.7 6.1 6.3 6.3 6.2
53 5.7 7.3 9.6 8.8 9.1 9.0
55 5.7 5.5 4.9 7.3 4.7 5.7 4.1 4.1
56 5.2 5.4 5.9 5.1 5.8 5.0 4.8 4.8
57 4.1 4.0 4.1 4.8 6.9 4.1 4.2 4.2
58 6.8 6.8 6.7 7.8 9.0 6.4 6.4 6.4
59 5.2 5.2 5.1 5.4 5.2 5.3 4.6
60 5.2 5.3 5.7 6.2 6.7 4.8 5.0 5.0
61 7.8 8.8 13.7 13.2 8.4 8.5 8.4
62 7.6 7.9 9.9 8.0 8.0 7.0 6.9
63 6.0 5.8 5.0 7.0 5.8 6.3 5.1 5.4
64 5.9 5.9 6.0 5.9 7.2 5.5 5.8 5.9
65 7.7 7.6 7.4 7.5 10.2 7.3 11.3 11.3
66 6.3 5.7 5.8 6.9 7.0 5.1 7.7 7.5
67 5.2 5.1 4.5 7.3 7.0 5.8 5.0 5.0
68 6.5 6.4 6.4 5.9 5.6 5.8 5.3 5.1
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Table B.5: Three Towers Test energy resolutions (FWHM in keV) at 2615 keV.

Data set

Channel 1001 1002 1003 1004

1 4.8 4.9 5.1 4.9
3 4.8 4.6 4.3 5.9
4 5.5 7.6 5.0 5.1
5 4.6 4.3 4.4 4.8
7 4.6 4.3 4.1 4.7
13 4.7 4.5 4.6 4.7
14 5.5 4.5 4.7 4.4
16 6.6 5.6 5.8 7.1
17 7.8 8.5 7.9 6.7
18 8.1 11.2 10.5 11.4
19 6.4 5.6 5.0 6.7
27 4.4 4.5 4.7 4.4
31 7.8 6.2 3.9 13.4
32 21.5 22.1 13.8 11.8
35 5.4 4.5 4.8 8.0
40 6.5 5.9 5.4 7.4
44 11.5 8.4 8.0 11.1
49 6.4 5.9 7.7 6.2
51 11.2 7.9 7.4 13.5
57 8.4 9.5 8.0 9.6
58 9.5 6.8 7.6 6.8
59 7.3 6.9 7.1 7.0
61 6.8 6.3 6.1 6.0
62 5.4 5.3 5.2 5.0
63 9.7 10.8 10.0 9.4
64 6.5 6.6 7.0 7.9
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Table B.6: CUORICINO noise efficiencies (%) for data sets 1–12.

