2018-03-30 Study of rare nuclear processes with CUORE

Author: 

C. Alduino et al. (CUORE Collaboration)

Journal: 
International Journal of Modern Physics A
Year: 
2018
Volume: 
33
Page: 
No. 09
DOI: 
10.1142/S0217751X18430029
arXiv: 
1801.05403
Title: 

Study of rare nuclear processes with CUORE

Abstract (for collaboration papers): 

TeO2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO2 detector array, recently published the most sensitive limit on the half-life, T0ν1/2>1.5×1025yr, which corresponds to an upper bound of 140−400~meV on the effective Majorana mass of the neutrino. While it makes CUORE a world-leading experiment looking for neutrinoless double beta decay, it is not the only study that CUORE will contribute to in the field of nuclear and particle physics. As already done over the years with many small-scale experiments, CUORE will investigate both rare decays (such as the two-neutrino double beta decay of 130-Te and the hypothesized electron capture in 123-Te), and rare processes (e.g., dark matter and axion interactions). This paper describes some of the achievements of past experiments that used TeO2 bolometers, and perspectives for CUORE.