Data set

Channel 1 2 3 4 5 6 7 8 9 10 11 12

1 99.5 96.5 94.4 96.3 99.7 99.0 99.0 99.4 99.2 99.1 99.5 96.0
4 99.5 97.4 95.3 96.8 99.8 99.7 99.5 99.7 99.3 99.8 99.8 99.6
5 99.1 97.8 94.4 95.4 99.6 99.0 99.4 99.5 99.8 99.8 99.7
6 98.4 97.6 95.3 96.1 99.5 99.7 99.6 99.6 99.6 99.7 99.8 99.8
7 99.6 97.7 93.8 94.9 99.4 99.3 99.5 99.6 99.8 99.6 99.7
8 99.4 98.0 93.2 94.3 99.4 99.2 99.1 99.4 99.5 99.6 99.7 99.6
9 98.0 97.4 97.4 100.0 100.0 99.6 99.8 99.6 99.6 99.6
10 98.9 97.7 96.4 97.8 99.6 99.2 99.4 99.2 99.6 99.7 99.6 99.5
11 99.5 98.4 96.7 99.7 99.6 99.5 99.6 99.9 99.7 99.6 99.4
12 99.5 98.1 97.3 98.4 99.4 99.6 100.0 99.6 99.8 99.9 100.0 99.8
13 99.3 97.5 96.2 97.9 99.0 99.6 99.5 99.8 99.8 99.9 100.0
14 99.1 94.3 95.2 99.4 99.1 98.9 99.5 99.2 99.8
15 99.5 98.1 94.6 95.3 99.7 99.6 99.4 99.6 99.6 99.8 99.5 99.7
16 99.4 97.9 94.9 96.0 99.8 99.7 99.5 99.6 99.7 100.1 99.6 99.9
17 99.2 98.1 94.0 94.9 99.5 99.4 99.4 99.5 99.4 99.6 99.5
18 98.6 97.4 98.4 100.0 100.0 99.5 99.9 100.0 100.0 100.0 100.0
19 99.7 98.3 96.7 98.0 100.0 99.8 99.6 99.7 100.0 99.9 99.9 99.9
20 99.6 98.5 98.3 98.8 100.0 98.9 99.5 99.5 100.1 99.8 99.2 99.8
21 99.2 98.3 96.7 97.4 99.7 99.7 99.7 99.6 99.5 99.7 99.8 99.7
22 99.2 98.3 96.2 97.3 100.2 99.5 99.7 99.8 99.8
23 99.3 100.2 97.2 97.7 99.8 99.9 99.7 99.6 99.6 99.9 99.9 99.8
24 98.7 96.7 96.8 98.1 99.4 99.7 99.6 99.6 99.9 99.8 99.7 99.8
31 99.1 98.1 96.6 97.8 99.7 99.4 99.4 99.4 99.5 99.6 99.5 99.5
32 99.3 98.3 95.5 96.6 99.5 99.3 98.8 99.2 98.7 99.7 99.5 99.3
33 99.3 98.4 98.1 98.6 99.9 99.7 99.7 99.1 99.9 99.8 99.9 100.0
34 99.3 98.0 94.9 96.5 99.6 99.3 99.3 99.4 99.7 99.5 99.7
36 99.5 98.2 95.7 95.7 99.5 99.7 99.4 99.5 99.9 99.7 100.0 99.4
37 99.2 92.8 93.9 99.5 99.3 99.4 99.6 99.5 99.5 99.7 99.8
38 99.1 96.6 92.8 94.2 99.5 99.5 99.2 99.2 99.5 99.2 99.7 99.4
40 98.2 96.2 90.5 95.3 99.5 99.5 98.8 99.1 99.0 99.4 99.3 99.4
41 99.3 97.9 93.3 94.5 99.4 99.4 99.4 99.2 99.5 99.6 99.7
42 99.1 98.2 95.3 95.3 99.7 98.7 97.6 99.1 99.0 99.7 99.7 99.8
43 99.2 98.1 87.9 92.3 98.2 95.8 98.7 99.4 99.0 96.2 99.2 99.7
44 99.5 98.0 95.3 96.2 97.5 99.8 99.2 99.7 99.3 99.6 99.8 99.7
45 97.9 91.5 93.6 93.3 94.8 98.4 98.0 99.5 99.2 99.6 99.8 99.4
46 99.4 97.7 96.1 97.1 99.7 99.4 99.1 99.3 99.4 99.8 99.7 99.8
47 98.5 97.0 91.2 93.3 99.6 99.5 99.2 99.0 99.3 99.5 99.4 99.5
48 91.5 91.1 96.4 96.2 99.7 99.6 99.0 99.6 99.6 99.8 99.7 99.6
49 99.1 96.9 96.7 97.3 99.6 99.2 99.2 99.4 99.6 99.8 99.8 99.7
51 99.1 97.3 91.2 91.7 99.6 99.3 98.7 99.4 99.1 99.6 99.6 99.5
53 99.3 97.4 92.5 93.9 99.6 99.3 98.7 99.5 99.8 99.7 99.7 99.8
55 98.8 97.8 92.6 93.4 99.4 99.4 99.4 99.4 99.1 99.3 99.6 99.5
56 99.0 97.7 94.2 95.1 99.6 99.6 99.5 99.5 99.6 99.4 99.7 99.6
57 98.8 97.3 93.6 95.6 99.5 98.1 99.3 99.5 99.6 99.7 99.7
58 98.3 96.7 95.6 96.4 99.7 99.4 99.6 99.5 99.5 97.5 96.3 97.1
59 99.0 95.7 89.2 77.4 82.8 98.1 99.5 99.3 96.9 99.8 96.7
60 99.4 97.5 92.6 93.9 97.4 99.6 99.3 99.5 99.4 99.6 99.8 99.7
61 99.5 91.5 98.3 98.1 99.2 99.6 99.2 99.7
62 99.0 98.4 97.1 98.5 99.9 99.5 99.5 99.4 99.6 99.8 99.6
63 98.8 98.2 94.8 95.7 99.5 65.7 65.8 85.7 92.7 99.0 98.1 99.5
64 99.2 97.9 96.3 97.7 99.5 99.7 99.5 99.6 99.7 99.9 99.6
65 98.9 97.5 94.6 95.1 91.9 97.5 96.7 99.5 99.5 99.6 99.6 99.7
66 97.4 96.6 89.6 84.7 80.6 97.5 92.6 98.7 99.2 99.0 99.5 99.1
67 98.9 98.0 95.4 97.1 99.4 99.4 99.2 99.4 99.4 99.4 99.5 99.5
68 98.8 97.0 93.4 94.0 99.5 99.5 99.4 99.4 99.5 99.2 99.6
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Table B.7: CUORICINO noise efficiencies (%) for data sets 13–24.

Data set

Channel 13 14 15 16 17 18 19 20 21 22 23 24

1 98.5 99.8 60.4 100.0 98.8 99.7 99.0 99.7 97.2 97.2 98.5
4 100.1 99.5 100.6 99.7 98.7 97.5 99.7 99.9 99.8 99.3 98.8 99.4
5 99.9 99.7 99.4 99.3 94.8 92.5 95.7 97.2 99.7 99.6 100.0
6 100.1 99.7 99.7 97.0 98.4 99.5 99.9 99.5 99.9 99.5 99.2 99.8
7 99.8 99.9 99.7 99.5 98.5 99.6 99.4 99.7 99.7 99.7 99.4 99.5
8 100.1 99.8 99.7 99.6 98.9 99.6 99.6 99.4 99.3 98.7 98.7
9 100.1 99.9 99.7 100.0 99.7 99.9 100.0 99.9 99.1 99.7 100.2
10 99.6 99.9 99.7 99.7 99.3 99.3 99.5 99.6 99.7 99.5 99.0 99.0
11 99.5 99.3 99.5 99.5 99.7 99.9 99.5 99.6 100.0 99.6 99.6
12 99.7 100.1 99.7 89.6 99.9 99.9 99.9 99.9 99.9 99.7 99.2
13 100.1 99.6 98.3 99.3 96.2 98.7 98.7 99.7 99.8 99.3 98.9 99.8
14 100.2 98.4 98.6 99.6 98.6 99.7 99.6 99.9 99.5 99.5 99.0 99.9
15 99.9 99.6 99.5 99.2 99.2 99.5 99.6 99.8 99.3 98.8 99.4
16 100.0 99.7 99.8 100.1 99.6 100.0 99.7 99.7 99.4 99.7 99.6 99.8
17 99.9 99.9 99.7 99.5 99.3 99.5 99.2 99.7 99.2 99.2 99.6
18 100.2 100.0 99.8 99.8 99.7 99.8 99.8 99.9 99.9 99.7 99.7
19 100.0 100.0 100.0 99.9 100.0 99.7 100.0 99.9 99.9 99.9 99.9
20 100.2 100.0 98.3 99.6 100.0 98.4 96.9 99.6 98.2 99.9 100.0 100.0
21 99.9 100.0 99.8 99.6 99.8 99.8 99.9 99.5 99.7 99.6 99.8
22 100.1 99.9 99.8 99.9 99.8 99.8 99.8 99.4 99.7 99.3
23 99.9 99.8 100.0 100.0 99.8 99.4 99.9 99.9 99.8 99.8 100.0
24 100.1 99.9 99.9 99.8 98.6 99.7 99.7 99.4 99.9 94.6 93.8 95.1
31 100.0 99.4 98.1 99.5 99.3 99.4 99.7 99.2 99.5 99.5 99.1 99.5
32 100.0 99.8 99.5 99.9 97.8 98.6 99.7 99.8 99.8 96.2 93.5 99.3
33 99.9 99.6 97.6 99.7 98.9 100.0 99.2 99.2 99.6 99.8 99.7 99.7
34 99.9 99.8 99.4 99.6 99.8 99.4 99.3 99.7 99.5 99.2 98.8
36 100.1 99.7 99.7 99.9 99.7 99.7 99.5 99.9 99.6 99.6 99.4
37 100.1 99.6 100.0 99.5 99.7 99.7 100.0 99.7 99.6 99.1 99.5
38 100.0 99.8 99.6 98.7 97.6 98.9 99.4 98.7 99.4 99.1 98.2 98.9
40 99.5 99.6 99.5 99.3 97.3 99.5 99.0 98.9 99.2 99.5 98.8 99.4
41 99.5 99.7 99.7 99.7 97.3 99.0 99.5 99.3 99.8 99.3 99.1 99.5
42 99.9 99.7 99.7 96.4 98.3 99.4 99.5 99.7 99.9 99.6 98.7 99.8
43 99.8 99.1 99.5 99.9 98.7 98.4 97.7 97.1 99.3 98.2 97.1 99.4
44 99.8 99.0 98.2 99.2 98.6 99.6 99.6 99.9 99.7 99.6 99.5 99.8
45 100.0 99.6 99.6 98.3 97.0 96.1 93.8 98.0 99.1 99.4 99.4 99.6
46 99.9 99.5 99.5 99.9 99.1 99.3 99.3 99.3 99.7 99.3 99.1 99.8
47 99.5 99.4 99.4 99.8 99.3 99.2 99.6 99.0 98.4 98.4 99.2
48 100.1 99.8 98.7 99.9 99.6 99.7 99.8 99.9 99.7 99.5 99.5 99.8
49 100.0 99.7 99.7 99.9 99.6 99.8 99.7 99.5 99.6 99.7 99.6 99.7
51 99.7 99.7 99.4 98.8 98.4 99.5 99.5 99.6 99.8 99.1 99.3 99.1
53 99.9 99.8 99.5 99.5 99.8 99.3 99.8 99.6 99.7 99.7
55 99.7 99.4 99.4 99.9 99.2 99.6 99.5 98.9 99.6 99.4 99.2 99.9
56 100.0 99.5 99.5 99.7 99.0 99.6 99.9 99.6 99.5 99.2 99.5
57 99.8 99.5 99.5 99.9 99.1 99.4 99.4 99.6 98.7 97.8 98.5
58 99.3 97.9 73.7 95.3 98.8 95.6 89.2 97.2 98.3 99.6 99.4 99.6
59 99.3 92.1 99.6 100.0 99.1 99.3 99.8 99.7 99.8 99.3 98.5 97.5
60 99.7 99.5 99.7 99.7 81.1 84.4 98.9 99.5 99.9 99.1 99.1 99.3
61 99.9 99.8 99.1 99.9 99.9 99.7 100.0 99.8 99.4 99.7
62 99.8 99.8 99.8 99.4 98.3 98.9 99.6 99.7 99.9 98.9 98.5 99.6
63 99.8 99.5 96.1 81.2 98.9 99.6 99.5 99.1 99.3 99.5 99.5 99.3
64 100.1 99.9 99.6 96.4 98.1 99.5 99.9 99.9 100.1 99.2 98.6 98.6
65 99.8 99.8 99.8 99.6 98.6 99.2 99.4 99.5 98.7 99.1 98.9 99.7
66 99.7 99.4 93.7 99.4 96.8 72.5 94.9 98.8 98.6 98.1 98.9
67 99.9 99.8 99.5 99.2 99.2 99.4 99.6 99.6 99.3 99.1 99.6
68 99.7 99.3 99.4 99.1 97.0 97.8 99.8 99.7 99.6 99.1 98.8 99.3
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Table B.8: CUORICINO noise efficiencies (%) for data sets 25–33.

Data set

Channel 25 26 27 28 29 31 32 33

1 96.5 98.9 98.7 98.9 99.1 98.1 93.3 92.6
4 99.4 99.6 99.9 99.7 99.8 96.6 97.6
5 99.4 99.7 99.8 99.7 99.9 99.7
6 99.4 99.8 99.8 99.8 99.9 99.8 98.4 98.2
7 99.2 99.5 99.6 99.7 99.7 98.6 98.4
8 99.0 99.0 98.8 99.3 99.6 99.6 98.4 97.8
9 99.7 99.8 99.8 99.2 99.9 99.9 99.1 98.9
10 99.3 99.6 99.6 99.7 99.8 98.7 98.4
11 98.8 99.6 100.0 99.6 99.8 98.8 99.0
12 99.7 99.9 95.1 99.9 100.1 99.8 99.1 99.3
13 99.5 94.6 99.6 99.8 99.8 99.0 99.1
14 99.3 99.6 99.6 99.3 99.8 97.0 97.4
15 99.4 99.5 99.6 99.8 100.0 99.8 98.9 98.3
16 99.5 99.8 100.0 100.0 99.8 99.0 98.5
17 97.9 99.5 99.6 99.7 98.6 97.5 97.8
18 99.7 100.0 99.9 99.9 100.1 99.9 99.2 99.6
19 99.5 99.9 99.9 100.1 99.9 99.0 99.1
20 99.8 99.7 100.1 97.5 98.8 99.0 98.7 99.4
21 99.6 99.8 99.8 99.9 100.0 99.7 98.9 98.8
22 99.4 99.7 99.7 96.8 99.9 99.5 97.7 98.3
23 99.7 99.8 100.0 99.8 100.0 99.8 98.9 99.1
24 95.7 98.7 99.6 99.2 97.6 98.1 98.4 99.3
31 98.7 99.6 99.9 99.4 99.7 99.5 98.4 98.3
32 99.3 99.5 99.1 99.4 99.5 99.7 98.6 98.6
33 99.6 99.8 99.9 99.8 100.1 99.8 98.9 98.6
34 99.2 99.6 99.9 99.6 99.2 98.7 98.4
36 99.1 99.8 99.5 99.9 99.9 99.8 99.0 97.3
37 99.5 99.5 99.8 99.8 99.9 99.8 98.9 95.0
38 99.2 99.4 99.5 99.3 99.8 99.4 98.6 93.0
40 99.3 99.3 99.4 99.7 99.6 99.3 97.9 96.1
41 96.0 98.9 92.8 96.4 95.4 97.3 97.7 96.1
42 97.4 98.8 97.3 98.1 95.6 98.0 98.9 94.6
43 86.9 94.6 92.0 97.0 98.9 97.7 98.6 99.1
44 98.4 99.7 99.5 99.8 99.8 99.7 98.7 98.8
45 96.9 97.9 94.8 93.0 97.6 97.5 96.2
46 99.0 99.5 99.6 99.7 99.9 99.8 98.4 98.8
47 98.9 99.3 99.7 99.2 99.6 99.5 98.7 97.1
48 99.4 99.7 100.0 99.8 98.8 98.3
49 99.5 99.9 99.9 99.6 98.9 98.7
51 99.3 99.4 99.6 99.4 99.8 99.6 98.6 97.7
53 99.5 99.7 99.8 99.9 98.8 98.5
55 99.1 99.5 100.0 99.6 99.6 99.7 98.7 97.2
56 99.2 99.6 99.8 99.8 99.8 99.7 98.7 97.9
57 99.2 99.5 99.8 99.6 99.6 99.5 98.8 98.2
58 99.2 99.7 99.7 99.7 100.0 99.7 96.0 98.7
59 99.2 99.5 99.7 99.5 99.6 97.7 97.6
60 94.8 98.3 98.6 99.2 99.0 98.4 98.5 98.3
61 99.4 99.4 99.4 99.8 99.5 98.8 97.9
62 99.5 99.4 99.8 99.6 99.7 98.9 98.9
63 99.1 99.6 100.0 99.6 99.7 99.8 98.6 97.9
64 99.3 99.7 99.8 99.7 99.9 99.7 98.5 98.1
65 99.0 99.5 99.9 99.5 99.6 99.7 96.7 94.6
66 89.1 99.4 99.7 98.9 97.4 97.6 86.7 88.4
67 98.9 99.5 99.7 99.5 99.7 99.8 98.4 98.3
68 99.4 99.4 99.9 99.0 99.6 99.5 98.4 97.8
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Appendix C

Generalized pulse amplitude
measurement algorithm

One of the main steps in the first-level data analysis of CUORICINO or
CUORE bolometers is to measure the pulse amplitudes in a way that maximizes
the signal-to-noise ratio in order to obtain the best possible resolution. Different
approaches to solving this problem can be taken, including, for example, filtering
or pulse fitting. The standard method used in CUORICINO analyses is the opti-
mal filter, discussed in Sect. 4.4. This appendix describes an alternative algorithm
that was developed to measure the pulse amplitudes with minimum variance due
to noise. The method has similarities to a frequency-domain digital filter but is
not a filter per se. It may be considered to be more general than the optimal filter
because it considers the full covariance matrix of the Fourier components of the
noise rather than only the noise power spectrum.

C.1 Description of the problem

A CUORICINO pulse consists of 512 digitized values recorded by a 16-bit
analog-to-digital converter (ADC). An example CUORICINO pulse is shown in
Fig. C.1. The time interval spanned by the 512 values is 4.096 seconds, and the
range of 16-bit values (0 to 65535) corresponds to 0 V to 10 V. For CUORE
the sampling rate may be higher and the acquired time interval longer, but the
principle of the amplitude algorithm is the same.

The resolution goal for CUORE is 5 keV FWHM at 2527.5 keV. Translating
FWHM to Gaussian sigma, the allowed fractional error on the amplitude is

σE
E

=
5 keV/(2

√
2 ln 2)

2527.5 keV
= 8.4× 10−4. (C.1)

Therefore, pulse amplitude measurements must be accurate to better than 0.08%.
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Figure C.1: A CUORICINO pulse on channel 7 of run 737. This pulse was caused
by a gamma from the 2615 keV line of 208Tl. The units on the vertical axis are
ADC values, and the units on the horizontal axis are digital samples.



168

C.2 Variation in pulse onset time, t0

The recording of pulses is controlled by a threshold trigger. For CUORICINO
the first 125 points (1 s) of the acquired time window are before the trigger
fired, allowing the pre-pulse baseline level to be measured. Since the triggering is
based on the pulse exceeding the baseline level by a specified amount, pulses with
different amplitudes cause the trigger to fire at different points in their evolution:
Larger amplitude pulses exceed the threshold earlier in their evolution, i.e. closer
to the actual start time, t0, of the pulse. Therefore, a larger amplitude pulse is
shifted to the right within the acquired window compared to a smaller amplitude
pulse (Fig. C.2). This effect is known as slewing.

The first step in the amplitude calculation is to correct for this variation in
pulse onset time. The correction is necessary because the amplitude algorithm is
based on the shape of the pulse in the frequency domain (as will be described in
Sect. C.3). It might appear that a time translation of the pulse merely affects the
phase of the Fourier components, and this is true if and only if the pulse returns
to the baseline level within the acquired window. The pulse shape is different
for every channel, and for some channels the pulse has a long decay time and
does not return to the baseline within the window (Fig. C.3). For these channels,
the Fourier component magnitudes, in addition to their phases, depend on the
onset time of the pulse within the window. Therefore, it is important to perform
an alignment of the pulses. The alignment is performed by determining the t0
offset with respect to the average pulse and truncating an appropriate number of
points at the beginning and end of the pulse as described in the following two
subsections.

C.2.1 Determining the t0 offset

To align the pulses on a particular channel, it is enough to know the offset
between the t0 of each pulse and that of the average pulse for the channel, tavg

0 :

toffset ≡ t0 − tavg
0 . (C.2)

Determining the offset is much easier than determining the actual t0. The offset
is determined by fitting the derivative of the average pulse to the derivative of the
pulse allowing the average pulse derivative to shift left or right while normalizing
the height of the average pulse to the height of the pulse, where for this purpose the
height is taken as the maximum minus the baseline (Fig. C.4). One could instead
allow the height to float in the fit; this was tested, and no significant difference
was found, so the height is fixed in order to improve the speed of the fit. In order
to obtain a continuous function representing the average pulse derivative, a cubic-
spline interpolation is used. The function is set to 0 outside the bounds of the
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Figure C.2: The pulse onset time, t0, measured with respect to the start of the
acquired window varies with pulse amplitude. The larger amplitude pulse (blue) is
shifted to the right with respect to the smaller amplitude pulse (red); this is easy
to see from the fact that for a time the smaller pulse exceeds the larger one. The
energy of the blue pulse is 2615 keV, and the energy of the red pulse is 511 keV.
Point 125, where the two pulses exceed their baseline levels by the same amount,
corresponds to the time that the threshold was crossed.
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Figure C.3: This 2615 keV CUORICINO pulse on channel 6 of run 1203 has a
long decay time and does not return to the baseline within the acquired window.

original acquired window, and the fit is performed excluding the first 16 points and
last 16 points in the window so that the average pulse derivative function should
not have to be evaluated outside the bounds of the original acquired window. The
derivatives are computed as two-sided derivatives by averaging the derivative to
the left and the derivative to the right.

The error on the offset may be estimated by adding noise samples to the
average pulse and running the noise-added pulses through the algorithm. Of
course, the error is greater for smaller amplitude pulses so the average pulse should
be scaled appropriately. As an example, the error on the offset for a pulse on
channel 1 with an energy close to 2.5 MeV is estimated to be 0.017, i.e. 1.7% of
the spacing between digitized samples (Fig. C.5).

In Fig. C.6, the pulse amplitude vs. offset is plotted for channel 1 of the
calibration run 737. The figure shows how lower amplitude pulses are shifted left,
toward more negative offsets. The figure also shows the inherent jitter in the
trigger, such that for a given amplitude the offsets vary within a range of about
1 unit.
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Figure C.4: Fit of the derivative of a pulse with a cubic-spline interpolation of
the average pulse derivative. This pulse is from channel 31 of run 737, and the fit
determined the offset to be toffset = −2.58 in units of digital samples.
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Figure C.5: Histogram of offsets (in units of digital samples) obtained by adding
noise to the average pulse scaled to roughly the amplitude of 2.5 MeV events. The
data are from channel 1 of run 738. From the sigma of the Gaussian fit, the error
on the offset is estimated to be 1.7% of the spacing between digitized values.
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Figure C.6: Pulse amplitude vs. offset for channel 1 of run 737. The blue points
are normal triggered events, and the red points are heater events.

C.2.2 Truncating the pulse

To align the pulses based on their offsets, it is necessary to shift the pulses
left or right until they are aligned with the average pulse. It is not possible to
retain all 512 points after such a shift: If the pulse is shifted left, there are missing
points at the right side, and vice versa. Therefore, we truncate the average pulse
by cutting off the sides; we remove the first 16 points on the left and the last
16 points on the right. Then, each pulse can be shifted until aligned with the
average pulse by truncating the appropriate number of points from the left and
from the right. For example, if a pulse has an offset of −2, then 14 points would
be removed from the left and 18 from the right, leaving the pulse aligned with the
average pulse. For the purpose of truncation, the offset determined from the fit
to the derivative is rounded to the nearest integer.

C.2.3 Residual offset

After truncation there remains a residual offset between the truncated pulse
and the truncated average pulse equal to the difference between the offset and
the rounded offset. To correct for the residual offset, for each pulse the average
pulse is resampled according to the residual offset as follows: First, the average



174

pulse is interpolated by a cubic-spline. Since the average pulse should be smooth
and noise-free, the cubic-spline interpolation should provide a good continuous
representation of the average pulse, at least for the low frequencies we will use
to construct the amplitude. Then, the spline-interpolation of the average pulse is
resampled to obtain 480 discrete points (= 512− 16− 16) matching the offset of
each pulse. The resampled average pulse for each pulse is used as input to the
amplitude algorithm described in the next section.

C.3 Derivation of the amplitude algorithm

We assume that the function, p(t), representing a pulse as a function of time
within the acquired window may be represented to a good approximation as

p(t) = b+ a · s(t− t0) + n(t), (C.3)

where b is a constant baseline level, a is the pulse amplitude, s(t) is the ideal
pulse shape, t0 is the onset time of the pulse – s(t − t0) = 0 for t < t0, and n(t)
is the noise. Technically, s(t) should be normalized to unit amplitude. Written in
discrete time,

pm = b+ a · sm + nm, (C.4)

where m = 0, . . . , N − 1 with N = 480 for a truncated CUORICINO pulse. After
the alignment described in the previous section, there is no need to mention t0
explicitly anymore; the ideal pulse shape, sm, is taken as the resampled average
pulse, which includes the correct t0 for each pulse.

The amplitude algorithm operates in the frequency domain where the pulse is
represented as

p̃k =
N−1∑
m=0

pm e
−2πikm/N , (C.5)

where k = 0, . . . , N − 1. Only the k = 0 frequency component, p̃0, depends on b
under the assumption that b is constant for the duration of the pulse. For k > 0,

p̃k = a · s̃k + ñk. (C.6)

To isolate a, we divide by s̃k:

a =
p̃k
s̃k
− ñk
s̃k
. (C.7)

In practice, we do not know ñk and must work with only the first term on the
right-hand-side of Eq. (C.7). Averaging over many pulse samples, 〈ñk/s̃k〉 =
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〈ñk〉/s̃k = 0 since the phase of ñk is randomly distributed according to a uniform
distribution between 0 and 2π. Therefore,〈

p̃k
s̃k

〉
= a, (C.8)

so p̃k/s̃k is an unbiased estimator of a for each k > 0. Although p̃k/s̃k averages
to a real number, for an individual pulse it will have a small imaginary part (due
to the noise). Therefore, we work with the real part, which is clearly also an
unbiased estimator of a and which we will denote by ck to mean the contribution
from the kth frequency:

ck ≡ Re
(
p̃k
s̃k

)
. (C.9)

Each ck is an estimator of the amplitude, a, and we want to form a weighted
average of them in such a way that minimizes the variance due to noise. We write
the estimator, â, of the amplitude as a linear combination of the ck with weights
wk and seek to choose weights that minimize Var(â):

â =
M∑
k=1

wk ck, (C.10)

where M is some maximum frequency, which could be as high as the Nyquist
frequency but is typically chosen smaller to limit the size of the covariance matrix
which must be inverted (to be described below). We require that the weights sum
to 1 so that 〈â〉 = a, where the average is taken over an ensemble of pulses with
true amplitude a in the presence of noise. The variance of â is exactly given by
linear propagation of errors to be, in matrix notation,

Var(â) = wTV w, (C.11)

where V is the covariance matrix for the ck. How to determine V from the data will
be discussed in Sect. C.4. Thus, the problem of choosing the weights becomes the
problem of minimizing the quadratic form in Eq. (C.11) subject to the constraint

M∑
k=1

wk = 1. (C.12)

The constraint may be expressed in matrix notation by introducing a column
matrix, u, whose elements are all 1: uk = 1 for each k. Then, Eq. (C.12) may be
written as

uTw = 1. (C.13)
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We solve the minimization problem by the method of Lagrange multipliers. In-
troducing a Lagrange multiplier λ, we minimize

wTV w + λ(uTw − 1). (C.14)

The derivative with respect to λ recovers the constraint equation, and differenti-
ating with respect to the M components of w and writing the result in a column
matrix, we have

∂w(wTV w + λuTw) = 2V w + λu (C.15)

= 0 (C.16)

⇒ w = −λ
2
V −1u. (C.17)

After solving for λ from the constraint equation, we have the result for the weights:

w =
V −1u

uTV −1u
. (C.18)

By substituting this result into Eq. (C.11), we obtain the minimum variance and
theoretical amplitude resolution to be:

Var(â) = wTV w (C.19)

=
(V −1u)TV (V −1u)

(uTV −1u)2
(C.20)

=
1

uTV −1u
, (C.21)

σâ =
1√

uTV −1u
. (C.22)

C.4 Determining the covariance matrix

The formula for the optimal weights, Eq. (C.18), requires the inverse of the
covariance matrix of the ck. Here we show how to obtain the covariance matrix
from the noise samples. Starting with the definition of covariance,

Vij = 〈cicj〉 − 〈ci〉〈cj〉 (C.23)

=

〈(
a+Re

(
ñi
s̃i

))(
a+Re

(
ñj
s̃j

))〉
− a2 (C.24)

=

〈
Re
(
ñi
s̃i

)
Re
(
ñj
s̃j

)〉
(C.25)

= 〈cnoise
i cnoise

j 〉, (C.26)
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where the last line contains frequency contributions to the amplitude from pure
noise samples. Since the offset is irrelevant for pure noise, it is set to 0 in computing
the frequency contributions from the noise samples.

C.5 Comparison with the optimal filter

During the processing of the CUORICINO data, the pulse amplitudes were
measured with both the optimal filter and the algorithm described here. The
gain stabilization and energy calibration were performed independently for the
two sets of pulse amplitude measurements. The energy spectra produced from
the optimal filter pulse amplitudes and from the pulse amplitudes computed by
this algorithm are shown in Fig. C.7. Comparison of spectra shows no apparent
difference in performance between the two techniques. In particular, the energy
resolutions are virtually identical. Therefore, the standard optimal filter is used
in this analysis. Nevertheless, having two independent applications of the first-
level data analysis procedures, starting from the two different pulse amplitude
measurements, provides a useful cross-check on the data processing. For example,
if small spectral features are consistent between the two energy spectra, it builds
confidence that the features are real physical effects and not artifacts such as
miscalibration of one channel for one data set.

C.6 Implementation in Diana modules

The algorithm described in this appendix is implemented in the Diana module
MBOBFilter, which employs two classes: QOffset for computing the offset by the
method of Sect. C.2 and QBAmplitude for computing the contributions from each
frequency by the method of Sect. C.3. The optimal weights are computed by the
module MBComputeWeights, which forms the covariance matrix from Eq. (C.26)
and computes the weights according to Eq. (C.18).

C.7 Use in rejection of spurious pulses

The quantities computed in the course of generating the amplitudes may also
be useful in the rejection of spurious triggered events. The contribution from
the kth frequency, ck, defined in Eq. (C.9) probes the shape of a pulse at the
frequency k. For real pulses, ck has an expectation value (namely, the amplitude
of the pulse) and an error (found from Eq. (C.26)). Cuts can be set on each ck at
a chosen number of sigma from their weighted average, â, or a cut can be set on
the χ2 statistic that measures the compatibility of the ck with â.
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Figure C.7: CUORICINO spectrum obtained from pulse amplitudes measured
with the optimal filter (red) and the algorithm described here (blue). The bottom
plot is a zoom of the top plot around the 0νββ decay region of interest. The
calibration function is parameterized as a second-order log polynomial in both
cases, although the calibration coefficients are computed separately.
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